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Abstract. Voltage fault injection is a powerful active side channel attack that modifies
the execution-flow of a device by creating disturbances on the power supply line. The
attack typically aims at skipping security checks or generating side-channels that
gradually leak sensitive data, including the firmware code. In this paper we propose
a new voltage fault injection technique that generates fully arbitrary voltage glitch
waveforms using off-the-shelf and low cost equipment. To show the effectiveness of our
setup, we present new, unpublished firmware extraction attacks on six microcontrollers
from three major manufacturers: STMicroelectronics, Texas Instruments and Renesas
Electronics that, in 2016 declared a market of $1.5 billion, $800 million and $2.5
billion on units sold, respectively. Among the presented attacks, the most challenging
ones exploit multiple vulnerabilities and inject over one million glitches, heavily
leveraging on the performance and repeatability of the new proposed technique. We
perform a thorough evaluation of arbitrary glitch waveforms by comparing the attack
performance against two other major V-FI techniques in the literature. Along a
responsible disclosure policy, all the vulnerabilities have been timely reported to the
manufacturers.
Keywords: Embedded system security, Fault attacks, Firmware extraction, Microcon-
trollers.

1 Introduction
Side-channel attacks are considered among the most powerful physical attacks against
embedded devices and secure (e.g., smartcards) or specialized hardware (e.g., FPGAs or
ASICs). There exist two classes of side-channel attacks: passive and active [SMKM18].
Passive attacks exploit information that is spontaneously leaked by the device such as power
consumption [BCO04], timing information [Koc96], electromagnetic emissions [GMO01]
or even acoustic emanations [BDG+10]. Active attacks (also known as fault injection
attacks), instead, influence the system with internal or external stimuli. For instance,
optical fault injection is a powerful technique that exposes the silicon to high intensity
light sources, e.g., laser and UV, to induce errors or tamper with the data. Since this
technique involves decapsulating [SA02] the chip from its package, technical expertise and
specialized equipment are required. Electromagnetic fault attacks (EM-FI) avoid the need
of chip decapsulation since faults are injected through the package using an EM injector
[SH07]. However, some degree of specialized equipment, e.g., a high precision positioning
system [OGM17] or an RF amplifier, can still be necessary to conduct complex attacks.

Given the level of sophistication required by some fault injection attacks, capabilities
and performance are not the only relevant factors for classifying and evaluating them:
the cost also plays a crucial role. In [BBKN12] Barenghi et al. consider as low cost the
injection methods requiring less than $3000 of equipment, which are within the means of a
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single motivated attacker. The authors point out that “these fault injection techniques
should be considered as a serious threat to the implementations of secure chips that may
be subjected to them”. Moreover, the Common Criteria provides a rating for evaluating
the attack potential [Com17], that assigns higher severity scores to side-channel and fault
injection attacks that require little special equipment and can be mounted under lower cost
and expertise. This metric is used in practice by testing laboratories, in order to quantify
the resistance of secure devices against these classes of attacks.

In this work, we focus on power supply fault injection, also called voltage fault injection
(V-FI), a technique that involves creating disturbances, namely voltage glitches or spikes,
on an otherwise stable power supply line. V-FI is a widely used technique because of its
effectiveness and, in particular, its low cost. Both in the literature and in industry, efforts
have been made to ease mounting complex V-FI attacks [OC14, O’F16]. For instance,
commercial tools and open source frameworks such as the ChipWhisperer1 provide an
abstraction layer for controlling the attack parameters at the software level, reducing
the electronic skills required. This allows for scientists with different background (e.g.,
algorithms, statistics, machine learning) to focus on the attack logic and apply their own
expertise to the hardware side-channel field. A recent study [ZDCR14] shows that the
disturbances induced in the chip via V-FI are effectively caused by the rising and falling
edges of the injected glitch. In the literature however, the injected pulses are typically
generated as a squared or v-shaped voltage signal, described by a limited set of parameters
such as supply voltage, glitch lowest voltage and pulse duration.

In this paper, we move one step forward and propose a new V-FI technique which is
based on fully arbitrary voltage glitch waveforms. We analyse the attack performance,
repeatability and feasibility, in terms of generating this type of glitches using off-the-shelf
and low cost equipment. In order to experimentally assess the effectiveness of the arbitrary
glitch waveform approach, we present six unpublished attacks against general purpose
microcontrollers from three manufacturers. The injected faults are used to alter the
execution-flow of the integrated serial bootloader, skipping security checks or generating
side-channels that can, in turn, be exploited to gradually leak sensitive data, including the
firmware code. We divide the firmware extraction case studies in two classes based on the
design and runtime complexity. In the former, the number of successful faults required
is from low to moderate (≤ 100 k) with a straightforward attack logic. On the contrary,
the second class represents particularly challenging attacks that require several days to
complete, exploit multiple vulnerabilities and inject over one million glitches. Finally, we
perform a thorough evaluation of arbitrary glitch waveforms by comparing the attack
performance against two popular V-FI techniques in the literature. All the targets studied
in this paper were selected by considering (i) general availability and diffusion of the MCU
and market share of the manufacturer (ii) presence of an embedded serial bootloader
for flash programming (iii) notable suggested fields and applications such as automotive,
healthcare, IoT. Moreover, since our goal is to study the effectiveness of arbitrary glitch
waveforms as a general V-FI technique for microcontrollers, we selected target devices
having heterogeneous architectures and instruction sets.

We selected firmware extraction for our case studies since firmware protection plays
a crucial role in several industrial applications, e.g., for IP and sensitive data protection.
Moreover, firmware extraction is a fundamental part of the reverse engineering process
performed by researchers to assess the security of embedded systems, ranging from domestic
appliances to critical devices such as automotive control units and health devices (e.g.,
defibrillators, heart rate monitors, implants). In this respect, the six unpublished attacks
presented in this work contribute, by themselves, to the state of the art, demonstrating
the unsuitability of the attacked devices for security sensitive applications. Along a
responsible disclosure policy, all the vulnerabilities that we have found and the firmware

1https://newae.com/tools/chipwhisperer

https://newae.com/tools/chipwhisperer
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extraction attacks have been timely reported to the manufacturers: STMicroelectronics,
Texas Instruments and Renesas Electronics.
Related Work. One of the first attacks exploiting the idea of hardware faults was
described (but not tested) by Boneh, DeMillo and Lipton in [BDL97]: it recovered the
secret factors p and q of an RSA modulus from a correct signature and an hypothetical
faulty one. In the same year, Anderson and Kuhn investigated low cost attacks to tamper
resistant devices, focussing on a fault injection attack on pay-TV smartcards [AK97].
Then, in [KK99] Kömmerling and Kuhn described an extensive range of invasive and
non-invasive tampering techniques and mitigations. As such, the paper is considered a
milestone in the setting of hardware fault attacks, highlighting power supply glitching
attacks as the most practical ones. In [ABF+02], authors combined voltage fault injection
and power analysis to compromise the confidentiality of cryptographic computations and
suggested possible countermeasures. In the following decade, numerous articles (e.g.,
[BCN+04, HSP09, Goo08, KOP10, KH14]) have further investigated the feasibility of
applying voltage glitching to attack both microcontrollers and secure hardware, such as
smartcards. In particular, an extensive survey of the current state-of-the-art is provided in
[JT12] and [BBKN12]. The power supply fault injection mechanism has been extensively
studied and explained as the result of setup time violations in the combinatorial logic
[SGD08, SBGD11, ZDC+12, ZDCR14].

Fault attacks against cryptographic implementations is also a very active research topic
and, in particular, several papers [SGD08, BBPP09, BBB+10a, BBB+10b] studied the
effect of constantly underfeeding a circuit to cause faults. In recent years, fault injection
has also been proven effective for achieving privilege escalation on a locked-down ARM
processor that was running a Linux-based OS [TM17] and, in the same year, a paper
[CPT17] by Cojocar et al. proved that two widely used software countermeasures to fault
attacks do not provide strong protection in practice.

Firmware extraction from read-protected microcontrollers is a relatively less explored
field: in [Goo08] Goodspeed defeated the password protection mechanism found in older
Texas Instruments MSP430 microcontrollers. The author used a timing-based side-channel
attack to exploit an unbalanced code in the password check routine and, by using voltage
glitching, he bypassed the security feature that allows for disabling the serial bootloader
(BSL) completely. In [OT17] authors showed that it is possible to downgrade hardware-
enforced security restrictions and dump the internal firmware of an STM32F0 MCU, but
the attack is invasive as it requires to decapsulate the chip and expose the silicon to UV-C
light. In a recent study [Ger17], Gerlinsky has completely bypassed the NXP CRP (Code
Read Protection) of the LPC microcontrollers family by injecting a voltage glitch while
the bootloader code is checking the CRP status. For what concerns the characterization
of V-FI attack parameters, in [CPB+13] and [PBJC14] authors have successfully applied
genetic algorithms and other optimization techniques. Finally, the glitch generation using
FPGA combined with Digital-to-Analog converters has been studied in the literature (cf.
[TM17, KOP10]) and adopted by V-FI commercial tools, such as the well-known Riscure
VC Glitcher [Risb] and Spider [Risa].

Our paper continues this line of research by focusing on the voltage glitch generation
step, in order to optimize the glitching effects that can be exploited by the adversary. In
particular we investigate, for the first time, the impact of arbitrary glitch waveforms on
the success, performance and repeatability of V-FI attacks. We show that our approach
improves on the state of the art by evaluating the attack performance with specific glitch
waveforms against the two most popular V-FI generation techniques [HSP09, KOP10]
Contributions. Our contributions can be summarized as follows:

(i) We investigate the effect of different glitch waveforms in the setting of voltage fault
injection attacks and, in particular, we propose a new method for the generation of
arbitrary glitch waveforms using a low-cost and software-managed setup;
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(ii) we report on unpublished vulnerabilities and weaknesses in six microcontrollers from
three major manufacturers: STMicroelectronics, Texas Instruments and Renesas
Electronics. We combine these vulnerabilities and describe the attacks for extracting
the firmware from the internal read-protected flash memory. All the attacks are
non-destructive and can be performed with a black-box approach, i.e., without any
knowledge of the firmware code;

(iii) we evaluate the attack performance of our method by comparing the speed, efficiency
and reliability of our solution against two popular V-FI techniques.

Paper Organization. In Section 2 we briefly overview the voltage fault injection topic
and we describe our experimental setup; in Section 3 we introduce our arbitrary glitch
waveform technique and we show how to automatically identify and optimize the glitch
shape; in Section 4 and 5 we report on unpublished vulnerabilities of six microcontrollers
and describe the attacks for extracting the firmware; in Section 6 we empirically evaluate
our technique by comparing it with two popular V-FI techniques, we discuss limitations and
propose possible improvements; finally, in Section 7 we draw some concluding remarks.

2 Preliminaries
Voltage fault injection. Voltage fault injection is a non-invasive2 class of attacks
[ABF+02, Sko10] that focuses on creating disturbances on an otherwise stable power
supply line in order to cause a misbehaviour in the target. This is the result of setup time
violations3 that can cause incorrect data to be captured [ZDCR14, SBGD11, ZDC+12],
allowing an attacker to tamper with the regular control flow, e.g., by skipping instructions,
influencing a branch decision, corrupting memory locations, or altering the result of an
instruction or its side effects. The disturbances that are induced in the power supply
line are called voltage glitches or simply glitches. A glitch is a transient voltage drop
with a duration typically in the ns to µs range, that occurs at a specific instant of time.
Glitch timing (also glitch trigger or trigger) is usually calculated as a delay from a specific
triggering event such as I/O activity or power-up.

There exist multiple techniques for generating and injecting a voltage glitch into
the power supply line of the target device. One of the most commonly used V-FI setup
[O’F16, YSW18], also supported by commercial tools such as the well-known ChipWhisperer
[OC14], is represented in Figure 1a. A transistor, typically MOS-FET, is placed in parallel
to the power supply line and it is used to briefly short-circuit Vcc to ground.4 Then,
the glitch is triggered by a microcontroller (MCU) or a Field Programmable Gate Array
(FPGA) managing the attack timing. The main limitations of this technique are the
reduced control over the attack parameters: for instance, additional equipment is required
for controlling the voltage levels, and the generated glitch can be unpredictable, (cf.
Figure 1b) due to variations in both MOS-FET and target electronic properties.

MCUs integrate processor, flash memory and other peripherals in a single package.
However, some microcontrollers also integrate a voltage regulator for providing a fixed and
stable power supply to the internal processor and memory, independently from the actual
input voltage. Depending on the regulator technology, an external filtering capacitor can
be required: in this setting, the voltage glitch source can be connected directly to the
capacitor pin in order to bypass the internal regulator and avoid any interference of this
component during the attack.

2Voltage fault injection requires no physical opening and no chemical preparation of the package.
3In digital designs the setup time indicates the minimum time required for an input data to be stable

before the active edge clock.
4Voltage glitches below 0 V are common for particular targets, e.g., smartcards [PBJC14, CPB+13].
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Figure 1: A typical transistor-based V-FI setup (1a) and a generated glitch (1b). The oscillations
depend on the target, components in use, and electronic properties of the power supply line. Our
V-FI setup for generating arbitrary glitch waveforms (1c) and a generated glitch (1d).

Programming interfaces. The software running on the MCU, namely the firmware,
can typically be loaded (also programmed) to the internal flash memory using a debug
interface exposed by the MCU: the most common is the standard JTAG/SWD interface
as it can also be used for debugging the code, inspecting RAM content and accessing the
integrated peripherals. Often a serial bootloader, pre-programmed by the manufacturer,
exposes a set of API that can be used for, e.g., write, erase or verify the firmware from a
computer.

Setup. Based on the work in [KOP10], we developed a low-cost programmable V-FI
setup that enables us to overcome the limitations of the transistor-based glitch generation
circuit (cf. Figure 1a). Our setup is designed around the Digital Direct Synthesis (DDS,
cf. [Cor04]) technology: a DDS signal generator outputs an arbitrary waveform from a
software-defined set of parameters. Similarly to the generation of analogue audio from
a digital source, the digital waveform is fed to a Digital-to-Analog Converter (DAC) for
producing the equivalent analogue signal. Since in this paper we target general purpose
microcontrollers that work at sub-GHz speed, we chose an off-the-shelf DDS device with
a reasonable trade-off between performance and price: the FeelTech FY3200S, a very
low cost (about 50 $) Arbitrary Waveform Generator with 6 MHz bandwidth and ±10 V
output range. This model has an internal waveform memory of 2048 points and allows for
controlling the output waveform with 12-bit vertical resolution, using a publicly available
protocol over USB.5 We use this device both as a source of the glitch signal and as an

5Notice that, since the waveform upload speed is low, we modified the generator to bypass the built-in
upload mechanism, improving the upload speed from about 30 s to 200 ms.
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adjustable power supply for regular MCU operation: a logic level change in the external
input trigger causes a seamless transition from the constant supply voltage to the glitch
waveform loaded in the generator.

As depicted in Figure 1c, we wired the generator to a custom designed board, namely
glitch board, which has three major functionalities: (i) provide the glitch amplification
stage and signal path from the generator to the target MCU; (ii) interface with the target
MCU, handling the low-level communication and time-critical operations; (iii) expose a
convenient API to control any aspect of the attack from a computer.

The amplification stage is designed after the arbitrary waveform generator bandwidth
and the power requirements of a general purpose, low-speed MCU, which is typically well
below 100 mA. We used a THS30626 current-feedback, high slew rate operational amplifier
with 145 mA output current capability working in a 2-stage, non-inverting configuration.
This component allows for the target MCU to be constantly powered by the generator,
without requiring an adjustable power supply. A reed relay is placed in-between the
amplifier output and the target, allowing to fully cut off the device power supply when
needed, e.g., for powering off and hard-resetting the MCU, and for preventing harmful
voltage fluctuations while loading a waveform in the generator. The output of the relay is
exposed via a pin strip header, along with a set of digital I/O lines for communication and
control, in order to ease the wiring of new targets. To reduce external interferences and
minimize the power trace length, we directly soldered each MCU on a dedicated breakout
board without decoupling capacitors; this PCB was then attached to the main glitch
board through the pin header connector. We performed all the voltage measurements (e.g.,
Figure 2 and 4) with a probe placed within 10 mm from the MCU power supply pin.

An ARM STM32F407 microcontroller operating at 168 MHz is responsible for running
the firmware that controls the board. We designed the firmware using the minimum code
required for handling the low-level communication with the target MCU (e.g., UART, I2C,
SPI) and glitch triggering. Upon detection of an external event, the built-in hardware
timer guarantees a 10 ns resolution for signalling the generator to inject the glitch after
a specific time delay. An API allows for controlling the board and interacting with the
target MCU from a computer via a USB link.

All the complex tasks or algorithms, the attack logic and the specific communication
protocol used by the target are implemented in a custom Python framework that assists the
design and execution of an attack. As a result, the task of mounting an attack and switching
to a different target is substantially simplified. The framework is also responsible for
commanding the waveform generation and for controlling the attack parameters, including
the search and optimization phase (cf. Section 3.1).

3 Arbitrary Waveform Voltage Glitch
The DAC-based voltage glitch generator described in Section 2 enables high flexibility by
allowing the attacker to control all typical V-FI parameters (i.e., power supply voltage,
glitch voltage, timing and duration) in software and to produce both negative and positive
voltage spikes. Up to minor variations due to trace capacitance and impedance, the
generated waveform is also repeatable and predictable and it is not influenced by the
characteristics of the particular MOS-FET transistor in use, e.g., on-state resistance,
capacitance, rise and fall times. However, the most important feature of this setup that
we are interested in, is the ability to generate glitch waveforms with arbitrary shape.

In the literature it has been shown (see [ZDCR14]) that rising and falling edges of a
voltage glitch play a crucial role in producing oscillations of the core voltage of an FPGA.
Since these oscillations cause computation errors that amount to setup time violations in the
circuit, in the present paper we move a step forward and experiment on the effectiveness of

6http://www.ti.com/lit/ds/symlink/ths3062.pdf

http://www.ti.com/lit/ds/symlink/ths3062.pdf
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(a) STM32F373 (b) TI MSP430F5172 (c) Renesas 78K0R

Figure 2: Oscilloscope trace of the voltage glitch for the STM32F373 (2a), the TI MSP430F5172
(2b) and the Renesas 78K0R (2c). The red (upper) trace represents the waveform of the voltage
glitch, while the yellow (lower) is the trigger.

using non-standard glitch waveforms for fault injection on general purpose microcontrollers.
In the literature (cf. [TM17, KOP10]) Digital-to-Analog converters have already been
proven effective for V-FI. However, to the best of our knowledge this work is the first that
investigates on using a DAC as a source of arbitrary glitch waveforms, which range from
sharp pulses to smooth and variegate waveforms, as exemplified in Figure 2. Depending
on its characteristic, the generated waveform can induce effects resembling regular voltage
glitches or, for instance, a combination of underpowering [BBB+10a, SBGD11, ZDC+12],
negative, positive or multiple voltage glitches. Our experiments (cf. Section 6) suggest
that, when performing a fault injection attack, the attack success is strongly influenced by
the particular waveform of the glitch. However, we point out that thorough investigations
and possibly specific equipment, e.g., on-chip delay-based voltmeters (cf. [ZDCR14]), are
still necessary to identify the precise, low-level effects of different waveforms on the setup
time of combinational logic. We leave this as a future work.
Parameter space. Typically, the set of attack parameters that need to be adjusted are
timing, glitch length, glitch voltage and possibly power supply voltage [CPB+13, PBJC14,
O’F16]. Our technique adds extra parameters for defining the glitch waveform, described
as a function of time where the result is the instantaneous voltage generated. This function
is translated into the parameter space as a finite set (from 4 to 10) of (x, y) coordinates
that are interpolated with cubic interpolation on a 2048-by-4096 grid, and fed into the
DAC. Then, the glitch length is encoded as frequency or period of the arbitrary waveform
generated.

3.1 Parameter Search and Optimization
We define parameter search as the task of finding one set of parameters that successfully
induces one or more faults, implementing a given attack logic. To improve the attack
performance, a further optimization phase can be employed for identifying the set of
injection parameters that maximize the probability of a successful fault. The search phase
is mandatory for designing and mounting an attack while the optimization step is subject
to the specific requirements and complexity of the attack.

In the following we summarize the the steps performed by the attacker for designing
and optimizing a V-FI attack: (i) perform an initial parameter search; (ii) implement the
attack scheme and identify Nglitches and Tglitch, that is the amount of successful faults
required and the time spent for injecting one fault, respectively; (iii) define a target time
Tattack representing the duration under which the attack is considered practical. This can
vary from hours to days depending on the attack complexity and attacker’s expectations;
(iv) define a maximum time Ttimeout for the optimization step, typically as a fraction of
Tattack; (v) iterate the optimization step until the success rate Rsuccess of the fault attack
is such that Rsuccess ≥ (Tglitch ·Nglitches) / Tattack, or the timeout Ttimeout is reached.
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Given the increased number of parameters introduced by our technique, it is important
to devise efficient techniques that make optimization feasible and practical. In the following,
we describe a semi-automated supervised search (cf. Section 3.1.1) and a fully automated
unsupervised search based on genetic algorithms (cf., Section 3.1.2).

3.1.1 Supervised Search

Since finding the correct parameter setting is a highly nondeterministic process [PBJC14],
during our early experiments we used a human-supervised random search approach inspired
by the Adaptive zoom&bound method proposed by Carpi et al. in [CPB+13]. First, we
randomly generate and interpolate the set of (x, y) points describing the candidate arbitrary
glitch waveform. Then, we iteratively select a random sample from each parameter interval
and test the obtained combination. This process is repeated and the results are manually
evaluated, reducing the parameter space accordingly until one solution is found. Clearly this
approach is slow to converge and requires expertise for evaluating the results. Additionally,
the parameters are not independent: for instance, altering the glitch waveform or duration
can affect the glitch trigger position.

3.1.2 Unsupervised Genetic Algorithm

Based on the work of Picek et al. [PBJC14], we developed a framework that enables
for identifying and optimizing the attack parameters in an unsupervised way. It is
designed over a classic genetic algorithm (GA) structure, where an initial population of
candidate solutions (the attack parameters) is randomly sampled and an iterative process
is responsible for finding a solution that maximizes a fitness value F . The fitness value is
typically represented by the number of successful glitches produced by a specific set of
parameters, but it can be further improved by accounting for additional factors, e.g., the
success / failure ratio and the amount of target hangs or reset, as a penalty factor. As an
example, in Section 5.1.1 we assign a negative score to the fitness value in the case of a
false positive, i.e., an incorrect byte extracted. A solution is composed of one combination
of all the members in the parameter space and, at each generation, the solutions evolve
and the attack results are used to evaluate the new fitness value. Since our goal is to find
a working solution which is also optimal, i.e., the parameters providing the best attack
performance, we repeatedly test one candidate solution and calculate F (solution) = S

T ,
where S is the number of successful attacks and T the total number of tests. We start with
50 tests per candidate and increment this value at each generation: as a result, the first
generations enable to test more solutions, while the last are more accurate in evaluating
the candidates performance.

At each generation, the population of solutions is improved through repetitive appli-
cation of the selection, mutation, crossover, and replacement operators. We tuned these
operators to the specific characteristics of our V-FI technique:

Selection we tested both the fitness proportionate selection and the tournament selection
standard GA methods of selecting an individual from the population of individuals, and
found that both produce acceptable results;

Crossover we use a uniform crossover so that, in particular, every single (x, y) point in
the glitch waveform can be mixed between two parents with a 0.5 probability;

Mutation every parameter has a different mutation probability. The glitch duration
parameter has the highest probability; the glitch waveform has a greater probability in
the first generations, together with a higher likelihood of mutating by a small extent;

Replacement a replace-worst strategy is adopted, which replaces the worst individual of
the current population.
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Results. With respect to the parameters optimized by an expert using the supervised
approach of Section 3.1.1, our experimental results show that the solutions identified
by this algorithm produce the same, or higher attack performance. For each case study
presented in this paper, in fact, the attack parameters (cf. Section 4.3 and Section 5.2)
have been automatically optimized using GA. As described above in Section 3.1, item
(v), the optimization converges when a solution that delivers an acceptable performance
level is found, i.e., when the success rate Rsuccess is good enough to make the attack
complete within time Tattack; otherwise it is stopped when the timeout Ttimeout is reached.
During our experiments the average time to converge was in the range of 30 minutes to
10 hours, depending on the target device, the vulnerability and the size of the parameter
search space. Finally, we point out that the attack and the parameter optimization can be
interleaved so to achieve a continuous performance improvement, avoiding unnecessary
voltage glitches dedicated exclusively to the optimization phase.

4 Scattered-glitch Attacks
In this section, we assess the effectiveness of arbitrary glitch waveforms described in
Section 3 against two case studies of low/moderate complexity (Section 4.1 and Section 4.2).
Specifically, the presented attacks exploit a single vulnerability, require a limited amount
of glitches (≤ 100 k) and can be completed in a short time frame: from minutes to a few
hours. All the presented attacks are novel and extract the firmware from the internal flash
memory of the target microcontroller, by exploiting vulnerabilities either in the bootloader
or in the debug interface.

In Section 5 we will consider a third case study of increased complexity.

Attacker model. We assume the attacker knows the MCU model under attack and
has physical access to the target device. As such, the attacker can directly connect to
the exposed pins of the chip, desolder it from the PCB or tamper with the PCB in order
to isolate the chip from the other electronic components, minimizing interference. The
attacker has no information about the running firmware and the flash memory content
but, although not mandatory, she has the ability to inspect the bootloader code in order
to identify a suitable instruction to fault.

4.1 Case Study 1: STMicroelectronics
We consider two STM32 ARM MCUs belonging to the F1 and F3 series and manufactured
by STMicroelectronics. We select this microcontroller family since it is one of the most
widespread in consumer electronics, with over 1 billion units sold between 2007 and 2015
[STM16]. Most STM32 can be programmed either via JTAG/SWD or via the integrated
serial bootloader. On USB-enabled MCUs the standard Device Firmware Upgrade (DFU)
protocol [USB] is often available.

4.1.1 STM32 F1

We select the STM32F103 as a representative of the F1 series. This model is equipped
with a 32-bit ARM Cortex-M3 core operating at 72 MHz.
Security mechanisms. The bootloader offers a security mechanism to lock the device
and prevent any read or write operations on the flash memory. In particular, we are
interested in the Readout Protect command that enables the read protection (RDP) feature.
If enabled, the bootloader returns a negative response (NACK) when a Read Memory
command is issued. The Readout Unprotect command disables the read protection at the
cost of a complete flash memory erasure.
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Attack. We easily bypass this protection mechanism by attacking the Read Memory
command. After the user requests a read operation, the CPU checks the RDP value and
returns the positive (ACK) or negative (NACK) response. By injecting a fault during the
RDP checking phase, the bootloader can be deceived into returning an ACK despite the
active read protection mechanism. Thus, it is enough to issue a Read Memory command
over a memory block followed by a voltage glitch, and repeat this until an ACK is received
and the content of the selected memory block is returned. The attack is then iterated over
the subsequent memory blocks.

4.1.2 STM32 F3

We select the STM32F373 as a representative of the F3 series, equipped with an ARM
Cortex-M4 core.
Security mechanisms. A hardware memory protection unit (MPU) implements runtime
access control to memory and the SRAM parity errors are checked in hardware. The CPU
power supply is provided by an internal voltage regulator and a power supply supervision
(PVD) circuit is responsible for holding the device in reset state while the input voltage is
outside the working range. Compared to the F1 series (cf. Section 4.1.1), the flash memory
read protection mechanism is enhanced by using a configurable RDP with three levels of
protection. At Level-0 the MCU is unprotected. Level-1 grants access to main memory
only when in user mode. i.e., when executing regular firmware code. If, instead, the CPU
is running the bootloader or is in debug mode (e.g., via JTAG/SWD), then the flash
memory is inaccessible. Finally, the Level-2 protection disables the bootloader and any
CPU debugging capability. Moreover, programming the RDP to Level-2 is an irreversible
operation both for the user and for STMicroelectronics. Interestingly, the reference manual
[STM] points out that the RDP is not a software protection mechanism but it is rather
implemented at the hardware level, possibly in the MPU, since any access to protected
memory generates a bus error and a hard fault.
Attack. In a recent paper [OT17], the Level-2 protection of a STM32 F0 microcontroller
has been bypassed by decapsulating the chip and using UV-C light to alter the value of
RDP byte stored in flash memory.

We bypass the Level-2 protection by glitching the MCU during the power-up phase,
in order to interfere with the RDP security mechanism. The first step of the attack is to
identify the correct timing. Since the bootloader is disabled, the glitch trigger cannot be
synchronized to a bootloader command as in the case of the STM32F1. The reference
manual [STM] suggests that the RDP loading takes place at the beginning of the boot
process thus, ideally, the glitch should be triggered right after the start of the boot process.
In fact, the MCU can be successfully downgraded to Level-1 by injecting a glitch at just
11 µs after the boot starts. The attack is repeatable and makes both the bootloader and
the JTAG/SWD accessible. Notice that detecting the start of the boot process in not
immediate: the presence of a Power-On Reset circuit7 makes it necessary to observe the
reset pin (NRST) in order to recognize when the CPU effectively starts booting.

Notice that the high value of the internal pull-up resistor (∼ 40 kΩ) increases the
rise time of the reset pin and, in turn, this could affect the trigger precision. However,
in this case study we found that the rise time is stable and consistent across repeated
measurements, indicating that an external pull-up resistor of lower value is not required.
Security implications. The attack can effectively downgrade the RDP from Level-2 to
Level-1 but not to Level-0. This can be explained by observing the RDP values for the
various levels, reported in Table 1. Since Level-1 is enabled by any value different from
0xCC33 (Level-2) and 0xAA55 (Level-0), it is enough to corrupt a single bit to switch to

7This circuit holds the microcontroller in reset state for 1.5 ms to 4.5 ms after power on, allowing the
power supply to stabilize.
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Table 1: Values of RDP and complement (RDP) bytes with respect to the RDP protection levels
in the STM32 F3. Notice how a single bit flip can downgrade the protection mechanism to Level-1.

RDP Level RDP RDP Security Features

Level-0 0xAA 0x55 None (unprotected)
Level-1 Any other value Debug w/o flash memory access
Level-2 0xCC 0x33 No debug (maximum protection)

Level-1 from the other levels. Instead, downgrading to Level-0 would require to precisely
alter the value to 0xAA55 which might not be feasible through voltage glitching. At Level-1,
the flash memory is not accessible when in debugging mode. However, the debugger is
still allowed to read any RAM address or register value. This feature enables an attacker
to dump sensitive data (e.g., encryption keys and passwords) by attaching the debugger
when a particular firmware routine is being executed. Additionally, an automatic checksum
verification of the firmware is often used by vendors to ensure flash data integrity: for
instance, the ARM application note 277 [Mat] suggests to perform a CRC-based ROM
self-test as part of the boot process. In such a scenario an attacker could extract the
firmware by iteratively attaching the debugger and dumping RAM and registers content
while the checksum code is being executed. In [OT17] the authors have successfully
mounted this attack against a microcontroller of the STM32 F0 series.

4.2 Case Study 2: Texas Instruments
The MSP430 line from Texas Instruments (TI) integrates a 16-bit CPU and it is optimized
for low power applications. These microcontrollers can be found in a high number of
consumer and industrial devices [Tex], ranging from utility meters and burglar alarms, to
safety-critical applications such as fire detectors, medical equipments and physical access
control systems. Similarly to the STM MCUs (see Section 4.1), the MSP430 integrates a
software bootloader (BSL) that allows the user to program and verify the firmware.

4.2.1 MSP430 F5xx ultra-low power

The first device under test is the MSP430F5172.

Security mechanisms. The main security mechanism is a user-defined password that
guards every data access command. The BSL can also be set to automatically erase the
flash memory whenever an incorrect password is provided. The microcontroller has a
Supply Voltage Supervisor (SVS) and a Brownout Reset (BOR) circuit that reset the
device in the case of low voltage.

Attack. We have found that the user is asked to authenticate only when the first
read command is issued. Every subsequent command is executed without asking for the
password again. We suppose that an authentication flag is stored in RAM and checked
before the execution of every read operation; for this reason, we target the flag check
routine of the TX Data Block command, which can read up to 250 bytes. However, the
attack allows us to only dump a single byte, and a subsequent analysis of the BSL code
has confirmed that the authentication flag is checked for every byte read.

The attack iterates over the following steps, for all addresses addr that need to be
dumped: (i) request a single byte at address addr; (ii) the BSL responds with ACK, (byte
0x00) indicating that the command is well formatted; (iii) apply a delay Ttrig starting
from the ACK reception, to align with the instruction that checks the authentication flag;
(iv) inject a voltage glitch in the power supply line; (v) if the BSL responds positively, it
also returns the value of requested address from flash memory.
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Table 2: Results of the attacks on STMicroelectronics and Texax Instruments microcontrollers
described in Section 4.1 and Section 4.2.

Extraction time Total glitches Successes Parameter search Repeatability

STM32F103 1 m (128 kB) 9 k 5 % 20 m High
STM32F373∗ N/A ∼25 ∼4 % 2 h Moderate
MSP430F5172 16 m (32 kB) 34 k 98 % 1 h High
MSP430FR5725 50 m (8 kB) 100 k 8 % 3 h Moderate
∗STM32F373: results for one Level-2 to Level-1 downgrade; complete firmware dump not feasible using fault injection only.

4.2.2 MSP430 FRxx FRAM nonvolatile memory

We consider a second target manufactured by Texas Instruments, the MSP430FR5725.
Security mechanisms. This microcontroller adopts a Ferromagnetic RAM (FRAM)
non-volatile memory technology, instead of the regular flash memory. In particular,
the presence of an integrated FRAM error correction coding (ECC) circuit makes this
MCU family an interesting case study to assess the effectiveness of our voltage glitching
technique. Similarly to MSP430F5172 (cf. Section 4.2.1), the BSL of this microcontroller
is password-protected.
Attack. We successfully applied the same attack logic used for the MSP430F5172,
described in Section 4.2.1.

4.3 Experimental Results and Considerations
The attack performance results for the two case studies are highlighted in Table 2. In
the table we indicate, for each microcontroller model: the extraction time, which is the
total time required to dump the firmware of the target MCU (the flash memory size
is reported in parenthesis); the total number of injected glitches during the attack; the
percentage of successful faults over the total injected glitches; the time required for the
genetic algorithm to search for optimal parameters (including the glitch waveform) used
during the attack (see Section 3.1); the repeatability8, i.e., the effort for reproducing the
attack against a different microcontroller of the same model, loosely indicated as High
or Moderate. Higher repeatability scores indicate, in particular, that switching MCU do
not require a full parameter search and optimization, since the attack parameters can be
largely reused for attacking the new target.

Since the STM32F103 is quite sensitive to voltage glitches, and the maximum length
for a read operation is 256 bytes, we managed to dump a 128 kB firmware in under 60
seconds. On average, the attack requires a total of just 9000 glitches, which corresponds
to a success ratio of about 5 %. We did not manage to perform a flash dump of the
STM32F373 using fault injection only, thus the result represents a single triggering of the
Level-2 to Level-1 downgrade vulnerability. As an example, in the case of the CRC32
attack (cf. Section 4.1.2) the downgrade must be successfully performed once for every
extracted byte.

The performance of the attack against the MSP430F5172 microcontroller is excellent
and we managed to dump over 2 kB per minute. Since the ratio of successful glitches over
the total is above 98 %, the attack speed is limited only by the low data rate (9600 bps)
of the BSL serial interface. On the contrary, the MSP430FR5725 attack success rate
is noticeably lower than the previous target, despite the prolonged parameter search
phase. As a result, 1 kB of FRAM memory is dumped every 6 minutes, thus one order of
magnitude slower.

8We point out that this term is also used in the literature (cf. [SBK10]) as metric for the ability to
inject a specific fault and obtain the same result.
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The MSP430 microcontrollers have a Supply Voltage Supervisor (SVS) and a Brownout
Reset (BOR) circuit that resets the device in the case of low voltage. Interestingly, the
genetic algorithm (cf. Section 3.1) managed to identify the correct set of parameters that
are sufficient to induce a fault in the computation, without triggering any of the two
monitoring circuits. Note that the resulting waveform (see Figure 2b), does not resemble
the typical squared glitch shape and cannot be generated using the MOS-FET V-FI setup
described in Section 2. The power supply voltage identified by the algorithm is close to
the minimum working value, which makes this MCU exceedingly sensitive to minimal
power disturbances. As a result, the waveform voltage range is extremely compressed and,
moreover, the smooth transitions from the power supply voltage (1400 mV) to the lower
glitch voltage (880 mV) allow for injecting the glitch undetected.

5 Complex Attacks
The result of the attacks discussed in Section 4 indicates that arbitrary glitch waveforms can
help to automatically bypass on-chip protection mechanisms such as brownout detectors
or voltage supervisors. In this section we investigate the usage of voltage glitching against
particularly challenging attacks, where the total time required is in the range of several
days and the number of successful glitches is measured in the order of 100 k to over 1 M.

In Section 5.1 we present a third case study that we conducted on two MCU families
manufactured by Renesas Electronics. Similarly to those presented in Section 4, these
attacks are novel and unpublished and enable for extracting the firmware from the read-
protected internal flash memory. We point out that the firmware can only be dumped if
multiple vulnerabilities of the on-chip serial bootloader are combined and exploited; the
data leaked by each vulnerability alone is indeed insufficient. The attacker model is similar
to the one described in Section 4, although with an interesting distinction: the attack is
conducted following a full black-box approach, i.e., with no information about the running
firmware or the flash memory content and, in particular, without reverse engineering the
bootloader code.9

In Section 5.2 we show the attack results and discuss the issues and the challenges that
have emerged and that are specifically related to this class of complex attacks.

5.1 Case Study 3: Renesas Electronics
We tested two microcontrollers from the 78K family manufactured by Renesas Electronics,
specifically series 78K0/Kx2 (8-bit core) and 78K0R/Kx3-L (16-bit core). The manufacturer
suggests that these MCUs are suitable for a wide range of applications, from home appliances
to more critical ones such as healthcare and automotive. A 2016 document from Renesas
[Renc] reports that 920 millions MCUs / SoCs have been sold in 2015 and, on average,
every new vehicle contains 11 Renesas MCUs installed in the onboard Electronic Control
Unit.

The attacks described in this section target the 78K Flash Memory Programming
Interface [Rena, Renb] (FMPI), i.e., the bootloader used to load a firmware into the
internal flash memory. The microcontroller can be set to boot from the FMPI, exposing
the common programming functionalities, e.g., write, erase, verify, to the user.
Security mechanisms. As opposed to what found in Section 4.1 and Section 4.2,
this interface does not provide a command to directly read a memory address. All the
commands that could potentially leak the flash memory content (e.g., checksum, verify)
are enforced to operate on 256 bytes aligned memory blocks. This constraint disallows,
for instance, to attack the block checksum using one-byte increments, or to perform an

9During regular operation the bootloader code is not memory mapped and thus cannot be dumped.
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efficient brute-force by verifying a single byte at a time. Additionally, the 78K offers a
mechanism to further protect the content of the flash memory in production devices: a
security flag field, controlled by the Security set command, can be set to disallow Boot
block rewrite, Programming, Block erase and Chip erase commands. Since the security flag
can be reverted only using a full memory erase, disabling the Chip erase command is an
irreversible operation.

5.1.1 FMPI Vulnerabilities

In this section we provide a description of the vulnerabilities that we found in the FMPI
interface. In Section 5.1.2 we combine these vulnerabilities to mount three different attacks
for dumping the flash memory content.

FlagBypass. Restrictions on program, erase and chip erase commands can be bypassed
by injecting a fault while the Security flag value is being evaluated. We have found that
in order to attack this command, two separate glitches are required, and thus the rate of
success is very low, i.e., about one per minute or lower.

ShortVerify and ShortChecksum. By glitching the routine that checks start and
end parameters sent to the verify and checksum commands, we are able to force these
commands to operate on 4 bytes rather than the intended 256 bytes.

ChecksumLeak. The checksum command can be exploited as a side-channel by causing
an error during its calculation, which amounts to iteratively subtracting each byte from
the starting value 0x10000. An error introduced by the glitch could cause the checksum
routine to miss one byte during its calculation, making it possible to compute the value
of this byte through a subtraction from the correct checksum. We point out that this
vulnerability can produce false positives (i.e., bytes that are not actually in memory) and
that it can be difficult to precisely recover the position of the leaked byte in the flash
memory.

Bitflip. In flash memories, the write operation changes the state of a bit from 1 to 0
while, on the contrary, the erase operation switches it back to 1 (see [CGL+17]). Since the
bootloader does not enforce a flash erase before writing, the program command can be
used to alter existing flash memory content. As a consequence, by using solely the program
command we are able to turn 101 into, e.g., 100 or 000 but not into 111.

5.1.2 Mounting the Attacks

By combining the vulnerabilities of Section 5.1.1 we mounted three different attacks for
dumping the read-protected internal flash memory of the 78K 8-bit and 16-bit MCUs.

SequentialDump. By combining the ShortVerify, ShortChecksum and ChecksumLeak
vulnerabilities it is possible to discover four bytes from the flash. The process, depicted in
Algorithm 1, works as follows: (i) use the ShortChecksum vulnerability (line 2) to obtain
the checksum value of the 4 target-bytes; (ii) use ShortChecksum and ChecksumLeak
vulnerabilities to leak 4 byte values (lines 5 and 6) (iii) process and combine (line 8)
leaked bytes to obtain a new set of 4-bytes candidates, that have not been checked already;
(iv) perform a first check (line 10) that filters out the candidates whose checksum does
not match the expected bytesChecksum (this does not require any interaction with the
hardware); (v) verify each candidate using the ShortVerify vulnerability (line 11).

The attack is feasible thanks to the ShortVerify and ShortChecksum vulnerabilities,
that allow to selectively work on 4 bytes. The API would only allow to perform verify and
checksum of blocks of 256 bytes.
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Algorithm 1 Attack for extracting 4 bytes.
1: function FourBytesDump(addr)
2: bytesChecksum← ShortChecksum(addr)
3: oldCandidates← ∅
4: leak ← ∅
5: while |leak| < 4 do
6: leak ← leak ∪ ChecksumLeak(addr)
7: while True do
8: newCandidates← Combine(leak) \ oldCandidates
9: for all guess ∈ newCandidates do
10: if Checksum(guess) = bytesChecksum then
11: if ShortVerify(addr, guess) then
12: return guess

13: oldCandidates← oldCandidates ∪ newCandidates
14: leak ← leak ∪ ChecksumLeak(addr)

Algorithm 2 Memory dump using the SequentialDump attack.
1: function FlashDump(startAddr, endAddr)
2: data← ∅
3: while startAddr 6= endAddr do
4: data← data ‖ FourBytesDump(startAddr)
5: startAddr = startAddr + 4
6: return data

Erase&Write. We inject a custom software routine in the firmware that directly dumps
the firmware through a serial communication channel with a computer. The attack is
mounted as follows: (i) use Algorithm 2 to dump the first n bytes of the flash;10 (ii) use the
FlagBypass vulnerability to erase the first n bytes; (iii) use the FlagBypass vulnerability
once more to write the custom routine into the erased memory; (iv) set the microcontroller
to boot from the custom routine and receive the dump from the serial interface.

This translates into a considerable performance improvement: a full flash dump can
be performed in about three to five hours, while the number of required glitches is about
one order of magnitude lower with respect to the full SequentialDump attack. This attack
was tested on 78K0R only. Attacking the 78K0 series might also be possible, although our
preliminary tests have been unsuccessful.
Bitflip&Write. We found that the firmware of several commercial devices does not fill
the available flash space completely. For instance, an unused blank11 memory segment
could be left for future firmware updates. A checksum or verify command is sufficient to
locate any blank segment in the flash memory; we exploit these empty segments to further
optimize the firmware extraction strategy.

The attack is mounted as follows: (i) use the Bitflip vulnerability to store the
firmware-dump routine of the Erase&Write attack in an unused memory area; (ii) use
Algorithm 1 to dump the first 4 bytes to identify the location of the boot section;12 (iii)
use Algorithm 2 to dump the first 256 bytes of the boot section; (iv) analyse the dumped
bytes to identify a suitable candidate for bit-flipping: for instance, a FF FF sequence is
sufficient for encoding a branch instruction; (v) use the Bitflip vulnerability to replace
all the instructions up to the FF FF sequence with NOPs (0x00), followed by a branch

10Since the minimum erase size is 1024 bytes, then n ≥ 1024.
11A segment is considered blank if all bytes have value 0xFF, i.e., the segment is erased.
12In the 78K architecture the first 4 bytes of the flash memory hold the address of the firmware boot

section (i.e., the entry point).
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Figure 3: Frequency distribution of 4 bytes leaked by the Renesas ChecksumLeak vulnerability
(3a): on the x-axis the delay between the trigger and glitch injection, on the y-axis the rate of
successful faults. The effect of ambient temperature variations on the optimal injection timing
(3b). The reference measurement is at 23 ◦C and 1110 µs.

Table 3: Results of the three attacks on Renesas 78K microcontrollers described in Section 5.1.2.
The values are obtained by averaging the results of three complete firmware extractions.

Extraction time Total glitches Successful glitches Parameter search Repeatability

SequentialDump 2 d 12 h 3.3 M 549 k 5 h Moderate
Erase&Write ∼3 h 513 k 45 k 1 h High
Bitflip&Write <1 h 204 k 15 k 30 m High

instruction to the firmware dump routine; (vi) set the microcontroller to boot from the
custom routine and receive the dump from the serial interface.

5.2 Experimental Results and Considerations
In Table 3 we summarize the results of the Renesas attacks described in Section 5.1.2.
As one would expect, the SequentialDump attack is the slowest one as it dumps all the
flash memory by using fault injection only, thus requiring a very high glitch count. On the
contrary, the software dump routine loaded using the Erase&Write and Bitflip&Write
attacks leads to a major improvement in firmware extraction time. To this end, since
these attacks extract few bytes using fault injection, a trade-off can be achieved between
the bare extraction speed (i.e., the glitch success ratio) and the time required for the
parameter optimization phase. However, we point out that to trigger the FlagBypass
vulnerability, required by the Erase&Write and Bitflip&Write attacks, two repeated
glitches are necessary, resulting in an extremely low success ratio: we managed to achieve
one success in about 15 to 30 minutes.

The SequentialDump attack can run fully automated and unsupervised with a reasonable
degree of repeatability. Indeed, we performed several full firmware dumps from different
78K0 and 78K0R microcontrollers. Typically, switching MCU requires a re-optimization
phase of the attack parameters, including the glitch waveform, in order to achieve good
glitch success ratio. Interestingly, we experienced that each exploited vulnerability best
performs with a specific glitch waveform. Although a single glitch waveform can be
sufficient to trigger multiple vulnerabilities, the success ratio of such a waveform is low.

Our tests revealed also that, even with the correct parameters, both the attack perfor-
mance and the repeatability of long-running attacks can be influenced by timing errors
and external variables such as the ambient temperature.
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5.2.1 Injection Timing

Fault injection aims at causing an error during the computation of a specific task, so
the timing is a critical parameter. We refer to injection timing as the delay that we
introduce between an external trigger event and the injection of the glitch. During our
experiments we experienced glitch timing inaccuracy that affected the attack performance.
In general, this could be caused by external and physical variables such as temperature,
clock stability, trigger precision or interferences. As an example, Figure 3a depicts the effect
of timing variations on the output of the Renesas ChecksumLeak vulnerability presented in
Section 5.1.1: it appears evident the correlation between injection delay and the probability
of leaking one of the four bytes. The ±2 µs error is introduced by the inaccurate trigger
event (i.e., the command transmission to the bootloader) combined with the fluctuation
in the checksum computation time caused by small variations in the internal oscillator
frequency. As a result, this timing error makes it difficult to recover the exact position
of the leaked byte because of the overlapping probability distributions. We point out
that timing errors could be minimized with the use of synchronization techniques such as
frequency locking [Sko11, OC15] or side-channel power analysis [OC14].

5.2.2 Ambient Temperature

Extreme temperatures are known to facilitate fault injection and side channel attacks
on several targets [HSH+09, HS13, QS02]. In fact, we have found that even small varia-
tions in the ambient temperature can affect the attack performance, requiring multiple
adjustments of the injection parameters and thus affecting the attack repeatability. When
targeting microcontrollers that are running on the integrated oscillator, attacks using long
injection delays (≥ 100 µs) can be particularly sensitive to temperature changes. This is
particularly interesting when performing attacks that span over more than one day: for
instance, heating or cooling systems can be turned off during the night causing a noticeable
temperature variation. To verify our observations we measured the impact of a ±3 ◦C
ambient temperature excursion on the Renesas ChecksumLeak vulnerability. We repeated
the attack for one hour by using, at each iteration, a different injection timing that is
randomly sampled in the range 1100± 5µs. The box plot in Figure 3b collects all the glitch
timings that lead to a successful attack: the plot suggests that the value of the glitch delay
is proportional to the ambient temperature.

This behaviour is caused by slight variations in the frequency of the internal oscillator
(cf. [Rob, VF05]). In particular, an increase in ambient temperature causes a decrease of
execution speed in the Renesas 78K microcontroller, which misaligns the target instruction
with respect to the injected glitch. We managed to reduce the error caused by temperature
variations by applying a ∼ 0.1 %/◦C compensation factor to the injection timing. This
factor can be easily calculated from the results of the above test.

6 Evaluation
In order to evaluate the attack performance of our approach, referred to as AGW in this
section, we conducted a series of tests against the two other main voltage glitching
techniques: an ubiquitous transistor-based setup, namely Mosfet, and its generalization
using a DAC-generated pulse that we will refer to as Pulse.

6.1 Performance Analysis and Comparison
In the following we describe the three setups that we used during the tests:
Mosfet This is the classic configuration often adopted in the literature [OC14, O’F16],

similar to the one described in Section 2 and depicted in Figure 1a. Specifically,



216 Shaping the Glitch: Optimizing Voltage Fault Injection Attacks

Table 4: Performance comparison of three vulnerabilities described in Section 5.1.1 using different
voltage glitching techniques. Results are obtained by averaging 4 independent runs of 10 minutes
each. Values inside the parenthesis indicate the percentage relative to the total glitch count.

Vulnerability Technique Success False Positive Reset Reset⁄Success GlitchCount

ShortVerify
Mosfet 668 (2.6 %) 1 1780 (6.9 %) 2.66 25701
Pulse 969 (3.7 %) 0 1685 (6.4 %) 1.74 26180
AGW 1291 (6.8 %) 1 2786 (14.6 %) 2.16 19044

ShortChecksum
Mosfet 474 (2.1 %) 1 1862 (8.3 %) 3.93 22322
Pulse 689 (2.8 %) 1 1632 (6.6 %) 2.37 24931
AGW 728 (4.4 %) 2 2912 (17.7 %) 4.01 16475

ChecksumLeak
Mosfet 412 (4.9 %) 254 (3.0 %) 2481 (29.8 %) 6.02 8329
Pulse 455 (5.6 %) 158 (1.9 %) 2510 (30.9 %) 5.52 8136
AGW 687 (8.6 %) 42 (0.5 %) 2515 (31.5 %) 3.66 7977

we use a VN2222 N-channel MOS-FET paired with an ADP3623 driver to ensure
fast and sharp switching times. This setup allows for configuring glitch duration
and timing. The MCU power supply voltage can be varied manually and the glitch
voltage (i.e., the peak low voltage of the glitch waveform) is fixed at 0 V since the
source pin of the MOS-FET is tied to ground.

Pulse With respect to the previous setup, this allows for improved configurability and
control over the generated glitch. The glitch is, in fact, more predictable and it is not
influenced by the characteristics of the specific MOS-FET in use. We implemented this
setup using our arbitrary function generator (cf. Section 2), enabling us additional
control over the power supply voltage and the glitch voltage, duration, timing and,
in particular, the rise and fall times of the glitch edges. To the best of our knowledge,
this setup resembles the typical usage (cf., [CPT17, Elz18]) of the industry standard
Riscure Spider [Risa] and VC Glitcher [Risb] tools.

AGW Our proposed setup (cf. Section 2) enhances the output capabilities of the Pulse
method, allowing the attacker to produce fully arbitrary glitch waveforms. Moreover,
this setup is capable of producing voltage glitches with 20 V peak-to-peak amplitude
and ±10 V output range, for supporting a broad variety of targets.

While the hardware of existing commercial tools (e.g., Riscure products) might be capable
of producing AGWs we point out that, according to the documentation and literature,
they seem to be employed for producing pulsed glitches by adjusting glitch duration and
voltage only. Instead of relying on commercial tools, it was more convenient for us (in
terms of cost and flexibility) to develop our proof-of-concept setup.

The high runtime complexity of the Renesas attacks (cf. Section 5.1) makes the
ShortVerify, ShortChecksum and ChecksumLeak vulnerabilities an interesting benchmark
for evaluating the performance of these three V-FI techniques. The experiments were
conducted by attacking a microcontroller of the 78K0/Kx2 family, pre-programmed with
known memory content so to verify the correctness of the extracted data. For each glitching
technique, all the attack parameters were computed by running the algorithm described in
Section 3.1.2 for 8 hours, in order to guarantee fairness and comparability of the results.13

In Table 4 we present the performance results obtained by averaging 4 independent runs of
10 minutes each that we conducted for every combination of vulnerability and technique.
Between each run, the glitch timing was adjusted to compensate for temperature variations
(cf. Section 5.2.2).

In the table we indicate: (i) the number of successes, e.g., the amount of glitches that
13Although in some cases the optimal set of parameters could have been found in a shorter period, we

forced the algorithm to run for 8 hours.
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Figure 4: Comparison of the voltage glitch waveforms for the three V-FI techniques and
vulnerabilities evaluated in Table 4.

Table 5: Full firmware extraction from a 60 kB flash memory using the Renesas SequentialDump
attack. Overview of the performance variation among different voltage glitching technologies.

Technique
Tested

combinations #ShortVerify #ChecksumLeak #ShortChecksum
Total

glitch count
Total

dump time

Mosfet 351 k 13.9 M 3.1 M 699 k 18.1 M 6 d 19 h
Pulse 142 k 3.8 M 2.6 M 582 k 7.1 M 3 d 16 h
AGW 105 k 1.5 M 1.5 M 351 k 3.3 M 2 d 12 h

lead to a successful verify operation or to extract the correct byte; (ii) the number of
false positives, such as an incorrect byte extracted or a bad short-checksum; (iii) how
often we reset the microcontroller for becoming unresponsive after a glitch; (iv) the total
glitch count, injected during the 10 minutes run. The results show that AGW outperforms
the other techniques. In particular we observe that the absolute number of successful
glitches is noticeably higher. Similarly, AGW presents a higher ratio of success over the
total injected glitches, thus our technique is both faster and more efficient. The false
positive count for the ChecksumLeak vulnerability is 6 times and almost 4 times lower
with respect to Mosfet and Pulse techniques; interestingly, in Section 6.1.1 we show how
this enables a major reduction in the firmware extraction time. When a glitch makes the
microcontroller non-responsive, a reset operation is performed at the cost of additional
overhead, due to the bootloader re-initialization. The results show that, in general, our
technique induces more resets in the target, thus limiting the number of glitches injected in
the 10 minutes run. This limitation is, however, compensated by a higher fault efficiency,
which contributes in rising the overall attack performance.

Finally, in Figure 4, for each vulnerability we plot the glitch waveforms of the three
V-FI techniques. The Mosfet setup shows the shorter glitch duration and the maximum
voltage amplitude as a consequence of both undershooting below 0 V and overshooting
above VCC. While the edge rise time is sharp for all the three vulnerabilities, the fall time
in the Pulse setup appears to be much longer, about 400 ns in the case of Figure 4b.
Interestingly, the duration of the low-end (close to 0 V) part of the AGW glitch is similar to
those of the other two techniques.

6.1.1 Firmware Extraction Time

After evaluating the performance of the single vulnerabilities, we tested the SequentialDump
attack presented in Section 5.1.2. The results, depicted in Table 5, represent a full 60 kB
flash memory dump. Notice that, for the sake of brevity, each technique was tested on 5
consecutive 256-bytes memory blocks only; the 60 kB result was obtained after calculations.
Our technique managed to dump the firmware 32 % and 63 % faster than Pulse and Mosfet,
respectively. Interestingly, our approach is also very efficient, reducing the total number of
glitches required to complete the attack: the Mosfet produced about five time the number
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Figure 5: Voltage glitch waveform for the Renesas ShortVerify vulnerability (5a). Red points are
shifted in the y-axis (voltage), reporting the performance effect of each variation in the table (5b).

of glitches, followed by the Pulse method which doubled the value of AGW. In fact, since
these techniques show a higher false positives ratio in the ChecksumLeak vulnerability,
the number of extracted combinations that require to be verified (cf. Algorithm 1) is also
higher.

6.1.2 Glitch Waveform Characterization

We conducted a final experiment to characterize how minor perturbations in the ShortVerify
waveform would impact the success rate. This waveform, used for the AGW tests and depicted
in Figure 5a, is capable of producing about 130 successful verify operations per minute.
The test is performed as follows: a point of local minimum or maximum, labelled with
letters from A to E, is selected and moved along the y-axis so to lower or raise its voltage;
after interpolating the 5 points, the resulting waveform is tested for 10 minutes and the
number of successful verify operations is collected. The results of Figure 5b highlight a
correlation between a specific perturbation and the attack success rate. As an example, if
point A is raised by 200 mV, then the performance decreases by about 22 %. Interestingly,
lowering point C by 170 mV does not produce any success at all, while raising this point
by 140 mV increases the number of successful verify operations by 7 %. This particular
result indicates that refinements in the parameter optimization algorithm (see Section 3.1)
could leave room for further performance improvements of the AGW technique.

6.2 Limitations and Further Improvements
The experimental campaign conducted proved that the success rate of an attack can be
improved by selecting specific glitch waveforms and, as described in Section 4.3, some
countermeasures such as integrated voltage supervisors can be automatically bypassed.
However, this improvement comes at the cost of increased complexity in the glitch parameter
search (cf. Section 3.1). In particular, searching and optimizing the glitch waveform might
be time consuming, possibly requiring numerous glitches. The choice of the voltage fault
injection technique should, thus, account for both the security mechanisms employed by
the target (if any) and the overall attack complexity. As a compromise between attack
performance and parameter search duration, it might in fact be advantageous to reduce the
degrees of freedom of the waveform generation. For instance, starting the glitch waveform
optimization from a small, predefined set of shapes, could substantially ease the task of
the optimization algorithm. It is thus worth considering AGW in complex scenarios, where
the total number of glitches can be significantly reduced (and consequently the probability
of target device failures) resulting in faster and more reliable attacks.
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We plan to conduct more experiments on new microcontrollers and other classes of fault
attacks, e.g., against cryptographic implementations, and to target secure microcontrollers
or hardware (e.g., smartcards, USB tokens) and high speed Systems-on-a-Chip (SoCs).
To this end, our low cost generator (see Section 2), which is limited to produce arbitrary
waveforms with a maximum frequency of about 6 MHz, will be upgraded to increase both
bandwidth and output sampling rate. Finally, we also leave as a future work the study of an
improved version of the genetic algorithm presented in Section 3.1.2, and the investigation
of other classes of optimization algorithms.

7 Conclusion
In this paper we have studied, for the first time, how voltage glitches with arbitrary
waveforms affect the success and efficiency of an attack. We have also investigated the
feasibility of identifying a valid set of attack parameters, including the glitch waveform,
in an automated and unsupervised way, and showed the feasibility of generating these
type of glitches using low cost equipment. Furthermore, we have presented novel attacks
on six widely used microcontrollers from three manufacturers. These attacks target the
bootloader interface and allow for extracting the firmware from the internal protected flash
memory. Following a responsible disclosure policy, we have timely reported the security
flaws to STMicroelectronics, Texas Instruments and Renesas Electronics. Finally, we
have evaluated the performance improvement provided by the arbitrary glitch waveforms
against two other major voltage glitching techniques. The results showed an increment in
the firmware extraction speed and, in particular, a significantly lower amount of injected
glitches required to complete the attack.

Regardless of the arbitrary glitch waveform technique, we believe that the presented
attacks are valuable. They provide evidence that an attacker, even with limited resources,
can use voltage fault injection to bypass the protection mechanisms offered by the mi-
crocontrollers under test. Thus, we certainly discourage the adoption of this kind of
microcontrollers for security or safety-involved systems. Even when microcontrollers come
with some basic protection mechanisms and voltage supervisors, we have shown how
these can be easily and systematically bypassed, allowing for efficient firmware extraction.
Moreover, firmware extraction is problematic by itself for intellectual property. So, indepen-
dently of the criticality of the application, companies should be aware that the protections
implemented in budget microcontrollers are insufficient to protect the know-how in the
firmware and, consequently, devices could be cloned or tampered by criminals with a low
effort and investment.
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