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Abstract 
The use of glass for pharmaceutical new applications such as high-technology drugs, requires the strictest container inert-
ness. A common theme of paramount importance in glass container integrity preservation is the detailed mechanism driving 
the sudden failure due the crack propagation. Using a combination of discrete element method (DEM) and finite element 
method (FEM), a stress map for glass cartridges packed into an accumulation table and transported by a conveyor belt at a 
fixed velocity is obtained under realistic conditions. The DEM calculation provides a full description of the dynamics of the 
cartridges, as approximated by an equivalent sphere, as well as the statistics of the multiple collisions. The FEM calculation 
exploits this input to provide the maximum principal stress of different pairs as a function of time. Our analysis shows that, 
during their transportation on the conveyor belt, the cartridges are subject to several shocks of varying intensities. Under 
these conditions, a crack may originate inside the cartridge in the area of maximal tensile stress, and propagate outward. 
Estimated stresses are found in good agreement with real systems.

Keywords  Discrete element method · Finite element method · Critical stress · Granular materials

1  Introduction

Frictional contacts between macroscopic objects may lead 
to deformation and breakage. The analysis of conditions for 
breakage in a large packing of objects with multiple con-
tacts and collisions requires the evaluation of phenomena 
at different scales, from large scale force propagation (with 
strong fluctuations in space and time) down to local micro-
scale stress accumulation. Here we analyse a case study, 
inspired by an industrial problem, which reveals several 
unexpected facets and illustrates the connection between 
material mechanics, physics and granular statistical physics.

The use of glass for pharmaceutical keeps increasing, 
especially for new applications such as high-technology 
drugs, requiring the strictest container inertness. Indeed, 
high-end biotech products keep entering the market, posing 
new technical and regulatory challenges for the development 
of injection systems [1]. Among the primary containers, 
syringes and cartridges are becoming the key players thanks 
to their superior performances and easy usability, replacing 
the reconstitution filling procedures for vials. Following the 
market trends, new manufacturing processes and advanced 
technologies have been developed, making available a new 
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range of primary packaging aimed at increasing patient 
safety and reducing the risk of market recall. Regarding 
this, one of the most critical topics remains the mechani-
cal resistance: glass breakages can lead to serious issues 
like container integrity failure, microbiological contamina-
tion of a sterile package and glass particulates generation. 
Almost always, the decrease of the mechanical resistance [2] 
is caused by strength-reducing damage introduced during 
forming and handling processes. For this reason, studies for 
risk assessment, based on physical and functional factors, 
become fundamental, starting from the early stages of the 
primary container manufacturing. The above problem is not 
confined to technological issues, but it also bears important 
consequences in terms of slow dynamics non-linearity in 
brittle materials [3], and in the problem of slow flows of 
granular materials drained by conveyor belts [4, 5], not dis-
similar from the widespread problem of granular discharge 
[6]. From this perspective, a numerical modelling that simu-
lates the critical steps of the container life-cycle can be a 
powerful tool to reduce the risk of those adverse events. 
Figure 1 shows the typical conditions that our calculation 
would aim at reproducing.

In this paper, we will discuss the glass breakage issue for 
cylindrical cartridges, that are one of the most commonly 
used containers in pharmaceutical processes.

Cartridges are directed through an accumulation table 
toward the filling line (see Fig. 1a). During this process, 
they experience a high packing condition that may lead to 
the onset of invisible micro-fractures (examples are given in 
Fig. 1b) that affect the glass integrity and their safe use in the 
filling process. The idea of the present study is to identify 
the critical conditions for this to occur. This will be attained 
by a three-step process. 

1.	 Discrete element method (DEM) and finite element 
method (FEM) to justify and to define the equivalent 
sphere model together with its parameters (input data 
for step 2).

	   Firstly, the optimal geometrical and dynamical con-
ditions will be studied using a discrete element method 
(DEM) calculation [7] as provided by the Yade package 
[8]. To this aim, we have built a model for a cylindri-
cal cartridge as shown in Figure S1 of Supplementary 
Information. Each cylindrical cartridge is composed by 
632 identical small beads—a smaller number of small 
spheres would imply too a poor resolution and make 
the shape of the simulated cartridges unfaithful to the 
real ones. A full analysis of the dynamics of many such 
cartridges proves however a daunting task, especially 
under realistic conditions, because it would involve the 
bookkeeping of each of the spheres composing each 

single cartridge, with a corresponding huge computa-
tional cost. Therefore we provide evidence that under 
high packing conditions the most relevant features of 
the dynamics can be still captured by using a set of 
equivalent spheres, that were obtained by the same glass 
material and total mass of the cartridges. A visual rep-
resentation of this is displayed in Fig. 2a. As cartridges 
in the filling line are highly packed, their dynamics is 
essentially driven by by translations in the plane per-
pendicular to gravity and rotations (for instance due to 
friction) around the axis of symmetry of the cylindri-
cal cartridge, i.e. other movements such as inclinations/
falling of a cartridge are negligible. Hence, the use of 
an equivalent sphere turns out to be fully justified at 
this stage, as it will be further discussed below. A large 
number of these equivalent spheres is then inserted into 
a computational box mimicking the accumulation table 
displayed in Fig. 1a, with an underline conveyor belt 
whose velocity can be tuned. In this way, different geom-
etries matching those of the accumulation table can also 
be tested, and the final optimal configuration quickly 
identified. See Sect. 3.1

2.	 DEM simulations to obtain input data for step 3;
	   In the second step, we will perform a direct DEM 

calculation of the velocity field of the cartridge popu-
lation (as represented by their equivalent spheres), as 
well as the number of contact points for selected items, 
as a function of time, during the process of accumula-
tion toward the filling line. The velocity field and other 
dynamical information derived from the DEM analysis 
will be then used as an input to perform a finite element 
method (FEM) analysis [9] on a small cluster of car-
tridges, using the Abaqus package [10]. See Sect. 3.4

3.	 FEM simulations to assess the likelihood of crack initia-
tion;

	   This final step will provide a complete stress map of 
the cartridges, which allows the identification of the 
critical regions where microfractures can occur under 
that specific geometry. See Sect. 4.1.

The plan of the paper is as follows. In Sect. 2 we discuss 
the mapping of a cartridge into an equivalent sphere, and 
the theoretical background underlying the DEM and FEM 
analyses. In Sect. 3, we report all the obtained results, first 
from the DEM to identify the optimal geometry of the filling 
line, as well as the velocity field, and then from the FEM to 
study the stress map of a small cluster of cartridges subject 
to collisions as predicted by the DEM calculation (Sect. 4). 
Finally, Sect. 5 summarizes some key messages and presents 
some possible future perspectives.
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2 � Theoretical background and methods

2.1 � The Hertz contact model for full spheres, 
Reissner theory of thin shells and the cartridge 
behavior

Consider a cartridge travelling on a filling line and impacting 
a neighboring one as schematically depicted in Fig. 2b. The 
total deformation can be split into two main contributions: the 
mutual indentation depth and the deflection of the thin glass 
walls due to membrane and bending actions. If small displace-
ments and strains along with linear elasticity hold, then the 
two terms can be calculated separately, and the system can be 
modeled by combining the corresponding stiffness in series. 
Furthermore, since the contact area is limited to a small zone, 
the two contacting bodies can be assimilated to two equiva-
lent empty spheres, keeping the same mass of the cartridges. 
Under these assumptions, the maximum mutual indentation 
can be calculated following Hertz’ theory of non-adhesive 
elastic contact between two spheres [9]

where kH is the Hertz stiffness

and:

The membrane and bending deformation is evaluated after 
Reissner theory [11, 12], and the maximum deflection of one 
shell is given by the linear relation
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For a two-cartridge system accounting for both Hertz inden-
tation and Reissner theory, the energy balance equation can 
be written as
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Fig. 1   a A typical production line with the accumulation table for the cartridge; b three cartridges with characteristic cracks in different parts of 
the cartridge: body area (left), shoulder area (center), fire polish area (right)
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which is an implicit expression for the maximum force 
transmitted, including the effect of both Hertzian and mem-
brane-bending deformation for the two empty spheres. Equa-
tion (12) can be easily solved numerically for the maximum 
force F. As an alternative, assuming that Hertz contact can 
be expresses by a linear law [13]

an explicit expression for the contact force is obtained as:

where the equivalent stiffness is simply given by:

Figure 3 reports the contact force versus the Young modulus 
as computed using Hertz only theory, Reissner only theory, 
the approximate relation (15) and a finite element analysis 
of the two cartridges. See Sect. 3.1 for a discussion of the 
results.

2.2 � The discrete element method (DEM)

The discrete element method (DEM) [7] is a time-stepping 
algorithm that hinges upon the following calculation cycle: 

1.	 Contacting forces are generated on the basis of the inter-
actions between spheres

2.	 Spheres are displaced based on the forces previously 
computed and on the current positions
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The second step is a straightforward application of New-
tons’ Second Law that for a rigid body has a part related 
to forces

where �(c)

ij
 and �(nc)

ij
 are the contact and non-contact forces 

acting on the ith sphere due to all others, and �i is the grav-
ity, and a part related to torques

where �i is the moment of inertia tensor of the ith sphere, 
and �i and �i are the angular velocity of the ith sphere and 
the total torque acting on the ith sphere, respectively. The 
Newton’s equations are integrated through the customary 
leapfrog scheme (also known as the Verlet scheme) [14].

The first step, on the other hand, is a more delicate one 
because depends upon the model at hand. It hinges upon 
the force-displacement principle describing the relation-
ship between the relative movement of the two spheres and 
the contacting forces. The latter can always be decomposed 
in two parts: the normal direction that is always pointing 
from the center of one sphere to the other, and strongly 
depends on the contact (overlap) between the two bodies; 
and the tangential direction, whose relative movement is 
composed of a rotation and a translation components.

Once that both steps have been performed, time is 
advanced of one step, and the cycle is repeated again, until 
a prescribed number of time steps is reached.

Particular care has to be given to the boundary condi-
tions, as the system is usually constrained by walls that 
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Fig. 2   a Effective spheres rep-
resenting the cartridge in DEM 
simulations; b the collision 
geometry of two cartridges
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may be constituted by different materials, and velocities 
cannot be assigned to walls.

All DEM simulations were carried out using an in-house 
adaptation of the Yade package [8].

2.3 � The finite element method (FEM)

Many physical problems can be posed by a set of (partial) 
differential equations and suitable boundary conditions. The 
finite element method (FEM) [15] is a numerical approach 
to obtain an approximate solution to such boundary value 
problems.

In matrix notation, let �(�) = � be a set of differential 
equations defined over a domain � with boundary conditions 
�(�) = � on the boundary �  of the domain. In the finite ele-
ment approach, the set of governing differential equations 
needs to be transformed into an integral form:

where � and � are two sets of arbitrary test functions. FEM 
cuts the spatial domain into a number of simple geometric 
sub-domains �e—the finite elements—which are assumed 
to be interconnected only at a discrete number of common 
points—the nodes—on their boundaries �e . The values �i 
of the unknown functions � at the nodal points are the basic 
unknowns of the problem. The complete approximate solu-
tion is obtained by interpolating the nodal values �i by means 
of interpolation functions �i (the so-called shape functions). 
Therefore, the finite element method seeks the solution in 
the following approximate form

Obviously, the approximate solution (19) cannot satisfy both 
the differential equations and the boundary conditions in a 
general case.

As a consequence, in Eq. (18) instead of the arbitrary func-
tions � and � , a set of approximate functions is considered

where ��j are arbitrary and n is the number of unknowns of 
the problem. In this way, the integral form (18) leads to a set 
of ordinary algebraic equations
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Since �(��) and �(��) represent the errors due to the 

substitution of the approximate solution (19) into the dif-
ferential equations and boundary conditions, Eq. (22) is a 
weighted integral of the residuals. According to the choice 
of the set of functions �j and �j , different weighted residu-
als methods are obtained. In the finite element approach, 
the shape functions are used as weighting functions (Bub-
nov–Galerking method)

Finally, by virtue of the property of definite integrals, the 
approximate solution can be obtained after each element 
contribution is assembled:

where (∙) is a short-hand notation for an arbitrary function, 
and where �e is the domain of each element, �e its part of 
boundary and m is the number of finite elements in the oper-
ated discretization.

3 � Results

3.1 � Justification of the use of equivalent spheres

As anticipated, one major difficulty of the DEM calculation 
is the very high computational cost required by the use of 
the full cartridge model shown in Fig. S1 of SI. We set up 
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Fig. 3   Maximum contact force as computed using the finite element 
method, Reissner only theory, Hertz only theory and a combination 
of Reissner and Hertz models
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a computational box with geometries matching that of the 
real accumulation table for the cartridge, and inserted a large 
number of cartridges in a high packing conditions as dis-
played in Fig. S2(a) (details on the computational protocol 
will be given below). A full dynamic evolution of the system 
(see Fig. S2(b) for its evolution after few seconds) shows that 
cartridges are driven by the underlying belt by maintaining 
their upright position, in view of the high packing condi-
tion that they experience. Hence, all rotational degrees of 
freedom associated with the the tilt and possible fall for a 
cartridges are essentially ruled out under such conditions. 
The cartridge can then be replaced by a simpler object, such 
as a sphere, to infer the relative kinematics (i.e. velocities) 
and dynamics (i.e. forces) to first approximation. The accu-
racy of this approximation will be checked a posteriori by 
a comparison of the full evolution of a system of cartridges 
in one specific case.

In order to implement a mapping of a cartridge into an 
equivalent sphere, we need to ensure that the relative con-
tact forces during the collisions of spheres as a function 
of the elapsed time will be in quantitative agreement with 
those originating from the cartridges. While simple in prin-
ciple, care must be used as several possibilities arise. As 
presented in Sect. 2, a cartridge can be either considered as 
filled deformable sphere with a fully elastic behavior (Hertz 
theory) [16–18], or as thin shallow spherical shell (Reissner 
model) [11, 12, 19], or as combination of the two (combined 
Hertz–Reissner model) [20–23]. In order to identify the 
optimal model, a numerical analysis of the collision of two 
spheres, within the three different models described above, is 
compared with the collision of two cartridges obtained from 
a direct finite element (FE) numerical method. In all cases, 
the spheres were made of the same material as the cartridges 
and equivalent dimensions so to keep the same mass (see 
Table S1 in supplementary information) and the two spheres 
or cartridges were designed to collide at a relative velocity of 
20 cm s−1 as pictorially illustrated in Fig. 2b. In the cartridge 
case, one of the two cartridges stands in the upright position 
and the other is tilted at a fixed angle, with the two moving 
toward each other with the same relative velocity as in the 
case of the spheres.

The same collision was repeated at increasing values 
of the elastic modulus E, and the maximum contact force 
was calculated with the different methods. The result of 
this study is reported in Fig. 3 and shows that, to model 
two impacting cartridges, it is necessary to couple Hertz 
theory of contact with Reissner model for thin shells. Taken 
individually, Hertz and Reissner theories clearly overesti-
mate the contact force, proving that for colliding cartridges 
neither the shell bending-membrane deformation nor local 
Hertzian deformation can be neglected. On the contrary, if 
both stiffnesses are considered in series, a good approxi-
mation is obtained with the equivalent spheres. A direct 

DEM calculation (not shown in Fig. 3) matches those of 
the combined Hertz–Reissner model. As a consequence, the 
dynamics of the system can be studied properly by means of 
the discrete element method, taking into account equivalent 
spheres. As anticipated, the DEM calculation considering 
the realistic shape of the cartridges would turn out to be 
quite prohibitive from the computational point of view, with 
approximately two order of magnitude larger computational 
times.

3.2 � Results for the dynamics of the spheres 
from DEM: choice of the optimal set‑up

The discrete element method will provide indications for the 
optimal set-up, the velocity field of the equivalent spheres as 
a function of time, the evolution of the number of neighbor-
ing spheres in contact with a given one, identifying the most 
challenging scenarios to be considered for a detailed model-
ling by means of finite element method. We first consider 
the dynamics of 840 equivalent spheres, whose calculation 
can be carried out under realistic values of the glass elastic 
modulus ( E = 45GPa ) within a reasonable computational 
time. The aim of this study is to identify the optimal set-up 
geometry in terms of possible contact forces and therefore 
stress peaks for the cartridges.

Figure 4 depicts the geometry of the computational box 
that represents the first part of the production line shown in 
Fig. 1a. In both cases (spheres and cartridges), all entities are 
inserted into a planar accumulation table confined by verti-
cal walls and whose lower plane is moving with constant 
belt velocity Vbelt driving them toward a constricted section 
ending into a small opening of amplitude A. The length of 
the tilted wall and the angle univocally define the geometry 
of the opening. In the real accumulation table, an external 
agent is acting beyond the opening preventing a clogging of 
the cartridges. In order to mimic this effect, the amplitude 
A is subject to a harmonic oscillation of period T. A num-
ber of spheres in different and strategic positions within the 
computational box were tagged and monitored during the 
dynamics, as shown in Fig. 4. We denoted as ‘triangular 
center’ (green), ‘rectangular center’ (cyan), ‘upper vertex’ 
(yellow), ‘lower vertex’ (blue) four such spheres and labelled 
them with different colours. In addition, we further tagged 
as ‘first line’ (magenta) all those spheres lying close to the 
constricted section.

We explored four different values of the amplitude 
(A = 1, 2, 5, 7.5 cm) , three different values of the belt veloc-
ity ( Vbelt = 10, 20, 30 cm s−1) , and three different periods 
(T = 0.5, 1, 2 s) aiming at finding the configuration mini-
mizing the average value of forces acting on the spheres. 
Here ’average’ means average over all considered spheres 
(coinciding with the force acting on that sphere in the case 
of a single sphere). The evolution of these forces was then 
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monitored for all tagged spheres shown in Fig.  4. Fig-
ure 5a reports the result of the average force versus time 
for different values of the amplitude A ranging from 1 to 
7.5 cm for the ’first line’ spheres. The smallest possible case 
( A = 1 cm ) shows a significant increase of the average force 
at longer times presumably due to a clogging effect, since 
the spheres have diameters of about 1.6 cm . On the other 
hand, large values of the amplitude ( A = 5;7.5 cm ) give rise 
to very high spikes in the average force. This suggests the 
choice A = 2 cm as optimal for the amplitude. Similar argu-
ments, hinging upon Fig. 5b, c lead to the final choice of 
T = 2 s , and Vbelt = 20 cm s−1 . As mentioned, all forces in 
Fig. 5 were monitored in the first line spheres, but we have 
also computed the forces acting on all other tagged spheres 
with similar results. Interestingly, our final choice of Vbelt 
turns out to be lower than the value 30 cm s−1 used in the real 
production line. Our result then suggests that a lower value 
of Vbelt would help in preserve the integrity of the cartridges, 
as one could expect on physical basis. These optimal values 
will then be used in all following calculations. A movie rep-
resenting the dynamics under this condition is reported in 
Supplementary Information (Movie 2).

3.3 � Universality of the coordination number in DEM 
calculations

In close analogy with granular materials [7], we define the 
‘coordination number’ as the number of neighboring spheres 
in contact with a given sphere. Figure 6 reports the results 
of this calculation as a function of the time for different 
choices of the tagged spheres and for different values of the 
Young’s modulus E. In Fig. 6a, b the coordination number 
is averaged over all spheres and first line spheres, respec-
tively. Figure 6c shows the result for the ’rectangular center’ 
sphere that clearly displays an alternations between the two 
packing structures. Note that the initial configuration is a 
square packing, as visible from the snapshot of the initial 
conformation (see Fig. 4).

Two key messages can be learned from this analysis. 
Firstly, the average coordination number is nearly inde-
pendent of the Young’s modulus E, thus suggesting that the 
way the spheres pack at the accumulation table does not 
depend on E. This means that the coordination number can 
be safely computed at low E, with much smaller computa-
tional endeavour. The second point is related to the structural 
rearrangement signalled by the oscillation between 4 and 6 
coordination pertaining to a square or hexagonal packing, 
respectively. Note the oscillating period that is identical to 
the driving oscillation of the opening amplitude ( 2 s ), as one 
could expect from the outset.

3.4 � Scaling of the velocity field in DEM calculations

Unlike the coordination number, contact forces are clearly 
strongly dependent on the Young’s modulus. We can infer 
this dependence by performing the same calculation—i.e. 
same initial conditions and same parameters other than the 
Young’s modulus—at different values of the Young’s mod-
ulus E, again as a function of time. Rather than reporting 
the magnitude of the contact forces, it proves more useful 
to report the magnitude of the velocity of the spheres. This 
is because the velocity field will be eventually input to the 
FEM analysis, so it is important to have a clear picture of 
its behaviour as a function of time.

We have explicitly monitored the velocities of all tagged 
spheres. Here we only consider the ‘rectangular center’ 
sphere because it best represents the ‘bulk behaviour’ of the 
systems. The other values can be found in Figures S3 and S4 
of Supplementary Information. In view of the large differ-
ence in the values of forces depending on Young’s modulus, 
we have found expedient to gather plots in groups depending 
on the range of E values. Figure S3a of Supplementary Infor-
mation reports the results for values E = 107, 108, 109 Pa 
whereas Figure S3b of Supplementary Information refers 
to values of the Young’s modulus E from 11.25 × 109 Pa to 
45 × 109 Pa , the highest of which corresponding to the real-
istic value in the experimental set-up.

As visible in Fig. 7a, b, the ‘rectangular center’ sphere 
will reach the highest velocities after ≈ 50 s , with velocities 
ranging from ≈ 100mm s−1 for the lowest Young’s modulus 
value of E = 107 Pa to ≈ 250mm s−1 for the highest (and 
realistic) value of E = 45 × 109 Pa . These values will be 
used later on in the FEM analysis.

Fig. 4   Top view of our computational box with highlighted the 
tagged spheres used to probe the dynamics: triangular center (green), 
rectangular center (cyan), upper vertex (yellow), lower vertex (blue), 
first line (magenta). Also shown are the amplitude A and the direction 
of the velocity Vbelt = 20 cm s−1 for the underlying belt (color figure 
online)
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3.5 � Velocities versus coordination number 
from DEM calculations

Another important outcome of the DEM analysis that will 
be exploited in the following FEM calculation is associated 
with the two following questions. How is the velocity field 
distributed among the different spheres? And is the result-
ing velocity deriving from single or multiple contacts of the 
spheres?

We now address these issues by contrasting the resulting 
velocities with the corresponding coordination numbers for 
the highest value E = 45 × 109 Pa of the Young’s modulus, 
since this is the actual value expected in the accumulation 
table. As a preliminary calculation, we performed a full span 
of the entire dynamics of all spheres, as well as of the ’first 
line’ spheres. This is done in Fig. 8 that displays the coor-
dination number (a) and the corresponding average veloci-
ties (b) for the ’triangular center’ spheres. This is a rather 
useful information as it allows to associate the velocity of 
a given group of spheres with the corresponding coordina-
tion numbers at the same time. As before, the characteristic 
periodicity of both quantities is associated with the period 
of 2 s of the amplitude oscillation, with the coordination 
number relaxing from a high value ≈ 6 corresponding to 
hexagonal packing, to a nearly vanishing value when the 
exiting amplitude A is at its largest extension. The velocity 
also oscillates accordingly around 20mm s−1 until a marked 
increase is eventually reached when the ’triangular center’ 
spheres reach the outlet after ≈ 33 s.

Having identified the most interesting time intervals of 
each set of spheres, we then zoomed into them to extract 
specific patterns. This is done in Fig. 9a, b for the ’triangular 
center’ sphere, and in Fig. 9c, d for the ‘first line’ spheres. 
In first case, the ’triangle center’ sphere is the closest one 
to the outlet (labelled in green), and Fig. 9a shows a snap-
shot of the configuration after 9.3 s of simulation, whereas 
Fig. 9b displays the corresponding dynamical evolution of 
the velocity (left axis) and of the coordination number (right 
axis). After an initial lag of roughly 2 s , where the sphere 
is nearly immobile into the initial hexagonal conformation, 
the sphere starts to move with bursts of activities having 2 s 
intervals, with velocities and coordination number oscillat-
ing from ≈ 80mm s−1 and 5–6 respectively, to nearly van-
ishing values. The two quantities appear to be out of phase, 
however, as one could expect on a physical ground, with the 
highest velocity achieved when the coordination number is 
low and conversely lowest velocities associated with high 
coordination. After approximately 12 s the ‘triangular center’ 
sphere exits from the amplitude and its dynamic is no longer 
of interest. This is also visible from the snapshot of the 

Fig. 5   Selection of the optimal amplitude geometry with the force 
averaged over the first line (average force) as a function of time for 
different values of the parameters. a Vbelt = 20 cm s−1 , T = 1 s and dif-
ferent amplitudes A; b Vbelt = 30 cm s−1 , A = 5 cm and different peri-
ods T; c T = 2 s , A = 5 cm and different values of Vbelt
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simulation (Fig. 9c) after 12.2 s where the (green) ‘triangular 
center’ sphere is no longer visible. In this case, the interest 
switches to the ‘first lines’ spheres, and Fig. 9d reports the 
corresponding average velocity and coordination number. 

This set of spheres is particularly interesting because it was 
initially at the boundary of the constricted section with 
square packing of spheres on the rectangular part of the 
computational box, and hexagonal packing on the triangu-
lar side. In this case, there is an initial slow dynamics with 
maximum velocities of 30mm s−1 and coordination numbers 
fluctuating from 1 to 5. Here it is important to notice that the 
tagged spheres that were originally aligned become shuffled 
in the sea of all other spheres already after 9 s , as it can be 
clearly seen from the snapshot of Fig. 9a (taken after 9.2 s 
of simulations).

3.6 � The case of the cartridges from FEM analysis

By examining the dynamics of the sphere population 
obtained by means of the discrete element method, it was 
possible to detect the typical scenario in terms of positions, 
relative velocities, and coordination numbers. These results 
allow the setting up of a detailed Finite Element Model cal-
culation that will provide a complete stress map of the car-
tridges, and will then allow to provide a risk assessment for 
the single cartridge.

All FEM calculation have been carried out using the 
Abaqus Code Package [10]. The cartridge mesh is made of 
three-dimensional, linear tetrahedral elements with three 
degrees of freedom per node, and the base belt is meshed 
by using rigid elements. This choice has been dictated by 
the specific geometry of the cartridge that would required a 
too dense mesh to describe the neck and the bottom of the 
cartridge with hexahedrons. We have explicitly tested in few 
specific cases, that this choice is sufficient for our purposes 
and that it is not necessary to use quadratic or higher order 
tetrahedrons. A friction coefficient of 0.2 is considered for 
the contact among cartridges, that means that the contact 
force has both a normal and a tangential component.

4 � Discussion of FEM results

Consider a single cartridge (labelled as 1 in Fig. 10) sur-
rounded by additional 6 other cartridges (labelled as 2–7 
in Fig. 10) arranged into a hexagonal conformation that, as 
we saw from DEM calculation, is the typical conformation 
where each cartridge is expected to experience the highest 
stress. We consider the characteristic scenario where two 
neighbouring cartridges (labelled as 2 and 3) collide with 1 
with relative velocities V2 and V3 along a specific direction, 
and the remaining neighbouring cartridges (labelled 4–7) 
are in contact with 1. Based on previously reported DEM 
analysis, this configuration is one of the most representa-
tive among the innumerable possible situations that could 
take place on the accumulation table. We have then consid-
ered the two different cases of maximum relative velocities 

Fig. 6   Coordination number as a function of time at increasing val-
ues of the Young modulus E for a all spheres; b ‘first line’ spheres; 
c ‘rectangular center’ sphere. In all cases Vbelt = 10 cm s−1 , T = 2 s , 
A = 2 cm
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Fig. 7   Velocity as a function of 
time for the “rectangular center” 
sphere a Young modulus 
range 107 Pa ≤ E ≤ 109 Pa ; 
b Young modulus range 
11.25 × 109 Pa ≤ E ≤ 45 × 109 Pa

Fig. 8   a Coordination number 
and b velocity of the ’triangular 
center’ sphere as a function of 
time

Fig. 9   a Snapshot of the con-
figuration after 9.3 s ; b velocity 
of the ‘triangular center’ sphere 
as a function of time; c snapshot 
of the configuration after 12.2 s ; 
d average velocity of the ‘first 
line’ sphere as a function of 
time (here ‘middle’ means that 
we do not include extreme 
values in the averages; In both 
b and d the right vertical axis 
also reports the correspond-
ing values of the coordination 
numbers
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(Fig. 10a) where V2 = 180mm s−1 and V3 = 120mm s−1 ), 
and the case of average relative velocity (Fig. 10b) where 
V2 = 50mm s−1 and V3 = 25mm s−1 ) where, in both cases, 
the colliding angles have been obtained by the velocity vec-
tors of the DEM analysis at selected positions. For each of 
the two above cases we have further considered two different 
conditions. In the first one, all the 7 considered cartridges are 
uncoupled from the others (Fig. 10c), whereas in the second 
one cartridges 4–7 are coupled through massless springs to 
neighbouring ’ghost’ cartridges (Fig. 10d). This latter case 
is meant to implicitly capture the non-linear effects provided 
by the set of remaining cartridges at the simplest possible 
level. Hence, in the first case the confinement provided by 
the adjacent cartridges is neglected (corresponding to a 
group of cartridges slightly isolated from the rest of the car-
tridges), whereas in the second case the external cartridges 
(4–7) are restrained by using no-tension springs mimick-
ing the confinement provided by the additional cartridges. 

While we have performed the analysis for both the maximum 
(Fig. 10a) and the average (Fig. 10b) cases, only the most 
interesting case relative to the maximum velocity will be 
reported in the following.

Our interest hinges on the evaluation of the contact forces 
to estimate the risk of rupture for the cartridges under the 
worst possible conditions. Both the normal and the tangen-
tial contact forces are presented, highlighting their depend-
ency on the initial position, relative velocity and mechani-
cal properties of the cartridges. We focus our attention on 
pairs 1–2 and 1–3 that are those experiencing the collisions. 
Figure 11a shows the normal and tangential components of 
the contact forces for the 1–2 and 1–3 pairs as a function 
of time, starting from a conformation where both pairs are 
not in contact. Results are reported for both the case with 
and without external springs and forces are monitored on 
cartridge 1 which collides with cartridges 2 and 3 both at 
the bottom and at the top.

Fig. 10   Cartridge positions in 
the following cases a maximum 
relative velocity; b average 
relative velocity; c case of no 
springs; d case where no-ten-
sion springs are considered
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A marked difference between bottom and top impacts 
is observed, and the influence of the external springs is 
more effective on the 1–3 pair. Consider pair 1–2 depicted 
in Fig. 11a for the normal and in Fig. 11b for the tan-
gential components of the experienced force. The bot-
tom impact forces result significantly smaller than the 
corresponding top forces, both for normal and tangential 
components. The springs play a role after 1ms , only on 
the bottom impact: the collision takes place a little earlier 
with a slightly higher normal and tangential force. For 
the 1–3 pair (Fig. 11c, d), during the initial phase of the 
impact, the springs do not have any influence on the con-
tact, whereas after about 1.2ms the dynamics of the system 
dramatically changes. The confinement provided by the 
outer cartridges increases the contact forces, leading to 
considerably larger normal forces up to 55N for the bottom 
contact and 80N for the top contact. For tangential forces 

values as high as 10N are achieved for bottom contact and 
14N for top contact.

This effect can be ascribed to the combination of con-
straints provided by the base belt, that is driving the whole 
population, and by the neighboring cartridges (4–7), thus 
resulting into a more and more blocking in the case of 
no-tension springs. This phenomenon has been observed 
repeatedly for several cartridge pairs, revealing that sec-
ondary impacts play a fundamental role. Within the real 
accumulation table, this situation can be associated to 
the dangerous case where some elements get stacked into 
a narrow space while the following are going to impact 
against them. Movie 3 of Supplementary Information 
shows the FEM dynamics in the case where external 
springs are present.

Fig. 11   a Normal contact force versus time for pair 1–2; b tangential contact force for pair 1–2; c normal contact force versus time for pair 1–3; 
d tangential contact force for pair 1–3
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4.1 � Stress field, strain field and microfracture

An essential theme in container integrity preservation is 
understanding the mechanisms behind the sudden failure 
and finding possible strategies for the mitigation of its risk. 
To this aim, a possible risk assessment can be made through 
the evaluation of the forces and peak stresses developed in 
the cartridge during its path on the accumulation table. It is 
very interesting to investigate the variation of the maximum 
principal stress through the thickness of the glass wall, high-
lighting its correlation with the impact force. As presented 
in the Method section, the contact load is directly linked to 
the relative velocity, the mechanical parameters of the con-
tainer and in general to the initial conditions. This aspect is 
exasperated under real conditions on the accumulation table, 
where the chaotic dynamics of the cartridges causes several, 
continuously varying shocks. In Fig. 12a, c the maximum 
principal stress is shown as a function of time for pairs 1–2 
and 1–3. When considering the confinement springs, for the 
pair 1–3 the peak stress reaches 140MPa at the bottom of 

the cartridge number 1. At the instant of the maximum peak 
stress, the corresponding variation through the thickness is 
shown in Fig. 12b, d. The worst situation is recorded for 
pair 1–3 with no-tension spring where the maximum princi-
pal stress reaches 94MPa inside the cartridge at the contact 
zone. It is interesting to observe a shifting trend of the stress, 
with increasing thickness depth subjected to tension stresses 
with consequent danger for crack initiation and/or propaga-
tion. Figure 13 reports the contours of the maximum prin-
cipal stress of cartridge 1 in correspondence of the peaks of 
normal contact forces for the various cases. The black arrow 
indicates the impacting cartridge. It is worth to underline 
that the interior and exterior part of the interested impact 
zone are in tension and compression respectively. The pos-
sible crack initiates from inside the cartridge and propagates 
toward outside. This is a very dangerous situation, because 
the containers can be damaged by microscopic scraps which, 
in the worst case, can lead to the sudden rupture of the car-
tridge and cause the stop of the filling line, with high costs 
for the company.

Fig. 12   a Maximum principal stress vs time for pair 1–2; b maximum principal stress through thickness of cartridge 1 for pair 1–2; c maximum 
principal stress vs time for pair 1–3; d maximum principal stress through thickness of cartridge 1 for pair 1–3
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Fig. 13   a Pair 1–3 bottom, 
no springs; b pair 1–3 top, no 
springs; c pair 1–2 bottom, 
no springs; d pair 1–2 top, no 
springs; e pair 1–3 bottom, non-
linear springs; f pair 1–3 top, 
non-linear springs; g pair 1–2 
bottom, non-linear springs; h 
pair 1–2 top, non-linear springs
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In terms of risk assessment, by considering a realistic 
scenario based on DEM kinematics outcomes used as input 
for the Finite Element modelling, it is possible to extrapolate 
what could happen in the real accumulation table when the 
dynamical system is extended to thousands of cartridges.

5 � Conclusions

The interest in the present paper was triggered by practical 
questions with far reaching consequences, but eventually 
evolved into an interesting general problem on its own right. 
The filling procedure of glass cartridges used in pharmaceu-
tical applications poses increasing challenges to guarantee 
the integrity of the cartridge and the patient safety during the 
injection system. This process was mimicked in our study 
via a sequential combination of DEM–FEM calculation that 
led to the complete stress field of the cartridges. We used 
discrete element methods (DEM) to study the full dynamics 
of a large number of equivalent spheres in an accumulation 
table of variable geometry. We have motivated the use of 
equivalent spheres by showing that their dynamics under 
these conditions is representative of the dynamics of the 
cartridges (see Movie 4 in SI for a visual representation) 
that would otherwise be out of the reach of present compu-
tational capabilities. In addition to the optimal accumulation 
table conditions, DEM calculation provided the distribution 
of the number of contacts, the intensity and directions of the 
corresponding velocities and positions as function of time 
within the non-linear elastic collision model. These results 
were then used as input for the finite element method (FEM) 
calculation that provided the contact forces as a function of 
time, the stress tensor field, as well as the critical cracking 
zones for realistic values of the glass composition. Here, 
the likelihood of a crack initiation is evaluated based on 
the maximum principal tensile stress. It would be extremely 
interesting to implement a line of experimental investiga-
tions where the numerical predictions reported in the pre-
sent work could be tested in simplified case studies. Among 
the possible available techniques, a promising example is 
given by photoelastic force measurements, which have been 
used with success in experiments with granular materials 
[24]. Our findings pave the way toward a general approach 
to these class of systems, thus transcending the specific case 
reported here.
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