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1 Introduction

Starting with the seminal studies of Fama and Bliss (1987) and Campbell and Shiller

(1991), the ability of interest rate variables, like the slope of the term structure, to fore-

cast excess bond returns has received considerable attention in the fixed-income literature.

Subsequently, Cochrane and Piazzesi (2005) make an important contribution to this litera-

ture by showing that a combination of forward rates across different maturities explains a

substantial fraction of common fluctuations in bond risk premia.

Despite the role of forward rates as natural conditioning variables, recent studies cast

doubt on the statistical and economic relevance of bond predictability. For example, Thorn-

ton and Valente (2012) use forward rates to forecast bond excess returns in the context of

dynamic portfolio allocation. They conclude that deviations from the Expectations Hypoth-

esis lead to economic gains that are small. Analogous conclusions are drawn by Della Corte,

Sarno and Thornton (2008) working at the very short end (from overnight to 3 months) of

the yield curve. Moreover, Ludvigson and Ng (2009) note that forward-only factors appear

to miss cyclical variations in bond risk premia, an unappealing feature from a theoretical

perspective.

In this paper, we investigate whether bond predictability can be enhanced by integrat-

ing information provided by forward rates with that arising from monetary policy actions.

Specifically, our proposed variable is the gap between the natural rate of interest and the real

Fed Funds rate. We label this variable Convergence Gap (CG). The logic behind the choice

of this variable is the following: The natural rate of interest indicates the real interest rate

consistent with a closed output gap and stationary inflation (see Wicksell (1936), and more

recently Woodford (2003, Ch. 4.1–4.2)). To the extent that central bank’s targeting rule

can be traced (directly or indirectly) to the natural rate, we expect a positive convergence

gap – yields below their natural level – to signal that the central bank will act in the Federal

Funds rate market to close the gap, i.e. that short term yields are likely to increase in the

1



future.1 Since yield and bond return predictability are intimately related, it is natural to ask

whether CG helps predicting excess returns and restoring countercyclicality in risk premia.

We begin by studying the role of the convergence gap in the predictive regression of

average bond excess returns. We find that CG significantly predicts returns when entering

alone, or together with forward rates. In particular, its inclusion increases the regression R2

from 23% (with forward rates only) to 34%, and the statistical significance of the forward

rates is enhanced. An important aspect we document is that CG eliminates systematic

patterns in forecast errors which are related to the state of the economy, and hence to the

cyclical nature of risk premia. When only forward rates are included in the bond return

regression, the resulting residuals tend to be countercyclical, as they are predictable by

variables such as the Chicago Fed National Activity Index and the NBER dummy. However,

when combining the forward rates with CG, the residuals become nearly unpredictable. This

evidence implies that CG restores the countercyclicality of risk premia that is partly missed

out by forward rates. Thus, CG uncovers a component of risk premia that is not only

statistically, but also economically relevant.

Following Cochrane and Piazzesi (2005), we construct a bond risk factor from the fitted

value of the regression jointly containing the forward rates and CG. When using this factor

for predicting individual bond return series, we find that its statistical significance across the

full spectrum of maturities remains intact even after controlling for interest rate volatility,

the macro factor of Ludvigson and Ng (2009), and the Cieslak and Povala (2015) cycle factor.

The comparison with Cieslak and Povala (2015) is particular insightful. In fact, despite being

both significant predictors of excess bond returns, our factor and the cycle factor differ along

important dimensions in line with their economic underpinning. First, our analysis shows

that different maturities do not move on a single factor: the predictive content of our factor

1The turbulent Global Financial Crisis period, with the prospect of long stretches constrained by the
effective lower bound, have commentators wondering whether inflation targeting regimes are still the right
approach for central banks (Williams, 2016). Accordingly, recent monetary policy discussions (see, e.g.
Yellen, 2015; Kaplan, 2018) focus on the equilibrium real interest rate because it provides a gauge of a
“neutral” stance of monetary policy.
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for future returns is stronger at short maturities, whereas the Cieslak and Povala (2015)

factor conveys additional information particularly at long maturities. This finding is easy to

interpret since CG works through a mean reversion of the real short rate toward the natural

rate, while the cycle factor operates through the nominal short rate mean reverting toward

a slowly moving trend in inflation, which is known to have a persistent level effect on the

yield curve. Second, we document that CG enhances the predictability of forward rates for

excess returns on U.S. TIPS, whereas the Cieslak and Povala (2015) factor does not. Once

again, this finding is in line with the economic foundation of CG: the gap between the real

short rate and the natural rate aims at capturing the effect of transitory imbalances in the

real economy on the path of interest rates through central bank’s decisions.

We further show that CG helps predicting future yields. When used alone or together with

the slope, CG reduces significantly the out-of-sample root mean squared error in predicting

future changes in one-year yield compared to the benchmark random walk model. This

ability to forecast yields and the restored countercyclical variation in risk premia are two

sides of the same coin. Indeed, the convergence gap enters the bond return regressions with

a negative coefficient. Thus, risk premia are deemed to be lower when yields are below their

natural rate, i.e the central bank is accommodative, everything else equal. This is consistent

with the evidence that, over our sample, positive values of CG are recorded in periods that

anticipate an increase in future yields and economic activity, i.e. periods when risk premia

are likely to decline.

We measure the economic value of the documented predictability solving a dynamic

portfolio choice problem that involves a risk-free asset and a portfolio of bonds. In particular,

we adopt the approach of Brandt and Santa-Clara (2006) and estimate the optimal policy for

a risk-averse investor who dynamically adjusts her position based on a set of predictors. We

find that adding CG to the information set substantially improves the portfolio allocation

and its performance. The Sharpe Ratio increases by about 0.10 compared to the forward-only

allocation, which corresponds to an economic gain (or equalization fee) of 2% per annum.
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These results hold for monthly as well as annual non-overlapping bond returns, persist out-

of-sample, when trading individual bonds, and even if we prevent the investor from taking

large positions. The economic magnitude of these effects confirms that deviations from

the Expectations Hypothesis are indeed quite relevant, consistent with recent evidence by

Gargano, Pettenuzzo and Timmermann (2019).

Spurred by the statistical and economic significance of the gap, we investigate its driving

forces. Our empirical design draws inspiration from Lunsford and West (2019), who explore

the potential drivers of the long run safe interest rate in a reduced-form setting. We comple-

ment the work of Lunsford and West (2019) along several important dimensions. First, we

do not investigate the drivers of the natural rate but rather of the convergence gap, which

reflects deviations from the natural rate triggered by monetary policy actions. Second, we

ask which of the drivers in turn capture a predictable component of bond risk premia. Fi-

nally, while Lunsford and West (2019) use annual data and look at long-term correlations,

our analysis focuses on monthly, hence higher frequency, information revealed by a widening

of the gap, which is closed afterwards.

Overall, we find that demographic variables (such as, the employment to population

ratio and the ratio of middle-aged to young adults) are either significant drivers of CG,

valid predictors of bond returns, or both. We also find some albeit weaker evidence for

productivity-related variables (such as, the Arouba-Diebold-Scotti index and total factor

productivity), and little role for measures of flows or budget savings. At the same time, the

component not explained by these variables, which captures the (unobservable) determinants

of FED’s decision to manoeuvre the real policy rate, still plays an important role in predicting

bond returns. We thus confirm that the gap acts as the right summary statistic to capture

how these and possibly other shocks influence monetary policy decisions and, in turn, the

future path of interest rates.

Our findings are robust to using annual holding period returns sampled at the quarterly

and annual frequency, vintage data for GDP and inflation following Ghysels, Horan and
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Moench (2018), and monthly holding period returns. We also extend our analysis to countries

other than the U.S., namely Canada, the U.K., and Germany/Eurozone. In each of these

markets, the convergence gap continues to enter the bond return forecasting regressions with

a negative and significant coefficient, helps forward rates to track bond risk premia, and adds

economic value to bond predictability. Finally, we carry a full out-of-sample experiment,

which shows that the combined factor reduces significantly the mean squared forecast error

from predicting bond excess returns.

Our study contributes to the literature on bond returns “excess” predictability, that is,

predictability achieved with variables other than current yields. Among others, Cooper and

Priestley (2009) and Ludvigson and Ng (2009) propose macroeconomic factors that help

tracking bond risk premia.2 In independent work, Bauer and Rudebusch (2017) also use

the natural rate of interest in the context of term structure modeling. Our study provides

complementary views on the importance of monetary policy-related variables for bond pre-

dictability. Specifically, unlike Bauer and Rudebusch (2017), we analyse the role of the

gap as unspanned factor in a standard affine term structure model, without introducing

time-varying trends, and quantify its economic value within an asset allocation framework.3

Our paper also contributes to the unsettled debate on the economic value of bond returns

predictability. In contrast to Thornton and Valente (2012), we do find significant economic

gains compared with a model based on the Expectation Hypothesis. In this respect, our

results are consistent with those in Gargano, Pettenuzzo and Timmermann (2019). Impor-

tantly, our paper complements their findings. Gargano et al. (2019) find that models that

allow for time-varying parameters and time-varying volatility manage to produce better out-

of-sample forecasts than simpler models. Differently from them, we show that even simple

models can generate better out-of-sample forecasts, once these models account for monetary

policy conduct and yields movements, as proxied by our proposed variable CG.

2See Table 9, in Cooper and Priestley (2009), and Table 2, in Ludvigson and Ng (2009).
3To the best of our knowledge, the first analysis of using the natural rate for bond predictability is

presented in Markovich and Plazzi (2013).
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The remainder of the paper is organized as follows. Section 2 presents the convergence

gap and discusses its construction, time-series pattern and statistical properties. The main

empirical results concerning the predictability of U.S. bond returns and the corresponding

construction of a bond risk premia factor are contained in Section 3. There, we also show that

CG helps predicting future yields. Section 4 investigates the economic drivers of CG. Section

5 contains the dynamic portfolio choice exercise that exploits the established predictability.

Section 6 collects additional analyses, namely the international evidence, the out-of-sample

exercise, and various robustness checks. Finally, Section 7 provides concluding remarks.

2 The Convergence Gap

Our candidate conditioning variable is the convergence gap, CG, defined as the difference

between the natural rate of interest and the ex-ante real federal funds rate.

A large body of research has established that the difference between the real rate and

potential output is a valid monetary policy cycle indicator. In particular, the indicator

properties of the gap for forecasting inflation and/or output have been analyzed by, e.g.,

Orphanides and Williams (2002) and Amato (2005) for the U.S., Neiss and Nelson (2003)

for the UK, and Mesonnier and Renne (2007) and Garnier and Wilhelmsen (2009) for the

EMU. Bomfim (1997) uses the monetary cycles identified by Romer and Romer (1989), and

shows that periods of monetary tightening are consistently identified as those where policy

rates are persistently above their equilibrium level. In the sample 1990–2013, Barsky et al.

(2014) show that a considerable degree of wage and price inflation stabilization could have

been achieved if the Federal Reserve had tracked the natural rate. Finally, Curdia et al.

(2015) show that a specification of monetary policy in which the interest rate tracks the

Wicksellian efficient rate as the primary indicator of real activity, fits the U.S. data better

than otherwise identical Taylor rules.

From a monetary policy viewpoint, if the central bank follows a targeting rule which
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can be traced (directly or indirectly) to the natural rate, then it may act in the Federal

Funds rate market to close the gap. As such, the gap represents the central bank’s main

control variable to achieve its policy objectives and provides information about the current

stance of monetary policy, restrictive versus accommodating, that helps to either stimulate

or slow down demand and consequently to spur or cool inflation. The gap between the

current real rate and its equilibrium level thus naturally embeds information about the

future path of rates, with periods of positive convergence gap being generally associated

with an increase in future yields. At the same time, central bank activity co-moves with

changes in economic conditions. Thus, the convergence gap is a natural candidate to capture

correlated movements in bond risk premia and future rates that happen at business cycle

frequency.

Turning to some specifics, we define the natural rate of interest as the real policy interest

rate consistent with a closed output gap (real GDP equal to potential in the absence of

transitory shocks to demand) and stationary (i.e. non-accelerating) inflation (at/around

target in the absence of transitory shocks to supply).4 Economic theory implies that the

natural rate of interest varies over time in response to shifts to preferences and the growth

rate of potential output. Hence, the natural rate is related to unobservable factors, and

several techniques have been adopted to estimate it, including Kalman filtering (see e.g.

Laubach and Williams, 2003). In the main part of our work, we proxy for the natural real

rate of interest with potential real GDP growth.5 Specifically, we first extract the trend

component of quarterly real GDP using a one-sided Hodrick and Prescott (1997) filter and

4See Wicksell (1936). Woodford (2003) formalizes the Wicksellian perspective in DSGE models. The
Wicksellian natural rate of interest is different from the equilibrium rate of interest in that the former is
expected to fluctuate considerably over the business cycle, whereas the latter should evolve more slowly over
time. Having said so, the distinction between the two rates is not always drawn as finely. For a comprehensive
overview on different definitions, estimation concepts and relevant horizons associated with the natural rate
of interest we refer to Giammarioli and Valla (2004) and Kiley (2015).

5This is equivalent to assume that: (1) the natural rate of interest is primarily related to the productivity
of capital, and (2) when the policy rate equals the natural rate, the output gap is zero. The interrelation
between the real natural rate of interest and trend growth rate of potential output is also empirically
confirmed by Laubach and Williams (2003).
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linearly interpolate the resultant series to obtain monthly observations.6 We then define the

natural rate of interest as the year-to-year log change in monthly trend GDP. In constructing

the ex-ante real rate, we proxy inflation expectations with a four quarter moving average of

past inflation and subtract it from the nominal funds rate. Finally, the convergence gap, is

obtained as the difference between the natural rate and the real funds rate.

Figure 1 displays the CGt series, together with NBER recession bars. The evolution

of CG lines up with several Fed’s monetary policy interventions in response to changed

economic outlook. For example, the first peak in CG towards the end of 1967 anticipates the

1968 tax hike and the highly restrictive monetary policy by the Fed in 1969. Negative values

of CG generally correspond to NBER recessions, during which a slowdown in the economy

is associated with monetary policy turning accommodative. Such paths are clearly observed

for the recessions in the first part of the sample, such as the periods 1969/01 to 1970/12,

1974/07 to 1975/06, and 1981/07 to 1982/12. Interestingly, the CG series anticipates the

anti-inflationary Fed tightening cycle starting around the mid of 1977, then followed by

the so-called “Volcker experiment” with monetary policy targeting money growth rates and

reserves instead of short-term rates.

In the second half of the sample, we observe a relatively smoother CG series between 1985

and the Great Recession. This pattern reflects the aggressive anti-inflationary monetary pol-

icy implemented by the Fed during the 1979-1982 period which led to the Great Moderation,

a prolonged period of relatively stable inflation rates and declining interest rates. During

this period, CG turns negative only during the Saving and Loan crisis of 1989 and the sub-

sequent recession of 1990-1991, whereas it appears less affected by the LTCM crisis (autumn

1998) and the 2001 recession. Interestingly, during the 2007-2009 Great Recession, CG turns

positive at the peak of the crisis in autumn 2008 as the strongly negative real interest rates

more than offset the negative growth.7 The CG seems to correctly predict the significant

6Following common practice we set the smoothness penalty λ = 1600 to HP-filter the quarterly GDP
series. Also, note that the filter is first applied to log GDP; we then take the exponential of the trend
component.

7A similar effect is observed around March 1975, when the real federal funds rate decreased to about 4%.
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tightening cycles implemented by the Fed in the second half of the sample. Indeed, we notice

that the series anticipates the reference rate increases starting in February 1994 and June

2004, and the interest rate normalization process initiated by the Fed in December 2016.

On a statistical ground, the convergence gap has been on average positive at about 1%

throughout the sample, but with a relatively large volatility of 2%. The autocorrelation of

about 0.96 at monthly frequency decays rapidly to 0.87 at the quarterly horizon, and is 0.57

at the annual horizon. Contrary to other series widely used in the literature (see, e.g. Cieslak

and Povala, 2015), CG does not exhibit marked trending patterns. Hence, our analysis is

different from, and complementary to, the term structure literature with shifting endpoints

(see Kozicki and Tinsley, 2001; Bauer and Rudebusch, 2017). Finally, Figure E.1 in the

Appendix shows that the evolution of CG is similar when alternative proxies for potential

GDP or natural rate proposed in the literature are used to construct the series.

3 Bond Predictability and the Convergence Gap

This section collects the analysis on the effect of adding the convergence gap in the context

of bond predictability. In Section 3.1, we focus on the predictive regression of average excess

returns and construct our bond risk factor, while in Section 3.2 we carry out a similar

analysis on individual bond excess returns. Section 3.3 investigates if the convergence gap

has predictive ability for real bond excess returns. Finally, Section 3.4 provides evidence

that the convergence gap also helps predicting future changes in nominal yields.

3.1 Bond risk factors

We first analyze the role of the convergence gap in forecasting average (across maturi-

ties) annual bond excess returns constructed using Fama and Bliss yields data from Le and

Singleton (2013).8

8We thank Ahn Le for sharing the data with us. The Fama-Bliss CRSP dataset only has maturities of
1,2, ...,5 years. On the other hand, Le and Singleton (2013) provide monthly-spaced maturities Fama-Bliss
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Specifically, consider a zero-coupon bond that matures at t + n with a payoff of $1,

current price P
(n)
t and log yield y

(n)
t ≡ − 1

np
(n)
t . The superscript refers to the bond’s remaining

maturity. The bond’s log excess return from t to t+1 is rx
(n)
t+1 ≡ p

(n−1)
t+1 −p(n)t −y(1)t . We denote

with rxt+1 the average annual bond excess return across maturities of n = 2 to 5 years.

Panel A of Table 1 reports the results for various set of predictors during the 1964-2017

sample period. In specification (CP), the regressors are the five forward rates as in Cochrane

and Piazzesi (2005), that is, we estimate regression

rxt+1 = δ0 + δ′1f t + εt+1 , (1)

where f t = [f (1)
t f

(2)
t f

(3)
t f

(4)
t f

(5)
t ] collects the one-year forward rates implied from the bond

yields.9 Collectively, the forward rates capture 21% of the overall variance in future excess

returns over 1964-2017. We denote the fitted value from this regression as the “CP” factor,

i.e. CPt = δ̂0 + δ̂′1f t.

Due to the overlapping nature of the return series, a usual concern in bond predictability

studies is that of high residual autocorrelation. To this end we employ conservative standard

errors from reverse regressions proposed by Hodrick (1992) and extended by Wei and Wright

(2013).10

In specification (CG), we predict rxt+1 with the convergence gap CG. The corresponding

coefficient is negative at −0.42, statistically significant with a t-statistic of −2.16 and an

R2 of 0.08. The importance of the gap becomes even more prominent when it is used as

conditioning variable together with forward rates. In specification (CPG), we employ both

data, which is needed to run the reverse regressions. Importantly, Le and Singleton (2013) apply the same
filter to remove bonds that are illiquid or have embedded options, and the same Fama-Bliss bootstrap method
as CRSP (see Bliss, 1997).

9We use the same notation as in Cochrane and Piazzesi (2005) and Cieslak and Povala (2015). However,
the “t + 1” should be read as “t + 1year” as there is effectively a 12-month lag between the dependent and
the independent variables.

10Using Newey and West (1987) standard errors and conservative p-values from the theory of Kiefer and
Vogelsang (2005) does not alter our conclusion.
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forward rates and CGt as predictors, that is we estimate regression

rxt+1 = δCG0 + δCG ′

1 f t + δCG2 CGt + εCGt+1 . (2)

Several noteworthy facts emerge. First, the coefficient on CG now rises to −0.74 with an

associated t-statistic of −3.17. Second, its inclusion in general reduces the estimation error of

forward rates coefficients, as documented by their increased t-statistics. Third, the associated

R2 jumps to 0.33, a nearly 50% increase with respect to the specification without the gap.

The negative sign on CG means that a positive convergence gap reduces the expectations

about future returns, everything else constant. This is consistent with the evidence in Figure

1 that periods when yields are below their convergence level are usually associated to expec-

tations of increased future yields, and with business cycle expansionary periods. We denote

the fitted value from regression (2) as the “CPG factor”, i.e. CPGt = δ̂0
CG+ δ̂CG ′

1 f t+ δ̂CG2 CGt.

In Panel A of Figure 2, we plot the estimated loadings on forward rates from specifications

(CP) and (CPG), namely δ̂1 and δ̂CG1 . It is interesting to notice that, for the sample 1964-2017

considered in our analysis, the coefficients from specification (CP) do not have the symmetric

pattern documented by Cochrane and Piazzesi (2005) over 1964-2003. Interestingly, however,

conditioning forward rates on the gap makes the loadings on the former quite aligned with

those from Cochrane and Piazzesi (2005), and thus more stable over time.11

In Panel B of Figure 2, we display the time-series of the CP and CPG factors. In the

first part of the sample, which was characterized by relatively low yields, CPG tends to be

lower on average than CP thus forecasting lower excess returns. The opposite is true for

the late 1990s and 2000s. Some notable differences are also seen in the 2000s. The period

between 2002 and 2007 is often referred to as the interest rate “conundrum” (see Greenspan,

2005), in which the increase in short-term federal fund rates did not translate into higher

long-maturity yields partly because of strong demand from foreign savings. During this

11We draw similar conclusions working on rolling windows, namely, the coefficients in specification (CPG)
tend to be more stable and statistically significant than those from specification (CP).
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period, the yield curve was flat to downward sloping and the corresponding negative CP

factor forecasted low or even negative bond returns.

To dig further into our findings, we project the residuals from the average bond return

predictive regressions on the following variables: inflation (CPI), the Chicago Fed National

Activity Index (CFNAI), and the NBER recession dummy.12 The first row of Panel B of Table

1 reports the results for the residuals from specification (CP), which includes forward rates

only. We note that the regressors collectively capture about 13% of the residual variance.

Even more importantly, CPI and CFNAI enter the regression with negative and significant

coefficients, while the loading on NBER is positive and significant. Hence, forward rates

fail to capture a component of bond risk premia that is linked to macro conditions in a

countercyclical way – i.e., bond return forecast errors are positive during recessions, a point

which has previously been made by Ludvigson and Ng (2009).

The second row of Panel reports the results for the residuals from specification (CPG),

where both forward rates and CG are used to predict bond returns. The R2 is down to

0.06, and only the coefficient on the NBER dummy is now marginally significant. Therefore,

conditioning on the gap helps capturing predictable patterns in bond risk premia that are

countercyclical in nature. Notably, in the robustness section 6.3, we find that the risk

premia become even more countercyclical when we construct CG using alternative estimates

of potential GDP growth or natural rate proposed in literature. Hence, the results of Table

1 shall be taken as a lower bound. Nonetheless, we stick to the current definition of CG

because of its simplicity and parsimonious modelling assumptions.

3.2 Individual bond regressions

We now turn our attention to individual bonds. Panel A through D of Table 2 report the

in-sample results for the predictive regression of bond excess returns with maturities ranging

12Our conclusions remain unaltered if we replace the CFNAI with Industrial Production growth.
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from two to five years, respectively, on a set of regressors Xt:

rx
(n)
t+1 = an + b′nXt + εt+1 , n = 2,3,4,5. (3)

Within each panel, we consider various combinations of Xt in order to highlight the impact

of our novel bond risk factor, CPGt.

The predictive ability of the Cochrane and Piazzesi (2005) factor is shown in specification

(1). Its loading is 0.42 for two-year returns (t-statistic of 1.89) with an R2 of 0.17. The

coefficient increases almost linearly with maturity, reaching 1.52 for five-year returns, with

an R2 of 0.22.

In specification (2), we forecast bond returns using both forward rates and the conver-

gence gap as summarized by the CPG factor. The corresponding coefficients are comparable

to those of CP but are characterized by a much stronger statistical significance and predic-

tive power. For two-year bonds, the coefficient on CPG is 0.46 with an associated t-statistic

of 3.36 and the R2 equals 0.32 – a full 0.15 increase with respect to specification (1). Similar

conclusions arise across all other maturities, with R2s for three-, four-, and five-year bonds

all above 0.30.

Next, we compare the predictive content of our CPGt factor to that of the celebrated

Cieslak and Povala (2015) cyclical return-forecasting factor, cft. Our choice of cft as a

benchmark is natural since, similar to our convergence gap, cf can also be interpreted as a gap

variable capturing the degree of divergence/convergence between nominal yields and long-run

inflation. However, despite this similarity, our factor and the Cieslak and Povala (2015) are

most likely capturing different phenomena. Our factor is motivated by the monetary policy

literature that posits a steady-state real rate consistent with output being at potential. By

measuring the gap between the current real rate and its equilibrium level we aim to capture

the current stance of monetary policy, which naturally embeds information about the future

path of interest rates. Indeed, while CG works through a mean reversion of the real short rate
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toward the natural rate, cf operates through the nominal short rate mean reverting toward a

slowly moving trend in inflation. From an economic standpoint, both mechanisms can coexist

but their relative importance is an empirical matter which we address in specifications (3)

to (5) in Table 2.

In specification (3) we run regressions of individual excess returns, rx
(n)
t+1, on the Cieslak

and Povala (2015) cycle factor and we show that cft is a significant return predictor across

different maturities. Specification (4) reports bivariate predictive regressions in which we

include both the CP factor and the cycle factor cft as regressors. In our extended sample

period, we confirm the original analysis of Cieslak and Povala (2015): for all bond maturities,

the CP factor becomes statistically insignificant and has no incremental explanatory power

beyond cft. In specification (5) we report a similar bivariate predictive regression with CP

replaced by our CPG factor. We find that the CP factor amended by the convergence gap,

i.e. CPG, is statistically significant for all bond maturities even after controlling for cf . More

importantly, specification (5) is informative about the relative predictive content of CPGt

and cft. At short maturities, CPG is more important than cf as confirmed by a statistically

insignificant coefficient on cft. However, as we move toward longer maturities we observe

that cft conveys additional information relative to the CPG factor. Indeed, the difference in

R2s between specifications (2, CPG only) and (5, CPG and cf) almost doubles from 3% to

7% as we shift focus from the 2-year to the 5-year maturity. Analogously, the difference in

R2s between specifications (3, cf only) and (5, CPG and cf) decreases from 10% to 6%. We

conclude that different maturities do not move on a single factor: the predictive content of

CPG for future returns is present across the term structure, but more so at short maturities;

the cf factor conveys additional information particularly at long maturities.

3.3 Predicting real bond returns

The finding of multiple cycles with predictive content for future returns is easy to under-

stand at the light of the different economic drivers captured by the convergence gap and cft.
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The Cieslak and Povala (2015) factor relies on a long-run anchor based on inflation, which

is known to have a persistent level effect on the yield curve. On the other hand, the gap

between the real short-term rate and the natural rate aims at capturing the effect of more

transitory divergences or imbalances in the real economy on the path of policy rates, as it

also emerges from our analysis in Section 4 below.13

To test this economic explanation of different predictive content conveyed by the two

cycles, CPGt and cft, we next employ real bonds as test assets. Specifically, we run univariate

and bivariate regressions similar to those in Table 2 but instead of predicting excess returns

on nominal bonds, we forecast excess returns on U.S. TIPS (Treasury inflation-protected

securities).14 Table 3 presents the corresponding results using the same format as in Table

2.

In line with the hypothesis that the cft factor operates mostly through (changing inflation

expectations in) the nominal economy, we find that cft has no predictive ability for excess

returns on real bonds (specification (3) in Table 3). On the contrary, our CPG factor

predicts real bond returns of all maturities (specification (2)). Furthermore, the regression

coefficients and the R2 from specification (2) are hardly affected by the inclusion of the

Cieslak and Povala (2015) cycle factor (compare specification (2) with (5)).

Additionally, Appendix Table B.1 documents that the inclusion of CG enhances the pre-

dictability of excess returns to real bonds in the U.K. Overall, this evidence highlights the

relative importance of disturbances in the real economy relative to inflation-driven diver-

gences in the nominal economy for bond risk premia.

3.4 Predicting yields with the Convergence Gap

As formalized by Duffee (2011), hidden factors in the cross-section of yields shall affect

the expectation of future interest rates and risk premia in opposite directions, thereby leaving

13For example, Table 4 in Joslin et al. (2014a) document that the effects of economic growth on forward
term premia declines markedly as the contract horizon increases; on the other hand, the effects of inflation
on the forward term premium remain large and of the same sign for maturities up to ten years.

14See Appendix A.3 for details on the data.
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the current yield curve unchanged. In the previous section, we show that the convergence gap

helps forecasting returns and uncovers a countercyclical component of bond risk premia. As

a further indication of the genuine importance of CG, we now ask if it also helps forecasting

future rates. To this end, we conduct an out-of-sample forecasting exercise where we predict

changes in one-year yield at forecast horizons of H = {1,2,3,4} years. Specifically, the first

regression is estimated using data from January 1964 through December 1989. Using only

information until the end of this period, we regress H-year changes in the one-year yield,

y
(1)
t+H − y(1)t , on a constant and a set of predictors:

y
(1)
t+H − y(1)t = a + bXt + εt+H .

We consider three different models: Xt = {Slope}, or Xt = {Convergence Gap}, or Xt =

{Slope, Convergence Gap}. We proxy for the slope using s
(5)
t = y(5)t −y(1)t . Using the resultant

coefficients and the value of the slope and CG on December 1989 we then produce out-of-

sample forecasts of the H-year ahead one-year yield. The first forecast error obtains by

comparing y
(1)
t on t = December 1990, and its forecast made on December 1989. We then

include the January 1990 information and follow the same procedure to produce forecasts

for the January 1991 1-year yield, and so on until the end of 2017.

We follow Duffee (2002) and take the random walk (RW) model as our benchmark. Thus,

we compare the forecasts from predictive regressions of the H-year ahead one-year yield on

the term spread, the convergence gap, and their combination to the RW forecast. Table 4

shows the out-of-sample R2 statistic, R2
OoS, used by Campbell and Thompson (2008) among

others. Testing whether the predictive regression model has a significantly lower mean square

prediction error (MSPE) than the random walk benchmark forecast is tantamount to testing

the null hypothesis that R2
OoS ≤ 0 against the alternative hypothesis that R2

OoS > 0. Therefore,

we use the Clark and West (2007) adjusted version of the Diebold and Mariano (1995) and

West (1996) statistic, which is suitable in our case to compare forecasts from nested linear
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models. Table 4 collects the results.

The first model (column (2)) forecasts the one-year yield changes using the slope s
(5)
t .

This specification generates positive and significant R2
OoS for H = 3 and H = 4. On the other

hand, forecast at shorter horizons are statistically indistinguishable from those obtained by

the RW model. These results are in line with those in Duffee (2002), who shows that the

random walk model is a hard-to-beat benchmark for yield predictions.

The second model (column (3)) forecasts one-year yield changes using the convergence

gap. Compared with the model based on the slope, conditioning on CG substantially im-

proves the R2
OoS at short horizons. Indeed, we observe out-of-sample R2s that are large at

about 15% for H = 1 and H = 2. The predictive ability of CG decreases at longer horizons,

but continues to be statistically significant at standard confidence levels.

Finally, the third model (column (4)) predicts yield changes with both the slope and CG.

With respect to the previous model, the R2
OoSs increase at all horizons, the sole exception

being at the one year horizon where the performance is basically at par. The p-value of the

Clark and West (2007) test against the RW model confirms that the improvements of the

joint model at all forecasting horizons are significantly different from zero.

As an additional piece of evidence, we use the estimated 1- to 5-year short rate ex-

pectations from Adrian, Crump and Moench (2013)’s model.15 We then subtract expected

inflation, and construct the corresponding estimated term structure of real forward rates.

The regression of CG onto these 1- to 5-year expected real rates attains an R-squared of

0.64. Thus, CG strongly relates to expectations of future real rates generated by a FED’s

reference model like Adrian et al. (2013), despite the fact that the two approaches use dif-

ferent input information. Overall, these results show that the gap between the level of the

real (short-term) interest rate and the natural rate of interest brings additional forecasting

power about future interest rates.

15The data is available at https://www.newyorkfed.org/research/data_indicators/term_premia.

html.
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4 Economic Drivers of the Convergence Gap

Our analysis so far shows that the convergence gap contains valuable information for

bond return predictability. In this section, we ask what are the economic channels that are

behind this evidence. Our empirical design is inspired by recent work by Lunsford and West

(2019), who explore the potential drivers of the long run safe interest rate in a reduced-form

setting. We complement their work along several important dimensions. First, we do not

investigate the drivers of the long-run rate but rather of the convergence gap, which reflects

deviations from the natural rate induced by monetary policy actions. Therefore, our analysis

is informative about which shocks induce revisions in the policy rate relative to its equilibrium

level. Second, we ask which of the drivers in turn capture a predictable component of bond

risk premia, which is the novel finding of our paper. Finally, while Lunsford and West (2019)

use annual data and look at long-term correlations, our CG is constructed at the monthly

frequency. High-frequency fluctuations can contain valuable information as they reveal a

widening of the gap (in either direction), which is then closed in the long run. Therefore, we

augment the relevant variables from their list with monthly indicators.

We classify the determinants into three, possibly co-existent, groups. The first group

of variables captures demographic conditions, which may induce imbalances aggregate in

savings and investment. We use the ratio of employment to population, the middle-to-young

ratio proposed by Geanakoplos et al. (2004), life expectancy, and the dependency ratio

(constructed as percentage of population younger than 20 or older than 64). The second

group collects measures of productivity growth, namely the Arouba-Diebold-Scotti (2009)

index, capacity utilization, labor force hours growth, and total factor productivity in the

private, non-farm business sector. Finally, we use the ratio of federal debt to GDP and

current account to GDP to capture capital flows and government (dis)saving. Details on the

variables are provided in Appendix A.4.

Armed with these candidate factors, we regress them onto the convergence gap, and use

the fitted value from this regression as a predictor of average bond excess returns together
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with forward rates. That is, we run specification (3) in Panel A of Table 1 where the fitted

value is used in place of CG. Columns 1–3 of Table 5 report the coefficient, t-statistic and

R2 for the regression of a given variable on CG, while columns 4–6 report coefficient and

t-statistic for the fitted value in the bond regression with forward rates (whose estimates are

omitted for brevity) and the corresponding increment in R2 compared to predicting bond

returns with forward rates only.

Looking at the first group of variables, we find that changes in demographics play a key

role, which resonates with the evidence in Lunsford and West (2019) that they strongly

correlate with the natural rate. For example, the employment to population ratio explains

CG with a positive and marginally significant coefficient of 0.97; its loading in the bond

return regression with forward rates is a negative -1.74, highly significant with a t-stat of

-3.06, and captures an additional 0.02 of the variance in bond risk premia. The Middle-

Young ratio (also used by Favero et al., 2016), Life Expectancy, and the Dependency Ratio

are either significant drivers of CG, valid predictors of bond returns, or both.16

Turning to productivity growth measures, we observe that they also help explaining

variations in CG and bond risk premia, although the second-stage t-statistics are generally

lower than for demographic measures. Among the growth variables, the Arouba-Diebold-

Scotti index (capturing 6% of the variance of CG and adding 4% to the R2 of the bond return

regression) and total factor productivity (figures at 16% and 2%, respectively) stand out as

useful drivers. Finally, we find very limited role for flow-related variables – namely, Fed debt

to GDP and Current accounts to GDP – as they are insignificant in either regressions, and

the associated R2 never exceeds 0.03.

We thus conclude that variations in the gap can be traced to fundamental economic

drivers, in particular demographic and productivity shocks. At the same time, we also

note that the increment in R2 to the return regression is significantly lower than the 0.12

16The lack of correspondence in significance between the two regressions may also come from lack of power
as some of the variables are available only at the quarterly or annual frequency.
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increment that we found in Table 1 when we compared specification CPG versus CP.17

Thus, the unexplained component, capturing the (unobservable) drivers of FED’s decision

to manoeuvre the real policy rate, still plays a key role in enhancing bond predictability. We

interpret this as evidence that the convergence gap acts as the right summary statistic to

capture how various economic determinants, such as those discussed in this section as well

as other shocks, influence monetary policy decisions and, in turn, the future path of interest

rates.

5 Economic Significance of Bond Predictability

Does the statistical significance of our results also translate into economic significance?

We address this question by looking at the impact of our conditioning variables in the con-

text of a dynamic portfolio strategy. Specifically, we consider the optimization problem of a

quadratic utility agent who allocates her funds between a risk-free investment and a risky as-

set. In the fixed income literature, this approach has been previously applied by Della Corte

et al. (2008) to quantify the economic significance of violations of the Expectations Hypoth-

esis at the short-end of the maturity spectrum using daily data. Our focus, instead, is on

the performance of portfolio allocation to long-term bonds at monthly and annual horizons.

In our analysis, the risk-free asset is a bond with maturity equal to the investment horizon.

For monthly holding-period returns, the risky asset is the monthly series of a portfolio of

bonds with two to three years to maturity (the source is the CRSP Fama Bond Portfolio

Returns tape). For one-year holding period returns, we use the average excess return rxt+1,

representing the return to an equally weighted portfolio of two- to five-year maturity bonds,

sampled at annual frequency.

To determine the optimal conditional allocation strategy, we adopt the parametric port-

folio choice approach of Brandt and Santa-Clara (2006). In their setup, the time-varying

17As in Lunsford and West (2019), we look at univariate relations in order to preserve the interpretation
of the results. However, this conclusions hold true also in the multivariate setting, and the residual in the
first regression is statistically significant in the bond regression across all variables.
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vector of relative weights wt allocated to N risky assets is expressed as a linear function of

K conditioning variables zt, or wt = θ′zt. In the benchmark case considered here, N = 1 as

the only risky asset is the bond portfolio. The K × 1 vector of parameters θ, to be esti-

mated, captures the marginal impact of each variable on the portfolio weight. Brandt and

Santa-Clara (2006) show that the dynamic optimization problem can be reduced to solving

the static problem:

max
θ
Et [θ′r̃t+1 −

γ

2
θ′r̃t+1r̃

′
t+1θ] (4)

where γ is a risk aversion parameter and r̃t+1 ≡ zt⊗rt+1 replaces the base asset with managed

portfolios. Following their work, we set γ = 5. In practice, the estimates of θ are obtained

by OLS in the regression of a constant term on r̃t+1, which allows us to use standard testing

procedures for evaluating statistical significance.18

The smallest conditioning set is zt = 1, which corresponds to the static Markowitz port-

folio choice problem. The conditioning variables we include next are standardized to have

mean zero and unity standard deviation, so that the coefficient on the constant can be

interpreted as the time-series average allocation in the risky asset. A positive coefficient

is associated to variables which either forecast higher expected returns, lower volatility, or

both. The opposite is true for variables entering with a negative θ. The economic impact of

the variables in zt is then summarized by the Sharpe Ratio of the resultant optimal portfolio,

and by the corresponding equalization fee, defined as the annual fee an investor is willing to

pay to have access to zt.19

The first specification of Table 6 reports the estimates for the two-asset unconditional

18We work within a constant volatility setting since Thornton and Valente (2012) provide evidence that
models with time-varying volatility do not yield significant improvement in economic value relative to the
constant volatility alternative. Similarly, Duffee (2002) and Cheridito et al. (2007) find that bond excess
returns are best captured by constant volatility models, in spite of the fact that such models cannot match
the time-series variation in interest rate volatility. However, Gargano et al. (2019) find that controlling for
stochastic volatility and unspanned macro factors enhances the economic value of bond predictability.

19Specifically, the equalization fee is computed as the difference in the certainty equivalent of the dynamic
allocation and that of the constant (unconditional) case, as also done in Brandt and Santa-Clara (2006),
Della Corte et al. (2008), Thornton and Valente (2012), and Ghysels et al. (2016). Similar results, omitted
for brevity, obtain if we use Modigliani and Modigliani (1997) performance measure.
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portfolio allocation, or zt = 1 (K = 1). At monthly horizon, the average return (E(rp)) and

standard deviation (σp) of the resultant optimal portfolio are about 0.07, leading to a Sharpe

Ratio of 0.33. These statistics are comparable at annual frequency.

In specification (2) of the Table, the portfolio allocation is conditioned on the one- to

five-year forward rates, or zt = [1f t]′ (K = 6). The average return and standard deviation

of the managed portfolio both increase to about 0.11, with a corresponding Sharpe Ratio

of about 0.58. The dynamic strategy yields an equalization fee of about 2% both at the

monthly and annual horizon.

In specification (3), the set of conditioning variables is augmented by the convergence gap,

or zt = [1f t CGt]′ (K = 7). The coefficient on CG is negative and statistically significant

at both the monthly (-2.59, t-statistic of -1.95) and annual horizon (−1.71, t-statistic of

−3.14). The negative sign is consistent with the evidence in the previous sections. The

inclusion of CG changes substantially the loadings on forward rates and the performance of

the allocation. The in-sample Sharpe Ratio raises to about 0.60 at both horizons and the

equalization fee is now about 70-90bps higher than in specification (2). Furthermore, rolling

analysis reveals (see Appendix Table C.1 and Figure C.1) that the difference in the Sharpe

Ratio of the optimal portfolio with and without CG varies with economic conditions. This is

consistent with the evidence in Panel B of Table 1 that CG helps capturing countercyclical

variation in risk premia.

To quantify the impact of transaction costs, row “Eq. fee TC-adj” reports the equalization

fee when adjusting the optimal portfolio return by a one-way transaction cost of 10 basis

points, as in Gargano et al. (2019). The transaction cost is computed based on turnover, i.e.

the absolute value in the change in optimal weight, as in Brandt et al. (2009). Accounting

for transaction costs reduces the equalization fee by about 1% for both model (2) (forward

rates only; from 2.2% to 1.2%) and model (3) (forward rates plus CG; from 3.1% to 2.1%).

Hence, the difference between the two models remains unchanged at 90bps. At the annual

frequency, turnover is much smaller and the adjustment only affects the fee in its fourth
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decimal.

We also report equalization fees for other specifications. In row “Eq. fee OOS”, we

report the equalization from a full out-of-sample exercise at the monthly frequency over

the 1990-2017 sample period, where the portfolio coefficients are recursively estimated to

generate proper out-of-sample allocations.20 Adding CG to the conditioning vector increases

the fee by 1.4%, from 0.5% (column (2)) to 1.9% (column (3)). Row “Eq. fee Power utility”

reports the fee for an investor who is endowed with a power utility function with γ = 5,

as in Brandt et al. (2009) and Ghysels et al. (2016). We note that conditioning on CG

still leads to a significant increase in the equalization fee of 1.0% at the monthly horizon

(from 1.8% in column (2) to 2.7% in column (3)), and a somewhat higher 3% at the annual

frequency. Finally, in row “Eq. fee N assets” we compute the equalization fee for the dynamic

allocation when the investor optimizes across N bonds, where N = 3 assets in the case of

monthly returns (corresponding to the three CRSP bond portfolios) and N = 4 assets in the

case of annual returns (corresponding to the individual bond Fama-Bliss returns, sampled

at non-overlapping frequencies).21 Again, the addition of CG again raises the equalization

fee at both frequencies, respectively by 2.7% and 1%.

In Figure 3, we display the time-varying weight wt implied by the monthly (top plot)

and annual (bottom plot) estimates of Table 6. In the plots, the horizontal solid line repre-

sents the unconditional allocation corresponding to specification (1), the red solid line with

circles corresponds to the policy that conditions on forward rates only as in specification

(2), and the blue solid line tracks the portfolio weight implied by specification (3) where

we condition on forward rates and the convergence gap. Several differences between the

two dynamic strategies emerge. The correlation between the two weights is just 0.41 at the

monthly horizon and 0.47 at the annual horizon. Both optimal policies, however, often imply

taking substantial short (wt < 0) or leveraged (wt > 1) positions. To study their impact on

20At the annual (non-overlapping) frequency we do not have a sufficient number of observations to carry
a proper analysis.

21In this latter case, however, the results should be taken with caution as the number of parameters (N×K)
becomes quite large compared to the number of (non-overlapping, annual) observations.
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performance, we follow Della Corte et al. (2008) and winsorize the weight between -1 and

2. The equalization fee from this constrained policy, reported in the last row of Table 6, is

again significantly larger when CG is included, confirming that its economic relevance does

not arise from taking extreme positions. In sum, after accounting for the monetary policy

stance as proxied by the convergence gap, we find the time-varying component of bond risk

premia to play an economically prominent role in dynamic portfolio choice. Our findings

also show that departures from the Expectations Hypothesis at long maturities are indeed

economically relevant.

6 Additional Analysis

This section collects additional analyses that extend our main set of results along several

dimensions. Section 6.1 documents that the convergence gap forecasts bond excess returns

in countries other than the U.S. Section 6.2 shows that the ability of the gap to forecast

U.S. returns persists out-of-sample. Finally, Section 6.3 presents a battery of checks that

confirm the robustness of our results to various definitions of the convergence gap, sampling

frequency, and other concerns.

6.1 International evidence

So far, our analysis has relied on Fama-Bliss yield data for the U.S. Treasury market.

One would expect the importance of the gap to extend also to other countries whose central

banks follow explicit targeting policies.

We investigate whether our results hold internationally by estimating the regression on fu-

ture average excess returns for three other countries, namely Canada, the UK, and Germany.

We take the corresponding one- to five-year artificial zero coupon bond yields at the monthly

frequency from the Bank of Canada, Bank of England, and Bundesbank, respectively. We

construct the convergence gap as the difference between the natural rate of interest and the
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real interest rate. To proxy for the natural rate of interest we use the estimates from Holston

et al. (2017). The short-term interest rate is: the Bank of Canada’s target for the overnight

rate for Canada; the Bank of England’s Official Lending Rate, published by the Bank of

England, for the U.K.; and the three-month rate from the Area Wide Model (Fagan et al.,

2001) for Germany (Eurozone from 1999 onward). For all countries, the inflation series is

constructed by splicing the core price index with an all-items price index.22

Table 7 collects the slope coefficients from predicting annual average bond returns for

these countries using the same format as Panel A of Table 1. In specification (1), we observe

that forward rates alone explain 17% of bond return variability in Canada and the UK, and as

much as 28% in Germany. In specification (2), we note that the convergence gap alone enters

the regression with a negative coefficient. However, it does not meet statistical significance

and the associated R2 is quite modest. As it was the case for the U.S., including both

forward rates and CG leads to a sharp increase in goodness of fit and statistical significance.

Indeed, the gap enters the regression with a significantly (at the 5% level or better) negative

coefficient in all three countries. The in-sample R2 increases by 30% (from 0.28 to 0.36)

for Germany, by 50% (from 0.17 to 0.26) for the U.K., and by 100% (from 0.17 to 0.34)

for Canada. The last column reports the equalization fee for models (1) and (3) from

the corresponding mean-variance dynamic optimization exercise as in Table 6. For all three

countries, the inclusion of CG leads to an increase in the equalization fee in the order of 1.5%–

2%. Overall, we find this evidence that the convergence gap enhances return predictability

and retains economic value in countries (and over different sample periods) other than the

U.S. rather reassuring of the robustness of our findings.

It is also natural to ask to what extent the convergence gaps co-move in the cross-section

of countries. Figure E.1 in the Appendix displays the time series over the common 1991–

2017 period. We observe several instances of co-movements, in particular in the period from

22As above, we use a four-quarter moving average of past inflation as a proxy for inflation expectations in
constructing the ex ante real interest rate. Unlike the U.S., however, we note that the CG for these countries
exhibits a discernible trend. We therefore use a linearly detrended convergence gap in the regressions to
prevent this trend from contaminating our results.
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the late 1990s to mid-2000s. Table 8 reports the correlation matrix of these series at the

monthly and annual frequency, with underneath the corresponding fraction of overall vari-

ance accounted for by the principal components. Correlations are mostly positive but never

exceed 0.50, with the U.S. featuring positive correlation up to 0.40 with U.K. and Canada,

and a slightly negative correlation with Germany/Eurozone. The first principal compo-

nent accounts for more than 40% of overall variance at both frequencies. This fact reveals

the presence of sizable co-movements in CG across countries, and implies commonalities in

the above-mentioned drivers and monetary policies. On the other hand, idiosyncratic (i.e.,

country-specific) movements also play a non-negligible role, as reflected by the importance

of the other principal components.

6.2 Out-of-sample analysis

We conduct a recursive experiment to investigate whether our results also hold in an

out-of-sample environment.23 We consider as a burn-in sample the first 25-year period from

1964:1 to 1989:12. Using only information until the end of this period, we construct the CP

and CPG factors following the methodology described in Section 3.1. Next, we regress each

individual bond excess return on the lagged factors to determine their individual loadings,

similarly to what reported in Table 2 for the full sample. Due to the predictive nature of the

regression, the last observation in the right-hand-side variables is that of December 1988. We

use the resultant coefficients and the value of the CP and CPG factors on December 1989 to

produce out-of-sample forecasts of one-year ahead excess returns for each maturity. The first

forecast error obtains by comparing the excess holding period realized return during the Jan-

uary 1990 through December 1990 period and its forecast made on December 1989. We then

include the January 1990 information and follow the same procedure to produce forecasts

of the February 1990 through January 1991 returns, and so on until the end of 2017. Since

23Out-of-sample tests are usually viewed as important tools to detect spurious, sample-specific evidence.
However, as Cochrane (2008) points out poor out-of-sample predictability may arise even when the true
data-generating-process is characterized by time-varying, persistent risk premia.
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the GDP information is available only on a quarterly basis, we keep the filtered permanent

growth GDP component constant throughout the three months following a quarter’s end.

In Table 9, we summarize the results of this exercise for the four individual bond returns.

We contrast the forecasting accuracy of Model 1, which includes the convergence gap, with

that of Model 2, which excludes it. Both models incorporate a constant term. The ratio

of the mean squared forecast errors MSFE1/MSFE2, reported in the third column, tells

us whether the model with CG features lower (ratios less than one) or higher (ratios above

one) forecast errors than the competing model. To gauge statistical significance, the column

“DM test” reports the p-values for the Diebold and Mariano (1995) test on the difference in

MSFEs.

In the first row of each panel, Model 2 consists of a constant term only, i.e. we benchmark

the gap against the naive historical mean estimator. The inclusion of CG leads to a decline

in MSFE of about 8% across the maturity spectrum, statistically significant at the 2% level

at all maturities.

In the second row, Model 2 consists of the CP factor, and, thus, it exploits information

in forward rates only. Adding CG in the conditioning set leads to a surge in out-of-sample

prediction accuracy across all bonds, with MSFEs declining by about 25%. This improvement

is economically large, and strongly statistically significant.

In the third row, we contrast the model with CPG with a model that combines CP

with the Cieslak and Povala (2015)’s cyclical factor. Conditioning on the convergence gap

improves the forecasting ability of forward rates in an out-of-sample fashion even after con-

trolling for the inflation-driven cycle, cft. Indeed, the inclusion of CG reduces the MSFE by

about 25% across maturities. However, as we discussed in Section 3.2 and 3.3, the evidence

points to substantial predictive content of CPG for short-term and intermediate maturi-

ties, while the contribution of cft becomes more sizable as we increase the maturity of the

bonds. In line with this analysis, we find that the MSFE improvement obtained by using

the convergence gap is statistically significant at standard confidence levels for short- and
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medium-term bonds but it becomes insignificant at the longest 5-year maturity.

Hence, the third row confirms the maturity-dependence of the impact of CPG and cft

factors on bond risk premium. It is natural to postulate that the two cycles together should

deliver good performance across the term structure. To this end, in the last row we add the

cft factor to either CPG or CP. In line with our hypothesis, we observe that the specification

including CPGt and cft leads to a reduction in MSFE that is statistically significant for

all bond maturities. Taken together, the evidence in rows three and four clarifies that CG

provides complementary information on bond risk premia compared to that in cft.

In order to further explore the provenance of these results, we investigate whether the

improvements arise from a reduction in the bias or in the variance of the forecast errors

through Ashley et al. (1980)’s test.24 The p-values of these tests are reported in columns

“Bias” and ”Variance”, respectively. It is clear that the improvement from adding CG to

the model comes from a reduction in the bias of the forecast errors and, to a lesser extent,

from a variance reduction.

6.3 Robustness checks and other concerns

Alternative Measures of Convergence Gap: In Tables E.1–E.4, we experiment several

alternatives to the construction of CG. Details are provided in Appendix E.

In Table E.1, we replace the one-sided HP filtered trend component of real GDP with

the potential GDP series obtained by Laubach and Williams (2003) using a Kalman filter.

In Table E.2, we instead replace the one-sided HP filtered trend component of real GDP

with the Kalman filter natural-rate estimates – denoted r∗t – by Holston et al. (2017). In

Table E.3 we follow Laubach and Williams (2003) and use the forecast of the twelve-month-

ahead percentage change in core PCE generated from a univariate AR(9) estimated over

24Let ê1t and ê2t denote the forecast errors for Model 1 and 2, respectively. Define ∆t = ê1,t − ê2,t,
Σt = ê1,t + ê2,t and Σ its time-series average. We estimate regression: ∆t = β0 + β1(Σt − Σ) + ut. The
t-statistic for β0 measures the bias improvement of Model 1 versus Model 2, while the t-statistic for β1
captures reduction in the error variance. See Berardi and Torous (2005) for a paper using this test in term
structure modeling.
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the prior 120 months as a proxy for inflation expectations in constructing the ex ante real

interest rate. Survey data is an appealing alternative to model-based expectations, but at

the cost of reduced sample size as it starts only in 1981. In Table E.4 we use CPI inflation

forecasts from the Survey of Professional Forecasters (SPF) to construct the real rate from

1981 onwards, and we splice it with a four quarter moving average of past CPI inflation.25

We use such proxy for inflation expectations in constructing the ex-ante real interest rate.

We find that all these variations generally produce comparable, or even stronger, results

than those reported in Table 1.

Alternative sampling frequencies, period, and vintage data: In Panel A of Table 10,

we report the results for average excess returns rxt+1 when data are sampled at the quarterly

and annual frequency. The quarterly series does not require GDP data to be interpolated in

the construction of CG. The yearly frequency addresses econometric concerns arising from

the use of overlapping returns (see Bauer and Hamilton, 2017, for a discussion) by relying

on non-overlapping observations, at the cost of a much smaller sample size. For comparison,

we report in the table the R-squared (R2
fwd) when using forward rates only as regressors.

In both specifications, the coefficient on CG is again negative at about −8, and statistically

significant with reverse regressions t-statistics below −3. The associated R2 confirms that

forward rates conditional on the gap capture substantial incremental time-variation in bond

risk premia.

In Panel B, we verify the robustness of our findings to excluding the zero-lower-bound

period. To this end, we re-estimate our baseline model when ending the sample in November,

2008. As we can see, the results mimic quite closely those from Table 1, which indicates that

our conclusions also hold when excluding the period of unconventional monetary policy.

In Panel C, we report analogous results when constructing the convergence gap using

vintage data for GDP and inflation.26 Vintage series for inflation start being available in

25In the fixed-income literature, Chun (2011) includes survey expectations in the estimation of an arbitrage-
free affine term structure model, and shows that GDP growth forecasts play a crucial role in tracking bond
risk premia.

26Ghysels et al. (2018) provide evidence that bond risk premia predictability using macroeconomic infor-
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1996. Starting on January 1996, we construct CG based on recursive estimations that use the

vintage data available until that calendar quarter end.27 Panel B reports the corresponding

results. The coefficient on CG remains negative and significant, although its magnitude is

smaller than that in Panel, and the increments in R-squared compared to the forward-only

specification remain large.

Additional risk factors: It is natural to ask whether the convergence gap merely captures

macroeconomic conditions. To this end, Appendix Table E.5 displays results for individual

bonds predictive regressions when we control for the Ludvigson and Ng (2009)’s F5 macro

factor. This factor is obtained as a linear combination (from a subset) of the first eight

principal components formed from more than 130 macroeconomic and financial time series.28

Importantly, specification (3) shows that both CG and F5 are significant predictors of bond

excess returns across all maturities. We conclude that the convergence gap increases the

forecasting ability of forward rates over and beyond macroeconomic risk.

We also investigate whether empirically interest rate volatility and CG provide different

information on monetary policy stance. In particular, we predict average excess returns (as

in Table 1) employing both forward rates and CGt as predictors, but also controlling for

three alternative measures of realized volatility. The first two measures are monthly realized

volatility computed from daily data of 1-year yield, and 3-month T-Bill, respectively.29 The

third measure is based on a 12-month rolling standard deviation of FFR. Table E.6 reports

the results. In all three cases we observe that our conclusion continues to hold: The conver-

gence gap enters the regression with a negative sign and its statistical significance is hardly

affected. On the contrary, interest rates volatility is never significant independently from the

mation is largely attenuated when taking into account the actual data release.
27To fix ideas, on a given quarter, say 1998:Q3, we construct the convergence gap using the most recent

GDP release as of the end of that calendar quarter (that is, September 1998), which refers to real GDP in
the previous quarter (namely, 1998:Q2). For inflation, we take the one-year moving average of the vintage
data, which is again lagged by one month and ignores subsequent revisions. We then move forward by one
quarter, and add the last observation for CG (1998:Q4) to the series obtained using data until 1998:Q3.

28We kindly thank Sydney Ludvigson for making the principal components available on her website.
29We also replace T-bill by the FFR but we found that in this case the monthly realized volatility was

essentially flat for quite long periods, at times several months.
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measure employed.

A Term Structure Model with the Convergence Gap: In Appendix F we cast our

CPG risk factor in the context of a standard affine term structure model, where yields and

risk premia are jointly determined. We show that CPG plays the role of an unspanned factor,

and raises the cyclicality of the model-implied expected excess returns, consistent with our

regression-based evidence.

Fama-Bliss Present-Value Restrictions: To further trace the role of the gap, we rely

on univariate Fama-Bliss regressions that use the forward spread corresponding to the bond

maturity, instead of the full spectrum of rates. In Appendix G, we review the Fama and Bliss

(1987) accounting identity, and extend it to the case of regressors other than yields, forward

rates, or combinations thereof. Consistent with the previous (multivariate) evidence, we show

that the success of the convergence gap (or better, of its orthogonal component with respect

to forward spreads) to enhance bond predictability stems from its ability to significantly

forecast bond returns and future yields with the opposite sign, see Table G.1.

7 Concluding Remarks

We study the ability of the Convergence Gap (CG), i.e. the difference between the natural

rate of interest and the ex-ante real Fed funds rate, to improve our understanding of bond risk

premia. This variable appears as a natural candidate to capture correlated cyclical variations

in yields and risk premia, given that, over our sample, positive values of CG are recorded in

periods that anticipate an increase in future yields and economic activity, i.e. periods when

risk premia are likely to decline. We find strong support for the role of CG in the context

of return and yield predictive regressions. On the one hand, a linear combination of forward

rates and the convergence gap explains 33% of the variability in average and individual bond

returns during the 1964-2017 period.

The information embedded in CG is not only statistically, but also economically relevant.
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While risk premia solely based on forward rates tend to miss cyclical patterns, controlling

for CG delivers forecast errors that are virtually uncorrelated with the business cycle. In

addition, CG brings significant economic gains when used as a conditioning variable in

a dynamic fixed-income asset allocation problem. The importance of the gap extends to

countries other than the U.S., persists out-of-sample and is not subsumed by a wide array

of other factors. Overall, our results shed new light on the link between the conduct of

monetary policy, bond prices, and risk premia.
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Figure 1: The convergence gap: This figure plots the time series of the convergence gap, CG. The
sample period is 1964/01 to 2017/12.

1 2 3 4 5
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5
Forward rates only
Forward rates + Convergenge gap

A: Regression coefficients on forward rates

1968 1972 1976 1980 1984 1988 1992 1996 2000 2004 2008 2012 2016
-8

-6

-4

-2

0

2

4

6

8

P
er

ce
nt

 (
%

)

 CPG
 CP (2005)

B: Bond risk factors

Figure 2: Estimating the return forecasting factor: This figure plots the unrestricted coefficients from
a regression of bond excess returns on all forward rates, and from a regression of bond excess returns on all
forward rates and the convergence gap (Panel A), and the bond risk factors (Panel B), namely the Cochrane
and Piazzesi (2005) factor CP (solid line) and the CPG factor obtained by conditioning the forward rates
on the convergence gap (dotted line). The sample period is 1964/01 to 2017/12.
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Figure 3: Portfolio weight on bond portfolio: Time-series of the weight in the risky asset (bond
portfolio) implied by the estimates of Table 6 at the monthly (top panel) and annual (bottom panel) horizon.
The green solid line represents the unconditional allocation (specification (1) of Table 6), the solid line with
circles corresponds to the policy conditional of forward rates (specification (2)), and the thick solid line tracks
the portfolio weight implied by specification (3) which conditions on the forward rates and the convergence
gap CGt. The sample period is 1964/01 to 2017/12.
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Table 1: Forecasting average (across maturity) bond excess returns

Panel A of this table reports OLS slope coefficients and R2 in the regression of future average (across
maturities) annual excess returns rxt+1 on a constant and various combinations of lagged one- to five-year
forward rates and the convergence gap, CGt. In parentheses, below the estimates, we report t-statistics
computed using the reverse regression delta method by Wei and Wright (2013). The convergence gap, CGt,
is defined as the difference between the year-to-year log change in potential GDP and the real interest rate.
To proxy for potential GDP we use the trend component of quarterly real GDP obtained from a one-sided
Hodrick and Prescott (1997) filter. We linearly interpolate the resultant trend series to obtain monthly
observations. The short-term interest rate is the annualized nominal funds rate, available from the Board
of Governors. We use a four-quarter moving average of past inflation as a proxy for inflation expectations
in constructing the ex ante real interest rate. Panel B reports the OLS slope coefficients and R2 in the
regression of the residuals from specifications (CP) and (CPG) of Panel A. The residuals are projected on
a constant and the following variables: inflation (CPI), the Chicago Fed National Activity Index (CFNAI),
and the NBER recession dummy. In parentheses below the estimates we report t-statistics based on Newey
and West (1987) standard errors with 60 lags. Significance: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01. The intercept
estimates are omitted. The sample period is 1964/01 to 2017/12.

Panel A: Forecasting average excess bond returns

Spec. f
(1)
t f

(2)
t f

(3)
t f

(4)
t f

(5)
t CGt R2

(CP) -1.46* -0.23 1.61* 1.11* -0.84* 0.21
(-1.67) (-0.54) (1.72) (1.88) (-1.80)

(CG) -0.42** 0.08
(-2.16)

(CPG) -2.16*** 0.85 1.40* 1.07* -1.46*** -0.74*** 0.33
(-2.74) (0.61) (1.79) (1.79) (-3.12) (-3.17)

Panel B: Forecasting residuals

Spec. CPIt CFNAIt NBERt R2

(CP) -0.33* -0.05*** 0.02** 0.13
(-2.24) (-3.03) (2.28)

(CPG) -0.19 -0.03 0.01* 0.06
(-1.12) (-1.53) (1.72)
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Table 2: Forecasting individual bond excess returns

This table reports OLS slope coefficients and R2 in the regressions of future annual excess returns for bonds
with maturities of two years (Panel A), three years (Panel B), four years (Panel C), and five years (Panel D).
The table shows (1) to (4) specifications of the regressors. CP denotes Cochrane and Piazzesi (2005) forward
rates factors. CPG denotes the fitted value from specification (3) in Panel A of Table 1, where forward rates
are augmented with the convergence gap. The convergence gap, CGt, is defined as in Table 1. cf denotes
the cyclical factor of Cieslak and Povala (2015). In parentheses, below the estimates, we report t-statistics
computed using the reverse regression delta method by Wei and Wright (2013). Significance: ∗p < 0.10,
∗∗p < 0.05, ∗∗∗p < 0.01. All regressions include a constant term, whose coefficient is omitted. The sample
period is 1964/01 to 2017/12.

Panel A: rx
(2)
t+1 Panel B: rx

(3)
t+1

Spec. CPt CPGt cft R2 Spec. CPt CPGt cft R2

(1) 0.42* 0.17 (1) 0.81*** 0.19

(1.89) (3.30)

(2) 0.46*** 0.32 (2) 0.85*** 0.32

(3.36) (4.71)

(3) 1.48*** 0.25 (3) 2.88*** 0.29

(3.14) (4.26)

(4) -0.11 1.25*** 0.26 (4) 0.19 2.49*** 0.29

(-0.45) (2.81) (0.68) (2.73)

(5) 0.34* 0.71 0.35 (5) 0.57*** 1.57 0.37

(1.91) (1.29) (2.74) (1.62)

Panel C: rx
(4)
t+1 Panel D: rx

(5)
t+1

Spec. CPt CPGt cft R2 Spec. CPt CPGt cft R2

(1) 1.24*** 0.22 (1) 1.52*** 0.22

(3.67) (3.53)

(2) 1.22*** 0.34 (2) 1.47*** 0.32

(5.02) (4.47)

(3) 4.21*** 0.31 (3) 5.40*** 0.33

(4.78) (5.12)

(4) 0.39 3.42*** 0.32 (4) 0.36 4.66*** 0.34

(0.79) (2.92) (0.28) (3.60)

(5) 0.79*** 2.40*** 0.40 (5) 0.86* 3.43*** 0.39

(2.63) (2.14) (1.91) (2.79)
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Table 3: Forecasting individual real bond excess returns

This table reports OLS slope coefficients and R2 in the regressions of future annual excess returns for real
bonds with maturities of two years (Panel A), three years (Panel B), four years (Panel C), and five years
(Panel D). The table shows (1) to (4) specifications of the regressors. CP denotes Cochrane and Piazzesi
(2005) forward rates factors. CPG denotes the fitted value from specification (3) in Panel A of Table 1, where
forward rates are augmented with the convergence gap. cf denotes the cyclical factor of Cieslak and Povala
(2015). In parentheses, below the estimates, we report t-statistics computed using the reverse regression
delta method by Wei and Wright (2013). Significance: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01. All regressions
include a constant term, whose coefficient is omitted. The sample period is 1999/01 to 2017/12.

Panel A: rx
(2)
t+1 Panel B: rx

(3)
t+1

Spec. CPt CPGt cft R2 Spec. CPt CPGt cft R2

(1) 0.91*** 0.54 (1) 0.86*** 0.37

(2.67) (2.84)

(2) 0.85*** 0.53 (2) 0.85*** 0.40

(2.91) (3.09)

(3) 1.42 0.13 (3) 1.84 0.17

(1.21) (1.59)

(4) 0.95 -0.27 0.55 (4) 0.78 0.46 0.37

(3.29) (-0.45) (2.91) (0.26)

(5) 0.87*** -0.11 0.53 (5) 0.78*** 0.48 0.40

(3.30) (-0.33) (3.01) (0.22)

Panel C: rx
(4)
t+1 Panel D: rx

(5)
t+1

Spec. CPt CPGt cft R2 Spec. CPt CPGt cft R2

(1) 1.08*** 0.34 (1) 1.16*** 0.28

(2.98) (2.96)

(2) 1.09*** 0.38 (2) 1.20*** 0.33

(3.24) (3.24)

(3) 2.73*** 0.22 (3) 3.37*** 0.24

(2.00) (2.30)

(4) 0.86*** 1.21 0.37 (4) 0.82*** 1.93 0.34

(2.59) (0.88) (2.29) (1.33)

(5) 0.91*** 1.14 0.41 (5) 0.92*** 1.77 0.38

(2.77) (0.77) (2.53) (1.20)
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Table 4: Predicting yield changes

This table reports the out-of-sample R2 statistic, R2
OoS , of Campbell and Thompson (2008) from predicting

H-year ahead one-year yields using three different models. Statistical significance for the R2
OoS statistic is

based on the p-value for the Clark and West (2007) out-of-sample MSPE-adjusted statistic; the statistic
corresponds to a one-sided test of the null hypothesis that the competing forecasting model given in Column
(1), (2), or (3) has equal expected square prediction error relative to the random walk (RW) forecasting
model against the alternative hypothesis that the competing forecasting model has a lower expected square
prediction error than the RW model. The specification “RW” (random walk) uses the current yield as best

estimate of future yields. In the columns s
(5)
t , CGt, and [s

(5)
t CGt] either the slope (s

(5)
t = y(5)t − y(1)t ), the

convergence gap, or both, are used to predict future H-year changes in one-year yields. The estimates are
then used to form one-year yields forecast. All predictive regressions include a constant term, whose estimate
is omitted. The convergence gap, CGt, is defined as in Table 1. The first forecast is made in 1989/12, and
the last forecast in 2016/12. The full sample period is 1964/01 to 2017/12.

Horizon H (years) s
(5)
t CGt [s

(5)
t CGt]

1 -0.05 0.14 0.13

(0.99) (0.00) (0.00)

2 0.03 0.15 0.20

(0.16) (0.00) (0.00)

3 0.19 0.10 0.25

(0.00) (0.01) (0.04)

4 0.22 0.02 0.18

(0.00) (0.05) (0.00)
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Table 5: Economic Drivers of Convergence Gap

This table explores the potential drivers of the convergence gap (see columns (1) to (3)), as well as drivers
of the predictable component of bond risk premia (see columns (4) to (6)). Specifically, in columns (1)
to (3) we report coefficient, t-statistic, and R-squared in the regression of CG onto a given driver, while
columns (4) to (6) report analogous statistics for the fitted value from the previous regression as a predictor
of bond returns (together with forward rates) in place of the raw CG. We collect the drivers into demographic
measures (employment to population ratio; middle-to-young ratio proposed by Geanakoplos et al. (2004),
life expectancy; and dependency ratio constructed as percent population younger than 20 or older than 64),
variables related to economic growth (Arouba-Diebold-Scotti business conditions index; capacity utilization;
labor force hours growth; and total factor productivity in the private, non-farm business sector), and capital
flows (federal debt to GDP and current account to GDP). The convergence gap, CGt, is defined as in Table
1. The full sample period is 1964/01 to 2017/12.

Regression on CG Regression on rxt+1

(1) (2) (3) (4) (5) (6)
Coeff. t-stat R2 Coeff. t-stat R2 −R2

fwd

Demographic
Employment to Population 0.97* 1.65 0.01 -1.74*** -3.06 0.02
Middle-Young -0.18*** -2.93 0.07 -0.38 -0.80 0.00
Life Expectancy -0.95 -0.84 0.01 2.38* -1.70 0.03
Dependency Ratio 0.11 0.88 0.02 -2.78*** -2.97 0.06

Growth
Arouba-Diebold-Scotti 0.07* 1.76 0.06 -1.14** -2.19 0.04
Capacity utilization 0.08 1.15 0.02 -1.52* -1.90 0.01
Labour hours 0.24* 1.72 0.06 -0.92* -1.85 0.03
TFP 0.59* 1.85 0.16 -0.77** -2.20 0.02

Flows
Fed debt/GDP -0.16 -1.41 0.03 -0.71 -0.75 0.01
Current account/GDP -0.02 -0.96 0.01 -1.46 -1.11 0.00
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Table 6: Dynamic portfolio policies

This table reports estimates of the portfolio policies for a quadratic utility investor with γ = 5 at the
monthly and annual horizon. For each horizon, three columns are displayed corresponding to different
sets of conditioning variables: (1) includes a constant term; (2) adds one- to five- year forward rates; (3)
adds the convergence gap CG. All conditioning variables except the constant are standardized. The first
block of the Table reports the OLS coefficient θ associated to each variable, with t-statistics in parentheses
below the estimates. F -test is the p-value for the test that all slope coefficients are jointly equal to zero.
The annualized mean (E(rp)), annualized standard deviation (σp), and annual Sharpe Ratio (SRp) of the
corresponding optimal portfolio are displayed next. The last six rows report in order: (1) the equalization
fee, i.e. the annual fee that the investor would pay to have access to the conditioning information; (2) the
equalization fee when adjusting the optimal portfolio return by a one-way transaction cost of 10 basis points,
as in Gargano et al. (2019); (3) the fee for a full out-of-sample exercise; (4) the equalization fee for an investor
who is endowed with a power utility function with γ = 5; (5) the equalization fee for the dynamic allocation
when the investor optimizes across N assets; (6) the equalization fee when weights are constrained between
−1 and 2. The convergence gap, CGt, is defined as in Table 1. The sample period is 1964/01 to 2017/12.

Monthly Returns Annual Returns

(1) (2) (3) (4) (5) (6)

Const 2.261 2.891 3.039 1.305 1.183 1.146

(2.446) (2.389) (2.798) (1.870) (1.745) (2.716)

f (1) -6.006 -8.465 -0.239 -3.622

(-2.234) (-2.951) (-0.053) (-0.687)

f (2) 3.549 6.745 -8.978 -4.106

(0.559) (0.970) (-1.041) (-0.430)

f (3) -7.761 -8.484 8.510 8.163

(-2.337) (-2.761) (1.838) (1.842)

f (4) 3.483 2.831 2.407 0.642

(0.984) (0.737) (0.781) (0.244)

f (5) 6.505 4.651 -2.500 -3.023

(2.113) (1.319) (-1.873) (-1.769)

CG -2.592 -1.710

(-1.949) (-3.145)

F -test 0.001 0.000 0.000 0.000

E(rp) 0.073 0.116 0.133 0.064 0.094 0.104

σp 0.067 0.114 0.128 0.059 0.095 0.099

SRp 0.333 0.578 0.651 0.257 0.513 0.592

Eq. fee 0.022 0.031 0.019 0.026

Eq. fee TC-adj 0.012 0.021 0.019 0.026

Eq. fee OOS 0.005 0.019 - -

Eq. fee Power utility 0.018 0.027 0.058 0.092

Eq. fee N assets 0.068 0.095 0.092 0.102

Eq. fee (wt ∈ [−1,2]) 0.006 0.015 0.013 0.017
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Table 7: Forecasting average (across maturity) excess bond returns, international evidence

This table reports the OLS slope coefficients and R2 in the regression of future average annual excess returns
rxt+1 on a constant and various combinations of lagged one- to five-year forward rates and the convergence
gap, CGt. Panel A shows results for Canada, Panel B for UK, and Panel C for Germany (Eurozone from
1999 onward). The convergence gap, CG, is defined as the difference between the natural rate of interest
and the real interest rate. To proxy for the natural rate of interest we use the estimates from Holston et al.
(2017). Finally, the convergence gap has been linearly detrended. The short-term interest rate is: the Bank
of Canada’s target for the overnight rate in Panel A; the Bank of England’s Official Lending Rate, published
by the Bank of England, in Panel B; and the three-month rate from the Area Wide Model for the euro area
(Fagan et al., 2001) in Panel C. For all countries, the inflation series is constructed by splicing the core price
index with an all-items price index. We use a four-quarter moving average of past inflation as a proxy for
inflation expectations in constructing the ex ante real interest rate. In parentheses below the estimates we
report t-statistics based on Newey and West (1987) standard errors with 18 lags. Significance: ∗p < 0.10,
∗∗p < 0.05, ∗∗∗p < 0.01. Significance is computed using the asymptotic theory of Kiefer and Vogelsang
(2005). All regressions include a constant term, whose coefficient is omitted. The last column reports the
equalization fee for models (1) and (3) from the corresponding mean-variance dynamic optimization exercise
as in Table 6. The sample period is 1986/01 to 2017/12 for Canada and the UK, and 1991/01 to 2017/12
for Germany.

Panel A: Forecasting rxt+1, Canada: 1986/01 – 2017/12

f
(1)
t f

(2)
t f

(3)
t f

(4)
t f

(5)
t CGt R2 Eq. fee

(1) -1.22 0.93 -3.13 9.55* -6.04** 0.17 0.006
(-1.71) (0.44) (-0.74) (1.88) (-2.36)

(2) -0.28 0.03
(-1.10)

(3) -2.16*** 0.15 2.60 0.59 -1.09 -0.97*** 0.34 0.019
(-2.73) (0.07) (0.62) (0.12) (-0.46) (-5.41)

Panel B: Forecasting rxt+1, United Kingdom: 1986/01 – 2017/12

f
(1)
t f

(2)
t f

(3)
t f

(4)
t f

(5)
t CGt R2 Eq. fee

(1) -0.52 0.88 -11.70 24.29 -12.89 0.17 0.023
(-0.49) (0.15) (-0.67) (1.09) (-1.33)

(2) -0.24 0.01
(-0.69)

(3) -1.54 2.02 -8.10 12.26 -4.35 -1.06*** 0.26 0.043
(-1.58) (0.38) (-0.54) (0.68) (-0.58) (-2.75)

Panel C: Forecasting rxt+1, Germany and Euro Area: 1991/01–2017/12

f
(1)
t f

(2)
t f

(3)
t f

(4)
t f

(5)
t CGt R2 Eq. fee

(1) -2.65 -0.25 18.34 -28.87 13.87 0.28 0.078
(-2.97) (-0.05) (1.34) (-1.67) (1.72)

(2) -0.20 0.01
(-0.95)

(3) -3.38** 0.87 15.26 -23.95 11.57 -0.66* 0.36 0.096
(-2.81) (0.14) (1.07) (-1.46) (1.59) (-2.17)
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Table 8: International co-movements

This table reports the correlation matrix of the convergence gap series in the cross-section of countries at the
monthly (left quadrant) and annual frequency (right quadrant), with underneath the corresponding fraction
of overall variance accounted for by the fourth principal components (PC1,...,PC4). The convergence gap,
CG, is the difference between the natural rate of interest and the real interest rate. To proxy for the natural
rate of interest we use the estimates from Holston et al. (2017). Finally, the convergence gap has been
linearly detrended. The short-term interest rate is: the Bank of Canada’s target for the overnight rate;
the Bank of England’s Official Lending Rate, published by the Bank of England; and the three-month rate
from the Area Wide Model for the euro area (Fagan et al., 2001). For all countries, the inflation series is
constructed by splicing the core price index with an all-items price index. We use a four-quarter moving
average of past inflation as a proxy for inflation expectations in constructing the ex ante real interest rate.
The sample period is 1991/01 to 2017/12.

Correlation matrix, monthly freq. Correlation matrix, annual freq.

US CAN UK DE/EA US CAN UK DE/EA

US 1.00 0.27 0.32 -0.02 US 1.00 0.13 0.41 -0.13
CAN 0.27 1.00 0.32 0.46 CAN 0.13 1.00 0.41 0.50
UK 0.32 0.32 1.00 0.03 UK 0.41 0.41 1.00 -0.01
DE/EA -0.02 0.46 0.03 1.00 DE/EA -0.13 0.50 -0.01 1.00

PCA, monthly freq. PCA, annual freq.

PC1 PC2 PC3 PC4 PC1 PC2 PC3 PC4

Fract. (%) 43.1 29.1 16.9 11.0 Fract. (%) 43.1 33.6 14.7 8.6
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Table 9: Forecasting individual bond excess returns, out-of-sample analysis

This table reports the out-of-sample accuracy in forecasting individual bond excess returns of Model 1, which
includes the CPG factor, defined as in Table 2, in the first, second and third rows, and the CPG factor and
the the cyclical factor of Cieslak and Povala (2015), cf , in the fourth row; and Model 2, which includes the
constant in the first row, the CP factor in the second row, and the CP and the cf factor from Cieslak and
Povala (2015) in the third and fourth rows. All models also include a constant term. The CP and cf factors
are re-estimated whenever a new observation is added to the sample. The first forecast is made in 1989/12,
and the last forecast is in 2016/12, for a total of 325 (overlapping) observations. MSFE1/MSFE2 denotes
the ratio between the mean squared forecast error of Model 1 to Model 2. DM reports the p-value of the
Diebold and Mariano (1995) test for the null hypothesis of zero difference in MSE between the models. Bias
and Variance report, respectively, the p-value of the t-statistic for the intercept and slope in the regression of
the difference in forecast errors on the demeaned sum of forecast errors of the two models. The convergence
gap, CGt, is defined as in Table 1, but is re-estimated whenever a new observation is added to the sample.
The full sample period is 1964/01 to 2017/12.

Model 1 Model 2 MSFE1/MSFE2 DM test Bias Variance

Panel A: rx
(2)
t+1

CPG Constant 0.927 0.013 0.266 0.342

CPG CP 0.759 0.002 0.000 0.038

CPG [CP cf ] 0.765 0.054 0.008 0.359

[CPG cf ] [CP cf ] 0.833 0.000 0.000 0.004

Panel B: rx
(3)
t+1

CPG Constant 0.932 0.015 0.261 0.321

CPG CP 0.748 0.003 0.000 0.014

CPG [CP cf ] 0.765 0.077 0.009 0.418

[CPG cf ] [CP cf ] 0.838 0.001 0.000 0.001

Panel C: rx
(4)
t+1

CPG Constant 0.915 0.013 0.253 0.200

CPG CP 0.729 0.002 0.000 0.013

CPG [CP cf ] 0.756 0.087 0.008 0.554

[CPG cf ] [CP cf ] 0.831 0.001 0.000 0.000

Panel D: rx
(5)
t+1

CPG Constant 0.926 0.017 0.251 0.202

CPG CP 0.732 0.003 0.000 0.018

CPG [CP cf ] 0.774 0.128 0.010 0.814

[CPG cf ] [CP cf ] 0.840 0.001 0.000 0.001
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Table 10: Robustness analysis

This table reports OLS slope estimates and associated t-statistics (in parentheses) for the regression of
excess bond returns on a constant, lagged one- to five-year forward rates, and various specifications of the
additional regressors and sampling frequency. In Panel A the dependent variable is the average annual excess
return rxt+1 and the estimates are for quarterly and yearly sampled observations. R2

fwd is the R-squared
statistics for the specification with forward rates only. In Panel B, we re-estimate our baseline model but
end the sample in November, 2008. In Panel C, analogous results are reported when CG is constructed
using real-time vintage data. In Panel D, the dependent variable is the monthly excess return on a portfolio
of bonds with two to three years to maturity. RP denotes Duffee (2011)’s hidden factor. In parentheses,
below the estimates, we report t-statistics computed using the reverse regression delta method by Wei and
Wright (2013). Significance: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01. All regressions include a constant term, whose
coefficient is omitted. The sample period is 1964/01 to 2017/12, except for the last regression for which the
sample ends on 2007/12.

Panel A: Quarterly and Annual Regressions

Frequency f
(1)
t f

(2)
t f

(3)
t f

(4)
t f

(5)
t CGt R2 R2

fwd

Quarterly -2.16*** 0.12 2.84*** 0.62 -1.71*** -0.79*** 0.36 0.24
(-2.75) (0.10) (2.73) (0.87) (-3.57) (-3.37)

Annual -2.17* -0.45 3.73* 0.65 -1.80** -0.83*** 0.42 0.27
(-1.74) (-0.32) (1.78) (0.63) (-2.16) (-3.27)

Panel B: Excluding the zero-lower-bound period

Sample period f
(1)
t f

(2)
t f

(3)
t f

(4)
t f

(5)
t CGt R2 R2

fwd

1964/01 to 2008/11 -2.45*** 1.49 1.74* 0.84 -1.82*** -0.70** 0.34 0.25
(-2.83) (0.84) (1.91) (1.53) (-3.50) (-2.82)

Panel C: Quarterly and Annual Regressions, Vintage Data

Frequency f
(1)
t f

(2)
t f

(3)
t f

(4)
t f

(5)
t CGt R2 R2

fwd

Quarterly vintage -1.67 -1.03 3.87 0.63 -1.89 -0.50 0.34 0.28
(-3.27) (-1.09) (3.08) (1.00) (-4.58) (-3.81)

Annual vintage -1.55 -0.68 4.10 1.19 -2.15 -0.68 0.40 0.33
(-4.12) (-0.65) (5.88) (3.38) (-7.26) (-6.91)

Panel D: Forecasting Monthly Excess Returns

Spec. f
(1)
t f

(2)
t f

(3)
t f

(4)
t f

(5)
t CGt RPt R2

(1) -0.06 -0.06 0.09 0.09 -0.04 0.02
(-1.17) (-0.53) (0.70) (0.70) (-0.47)

(2) -0.11* -0.00 0.09 0.07 -0.07 -0.05* 0.03
(-1.91) (-0.01) (0.74) (0.49) (-0.97) (-1.93)

(3) -0.11* 0.23 -0.28 0.02 0.10 -0.06** 2.56*** 0.06
(-1.84) (1.66) (-1.58) (0.09) (0.87) (-2.09) (4.08)
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A Data and variable construction

A.1 Convergence Gap

We require data for real GDP, inflation, and the short-term nominal interest rate, as

well as a procedure to compute inflation expectations to calculate the ex ante real short

term interest rate. The real GDP data is obtained from the St. Louis Fed’s FRED database

(mnemonic GDPC1). We use observations starting in 1957 to allow for a burn-in seven-year

period to estimate the 1964 trend component. Using longer burn-in periods – in particular

starting in 1947 – does not affect our results. The inflation measure is the growth rate

of the price index for personal consumption expenditure (PCE) excluding food and energy,

referred to as core PCE inflation (mnemonic PCEPILFE). We look at core PCE because this

is the measure that monetary policy makers focus on.30 The short-term interest rate is the

annualized nominal funds rate, available from the Board of Governors. Because the federal

funds rate frequently fell below the discount rate prior to 1965, we use the Federal Reserve

Bank of New York’s discount rate prior to 1965, reported by the IMF. For our benchmark

measure we use a four-quarter moving average of past inflation as a proxy for inflation

expectations in constructing the ex ante real interest rate. This is the same approach used

in Holston et al. (2017). Canadian, UK, and Euro Area data is from Holston et al. (2017).

We refer the reader to their detailed data appendix.

A.2 Cieslak and Povala (2015) factor

To construct the Cieslak-Povala factor we use bonds with maturities of 1, 2, 3, 4, 5, 7,

and 10 years.31 We then run a regression of yields with different maturities on the trend

inflation τCPIt :

y
(n)
t = an + bnτCPIt + εt, n = 1,2,3,4,5,7,10 (A.1)

30See e.g. discussion in Cogley, Primiceri and Sargent (2010), and in particular their footnote 12.
31Cieslak and Povala (2015) use also a 20 years bonds. However such maturity is not available in the Le

and Singleton (2013) dataset.
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We define the residual from regression (A.1) as the maturity-specific cycle:

c
(n)
t = y(n)t − ân − b̂nτCPIt . (A.2)

We then take an average of duration-standardized excess returns across maturities, denoted

by rxDt+1 = 1
6 ∑

10
n=2

rx
(n)
t+1

n . We then predict the average return rxDt+1 with the cycles defined in

Equation A.2:

rxDt+1 = γ0 + γ1c̄t + γ2c
(1)
t + εt, (A.3)

where ct = c
(2)
t +c

(3)
t +c

(4)
t +c

(5)
t +c

(7)
t +c

(10)
t

6 . We estimate a value of γ1 = 1.28 (t-stat=8.24) and

γ2 = −0.87 (t-stat=−7.99), which is close to the original point estimates of 1.45 and −0.61

reported by Cieslak and Povala (2015) in their original paper.

Finally, the fitted value from Regression (A.3) delivers the Cieslak-Povala cycle factor,

ĉf t:

ĉf t = γ̂0 + γ̂1ct + γ̂2c
(1)
t . (A.4)

A.3 Real bond returns

U.S. data. The data on U.S. TIPS (Treasury inflation-protected securities) are obtained

from Gurkaynak, Sack and Wright (GSW, 2010). GSW estimate the real yield curve by

fitting observed prices of TIPS with a Nelson-Siegel-Svensson (NSS) model. As GSW point

out, the second hump in the Svensson curve is not well identified unless there are enough

long-term securities. Therefore, for the TIPS yield curve GSW use the more restricted

functional form (Nelson-Siegel allowing for only one hump) up to the end of 2003, and then

switch to the Svensson parameterization after that point as the issuance of 20-year TIPS

improved the estimation. Moreover, TIPS with less than 18 months to maturity are dropped

from the estimation of the TIPS yield curve, because the effect of the indexation lag makes

the prices of these securities erratic. This implies that the shortest observed maturity is

five years before January 2004 and two years afterward. We reconstruct the yields for the

2- to 4-year maturities over the January 1999 to December 2003 sample period using the

estimated parameters of the Nelson-Siegel model published by GSW. With regard to the
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1-year maturity, for the period January 2004 to December 2017 we reconstruct the series

using the parameters of the Svensson model estimated by GSW. For the period January

1999 to December 2003, the application of the estimated Nelson-Siegel parameters generates

a very erratic series, as stated by GSW. Therefore, we construct a smoother series for that

variable by taking the difference between the 1-year nominal yield estimated in GSW (2007),

again using the Svensson model, and the SPF 1-year ahead CPI inflation rate.

U.K. data. Data for yields on the UK Index-Linked Gilts are available from the Bank

of England website. These data are based on the estimation of a modified version of a spline-

based variable roughness penalty model (see Waggoner, 1997; Anderson and Sleath, 2001).

The data starts in January 1985. However, as in the case of TIPS, short-term yields (yields

with maturity below 4 years) are not available for all the dates in the sample. We thus build

a 1- to 10-year term structure for Index-Linked Gilts yields by fitting the Svensson model to

the yields observable at the end of each month (from the shortest maturity available up to

10 years) for the period January 1985 to December 2017. The fit to actual data is very good,

with an average yield error equal to zero and a standard deviation of yield errors around

0.17 bps for all maturities.

Using these data, we recompute the Cochrane-Piazzesi factor and our CPG factor by

running the regressions (1) and (2) in the paper, reported here for reader’s convenience:

rxt+1 = δ0 + δ′1f t + εt+1 , (A.5)

rxt+1 = δCG0 + δCG ′

1 f t + δCG2 CGt + εCGt+1 , (A.6)

where now f t are real Treasury forward rates and rxt+1 is an average (across maturities)

holding period returns on real Treasury bonds. Along the lines of the original study by

Cochrane and Piazzesi (2005) we use only maturities from one through five-year.

A.4 Economic drivers of CG

In Section 4, we study the following economic determinants of CG and bond risk premia,

which are available at either the Monthly (M), Quarterly (Q), or Annual (frequency). We
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use the year-on-year growth rate in Middle-Young ratio (A), Life Expectancy (A), Labour

hours (A), TFP (A), Fed debt/GDP (Q), Current account/GDP (Q), and the Dependency

Ratio (A), all from Lunsford and West (2019) (see their data source details). We also obtain

the Employment to Population growth rate (from FRED, EMRATIO; M), the year-on-year

growth rate in the Arouba-Diebold-Scotti index (from FED Philadelphia; M) and Capacity

utilization (from FRED, TCU; M).

B Predicting real bond returns: UK evidence

Table B.1: Forecasting individual real bond excess returns: UK evidence

This table reports OLS slope coefficients and R2 in the regressions of future annual excess returns for real
bonds with maturities of two years (Panel A), three years (Panel B), four years (Panel C), and five years
(Panel D). The table shows (1) to (4) specifications of the regressors. CP denotes Cochrane and Piazzesi
(2005) forward rates factors. CPG denotes the fitted value from a regression of average (across maturities)
bond returns on forward rates and CG. The convergence gap, CGt, is defined as in Table 1. In parentheses,
below the estimates, we report t-statistics computed using the reverse regression delta method by Wei and
Wright (2013). Significance: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01. All regressions include a constant term,
whose coefficient is omitted. The sample period is 1985/01 to 2017/12.

Panel A: rx
(2)
t+1 Panel B: rx

(3)
t+1

Spec. CPt CPGt R2 Spec. CPt CPGt R2

(1) 0.48 0.21 (1) 0.88*** 0.29

(1.16) (2.35)

(2) 0.50 0.25 (2) 0.87*** 0.33

(1.49) (2.55)

Panel C: rx
(4)
t+1 Panel D: rx

(5)
t+1

Spec. CPt CPGt R2 Spec. CPt CPGt R2

(1) 1.19*** 0.33 (1) 1.45*** 0.34

(3.08) (3.57)

(2) 1.19*** 0.37 (2) 1.43*** 0.38

(3.27) (3.79)
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C Economic Significance of Bond Predictability

Table C.1: Optimal Sharpe Ratios and Economic Conditions

This table reports the OLS slope coefficients and R2 in the regression of the difference in annualized Sharpe
ratios on economic indicators. The difference in annualized Sharpe ratios between specifications (3) and (2)
in Table 6 (for monthly returns) is projected on a constant and the following variables: inflation (CPI), the
Chicago Fed National Activity Index (CFNAI), and the NBER recession dummy. In parentheses below the
estimates we report t-statistics based on Newey-West standard errors with 60 lags. Significance: ∗p < 0.10,
∗∗p < 0.05, ∗∗∗p < 0.01. The intercept estimates are omitted. The sample period is 1964/01 to 2017/12.

Sharpe ratio and Economic Determinants

Spec. CPIt CFNAIt NBERt R2

(1) -1.33 0.02
(-0.79)

(2) -0.12*** 0.04
(-3.59)

(3) 0.05*** 0.09
(3.11)

(4) -1.82 0.03 0.06*** 0.12
(-1.24) (0.50) (2.46)

1974 1978 1982 1986 1990 1994 1998 2002 2006 2010 2014
-0.2
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Sharpe ratio based on Frw Rates and Convergenge gap
Sharpe ratio based on Frw Rates only

Figure C.1: Sharpe Ratios: This figure plots the time series of the 10-year rolling Sharpe Ratio for the
monthly optimal dynamic portfolio strategy based on forward rates only (i.e. column (2) of Table 6) and
for that based on forward rates plus CG (i.e. column (3) of Table 6). The gray bars denote NBER recession
months.
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D International evidence
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Figure E.1: The convergence gap: This figure plots the time series of the convergence gap, CG, for the
US, Canada, UK, and Germany/EuroArea using the natural rate of interest estimates from Holston et al.
(2017) over the common 1991/01 to 2017/12 period.
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E Robustness

We study the robustness of our results to alternative formulation of the convergence gap,

such as changing the measure of the equilibrium rate of interest (c.f. Tables E.1 and E.2),

or using alternative proxies for the real short-rate (c.f. Tables E.3 and E.4).

In Figure E.1, we plot the convergence gap series obtained when we proxy for the natural

rate with: (1) an HP-filtered measure of output gap (benchmark measure used in the main

body of the paper); (2) the measure of potential output by Laubach and Williams (2003);

(3) the Kalman filter natural-rate estimates by Holston et al. (2017). We observe that all

convergence gap series are highly correlated. This prima facie evidence suggests that our

results are robust to alternative proxies for the natural rate, with the correlation between

various CG series being in the tune of 0.80.
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Convergenge gap (Potential GDP from Holston, Laubach, and Williams, 2017)
Convergenge gap (Natural rate from Laubach and Williams, 2003)
Convergenge gap (Potential GDP from one-sided HP filter)

Figure E.1: The convergence gap: This figure plots the time series of the convergence gap, CG, using
alternative proxies for the natural rate. The sample period is 1964/01 to 2017/12.

Table E.1 carries out the same analysis of Table 1 when replacing the one-sided HP

filtered trend component of real GDP with the potential GDP series obtained by Laubach
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and Williams (2003) using a Kalman filter. Table E.2 report analogous results when instead

we replace the one-sided HP filtered trend component of real GDP with the Kalman filter

natural-rate estimates – denoted r∗t – by Holston et al. (2017). The Holston et al. (2017)

natural rate of interest is composed of the trend growth rate of the natural rate of output

and a component that captures the households’ rate of time preference as well as other

determinants of r∗ unrelated to trend growth.

Tables E.3 and E.4 repeat the analysis of Table 1 using alternative measure of the ex-

ante real interest rate. In particular, in Table E.3 we proxy inflation expectations with

the forecast of the twelve-month-ahead percentage change in the price index for personal

consumption expenditures excluding food and energy (“core PCE prices”) generated from a

univariate AR(9) of inflation estimated over the prior 120 months. This measure is similar

to the measure of inflation expectations used by Laubach and Williams (2003). In Table

E.4 we instead use CPI inflation forecasts from the Survey of Professional Forecasters (SPF)

to construct the real rate. The SPF data are quarterly beginning in 1981Q2.32 We use

the median across the respondents, but our conclusions are unaffected if we instead use the

average. A survey at quarter t reports k quarter ahead consensus predictions of CPI inflation

for k = 1, . . . ,4. We use these forecasts to calculate predictions of inflation over the next year.

To go further back in time, we splice this series with the four-quarter moving average of past

CPI inflation, in order to obtain a final series spanning the period 1964-2017.

F A Term Structure Model with the Convergence Gap

The evidence that the convergence gap plays a significant role for bond return pre-

dictability begs the question how to interpret our findings from a term structure modeling

perspective, where yields and risk premia are jointly determined. We address this point by

evaluating the effect of CG within a no-arbitrage bond pricing framework. To be precise we

assume a conditionally log-normal pricing kernel:

Mt+1 = exp(−rt −
1

2
Λ′
tΛt −Λ′

tεt+1) , (F.1)

32PCE forecasts are available only starting from 2007:Q1, hence we switch to CPI as our inflation proxy
despite the fact that the Fed pays more attention to the PCE for policy purposes.
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where the market price of risk Λt = Λ0 +Λ1Xt and the short rate rt = δ0 + δ′1Xt are affine in

the m×1 vector of state variables Xt (see Duffee, 2002), and εt+1 is i.i.d. N(0, I). We further

assume that the vector of state variables follows a first-order vector autoregression (VAR)

model with homoskedastic shocks:33

Xt+1 = µ +ΦXt +Σεt+1 . (F.2)

It then follows that the no-arbitrage price of a n-period zero coupon bond is an exponentially

affine function of the state vector:

P
(n)
t = exp{An +B′

nXt} , (F.3)

where the coefficients An and Bn solve a system of ODEs (see e.g. Wright, 2011).

In our analysis we employ three factors, i.e. m = 3. The first two variables in Xt are the

first two principal components (PCs) of the yield curve. The third variable is alternatively

CP or CPG, each of them orthogonalized with respect to the two PCs.

We estimate the two models on our sample of 1- to 5-year Fama and Bliss yields using

a two-step procedure, similar to Cochrane and Piazzesi (2008) and Adrian et al. (2013).

In a first step, we obtain the risk-adjusted parameters by minimizing the distance between

the coefficients from regressing yields onto the factors and their model counterpart. Next,

we find estimates of the risk premia parameters (Λ0 and Λ1) by minimizing the distance

between the coefficients from regressing individual bond excess yields onto the factors and

their model counterpart, keeping the first-step parameters fixed. We collect the resulting

parameter estimates in Table F.1.

Based on the implied coefficients from the model, two important conclusions emerge.

First, the CPG factor loading on the short rate (i.e., the third element of δ1) is small and

statistically indistinguishable from zero, and so are the corresponding loadings on CPG for

the yield curve. However, we can reject the null hypothesis that the risk premia coefficients

on CPG (i.e. the third row of Λ1) are zero. These results imply that we can interpret CPG

33Joslin and Le (2016) find that no-arbitrage term structure models that incorporate stochastic volatility
face difficulties in matching yield dynamics under both the physical and risk-neutral probability measures.
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as an unspanned factor that affects risk premia but not the level of yields, consistent with

the arguments in, e.g., Duffee (2011) and Joslin et al. (2014b). Second, conditioning on the

convergence gap changes the cyclicality of the model-implied expected excess returns. When

using CP as a third factor in the model, the R2from regressing the model-implied average

(across maturities) expected excess bond return on the CPI, CFNAI, and NBER dummy is

nearly zero (0.006, or a correlation of 0.08). In contrast, when using the CPG factor, the

R2 jumps to 0.057 (or, a correlation of 0.24), and the three macro variables enters with the

same signs as in Panel B of Table 1 – i.e. bond risk premia become more countercyclical.

Overall, these results confirm that the reduced-form findings of Table 1 hold in a more general

structural estimation setting.

G Fama-Bliss Identity and the Convergence Gap

The Fama and Bliss (1987) accounting identity implies that, algebraically, the price P
(n)
t

of an n-year bond is the present value of the $1 payoff discounted at the expected values of

the future 1-year returns on the bond:

P
(n)
t = exp (−Et [r(n)t+1] −Et [r

(n−1)
t+2 ] − . . . −Et [y(1)t+n−1]) . (G.1)

Fama and Bliss (1987) show that summing the last n− 1 expected returns in Eq. (G.1), and

substituting the resulting expression for prices in the definition of a forward contract, gives:

f
(n)
t − y(1)t = (Et [r(n)t+1] − y

(1)
t )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Et[rx

(n)
t+1]

+(n − 1) × (Et [y(n−1)t+1 ] − y(n−1)t ) . (G.2)

The above Fama and Bliss (1987) identity says that the forward-spot spread contains infor-

mation about either the premium for a 1-year return on an n-year bond over the 1-year spot

rate, or the expected change over the next year of the yield on n− 1 year bonds, or both. In

terms of regression coefficients, Eq. (G.2) implies that the slope coefficients in the following
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system:

r
(n)
t+1 − y

(1)
t = ar + br (f (n)

t − y(1)t ) + et+1 (G.3)

(n − 1) × (y(n−1)t+1 − y(n−1)t ) = ay + by (f (n)
t − y(1)t ) + ut+1 (G.4)

obey the present-value restriction br + by = 1.34

Panel A of Table G.1 shows results from estimating regressions (G.3)-(G.4) on the Fama

and Bliss data. The table re-establishes what documented by other authors, namely that

all the variation in the forward-spot spread is attributable to the 1-year expected premium

(b̂r = 1), and none to expected yield changes (b̂y = 0).

The Fama-Bliss identity (G.2) also applies to other, potentially non-yield related predic-

tors. To see this, consider a variable xt that is orthogonal to the forward spread. Exploiting

(G.2) we obtain:

Cov (xt, f (n)
t − y(1)t ) = Cov (xt, r(n)t+1 − y

(1)
t ) +Cov (xt, (n − 1) × (y(n−1)t+1 − y(n−1)t )) ,

where the left-hand side is zero by construction. In words, if the variable xt predicts interest

rates changes, then it ought to predict bond returns. In terms of regression coefficients we

have that:

r
(n)
t+1 − y

(1)
t = ar,x + br,xxt + et+1 (G.5)

(n − 1) × (y(n−1)t+1 − y(n−1)t ) = ay,x + by,xxt + ut+1 (G.6)

and, importantly, Eq. (G.2) now imposes that br,x + by,x = 0.35,36

34This restriction is remindful of the Campbell and Shiller (1988) identity which implies that the dividend-
price must forecast dividend growth and/or returns. See Cochrane (2008) for a thorough discussion of the
Campbell-Shiller identity, and its implications for long-horizon regressions. Despite the similarities, two
important distinctions between the Fama-Bliss and Campbell-Shiller identities are that the former: (1) is
exact, whereas the latter requires a log-linear expansion, and (2) does not rely on long-horizon regressions
which typically are plagued by econometric small-sample biases.

35Analogously, the Campbell-Shiller identity also imposes restrictions on predictors other than the price-
dividend ratio. These restrictions have been exploited by Cochrane (2011) to examine the predictive ability
of the consumption-wealth ratio for short-run market returns, and by Bandi and Tamoni (2018) to investigate
the ability of long-run uncertainty to predict long-run market returns.

36The restriction is also reminiscent of “hidden factor models” introduced by Duffee (2011) and Joslin,
Priebsch and Singleton (2014b). Our derivation based on Fama-Bliss is new, and complementary to that
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Panel B of Table G.1 reports the results from regressions (G.5) (leftmost part) and (G.6)

(rightmost part) when we use as predictor xt the component of the convergence gap that is

orthogonal to the forward spread, denoted CG⊥t . Panel C collects analogous results when

the forward spread is added to the convergence gap. Panel B shows that the convergence

gap has an impressive ability to forecast future changes in yields of different maturities: the

R2s are all above 10%, and the coefficients are strongly significant with t-statistic greater

than three. The predictive ability of the convergence gap is decreasing in the maturity of

the bond. This is intuitive since the effect of monetary policy is likely to be stronger at the

short-end of the yield curve. Finally, the ability of CG⊥t to forecast interest rates is mirrored

by its ability to forecast bond excess returns. Importantly, the sign of the coefficients is in

line with the economic intuition: a positive convergence gap predicts an increase in short-

and long-term rates (by,CG⊥ > 0) and, at the same time, lower prices (hence, returns) going

forward (br,CG⊥ < 0). By construction, the R2 attained by the convergence gap in forecasting

excess returns adds to the R2 achieved by forward rates in standard Fama-Bliss regressions.

The leftmost part in Panel C shows this result: the convergence gap raises the R2 for bonds

with 2- and 3-year maturity by about 15%.

typically found in Gaussian no-arbitrage models of the Term Structure.
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Table E.1: Forecasting average (across maturity) bond excess returns using Laubach and
Williams (2003)’s potential GDP series into CG

Panel A of this table reports OLS slope coefficients and R2 in the regression of average (across maturities)
annual excess returns rxt+1 on a constant and various combinations of lagged one- to five-year forward rates
and the convergence gap, CGt. Panel B reports the OLS slope coefficients and R2 in the regression of the
residuals from specifications (CP) and (CPG) of Panel A. The residuals are projected on a constant and
the following variables: inflation (CPI), the Chicago Fed National Activity Index (CFNAI), and the NBER
recession dummy. In parentheses, below the estimates, we report t-statistics computed using the reverse
regression delta method by Wei and Wright (2013). Significance: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01. The
intercept estimates are omitted. The convergence gap, CGt, is defined as the difference between the year-to-
year log change in potential GDP and the real interest rate. To proxy for potential GDP we use the Laubach
and Williams (2003) estimates obtained by Kalman filter. We linearly interpolate the Laubach and Williams
(2003) series to obtain monthly observations. The short-term interest rate is the annualized nominal funds
rate, available from the Board of Governors. We use a four quarter moving average of past inflation as a
proxy for inflation expectations in constructing the ex ante real interest rate. The sample period is 1964/01
to 2017/12.

Panel A: Forecasting average excess bond returns

Spec. f
(1)
t f

(2)
t f

(3)
t f

(4)
t f

(5)
t CGt R2

(CP) -1.46* -0.23 1.61* 1.11* -0.84* 0.21
(-1.67) (-0.54) (1.72) (1.88) (-1.80)

(CG) -0.28 0.03
(-1.40)

(CPG) -2.47*** 0.76 1.88** 0.75 -1.08** -0.73*** 0.31
(-3.23) (0.56) (2.21) (1.31) (-2.31) (-3.35)

Panel B: Forecasting residuals

Spec. CPIt CFNAIt NBERt R2

(CP) -0.33* -0.05*** 0.02** 0.13
(-2.24) (-3.03) (2.28)

(CPG) -0.20 -0.02 0.01 0.04
(-1.23) (-1.05) (1.56)
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Table E.2: Forecasting average (across maturity) bond excess returns using the natural rate
of interest estimates from Holston et al. (2017) into CG

Panel A of this table reports OLS slope coefficients and R2 in the regression of average (across maturities)
annual excess returns rxt+1 on a constant and various combinations of lagged one- to five-year forward rates
and the convergence gap, CGt. Panel B reports the OLS slope coefficients and R2 in the regression of the
residuals from specifications (CP) and (CPG) of Panel A. The residuals are projected on a constant and
the following variables: inflation (CPI), the Chicago Fed National Activity Index (CFNAI), and the NBER
recession dummy. In parentheses, below the estimates, we report t-statistics computed using the reverse
regression delta method by Wei and Wright (2013). Significance: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01. The
intercept estimates are omitted. The convergence gap, CGt, is defined as the difference between the natural
rate of interest and the real interest rate. To proxy for the natural rate of interest we use the Holston et al.
(2017) estimates obtained by Kalman filter. We linearly interpolate the Holston et al. (2017) series to obtain
monthly observations. The short-term interest rate is the annualized nominal funds rate, available from
the Board of Governors. We use a four quarter moving average of past inflation as a proxy for inflation
expectations in constructing the ex ante real interest rate. The sample period is 1964/01 to 2017/12.

Panel A: Forecasting average bond excess returns

Spec. f
(1)
t f

(2)
t f

(3)
t f

(4)
t f

(5)
t CGt R2

(CP) -1.46* -0.23 1.61* 1.11* -0.84* 0.21
(-1.67) (-0.54) (1.72) (1.88) (-1.80)

(CG) -0.29 0.03
(-1.49)

(CPG) -2.20*** -0.20 2.03** 0.83 -0.97** -0.69*** 0.30
(-2.68) (-0.08) (2.38) (1.44) (-2.09) (-2.78)

Panel B: Forecasting residuals

Spec. CPIt CFNAIt NBERt R2

(CP) -0.33* -0.05*** 0.02** 0.13
(-2.24) (-3.03) (2.28)

(CPG) -0.14 -0.04* 0.02** 0.08
(-0.73) (-1.73) (2.38)
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Table E.3: Forecasting average (across maturity) bond excess returns using an AR(9) model
to construct inflation expectations into CG

Panel A of this table reports OLS slope coefficients and R2 in the regression of average (across maturities)
annual excess returns rxt+1 on a constant and various combinations of lagged one- to five-year forward rates
and the convergence gap, CGt. Panel B reports the OLS slope coefficients and R2 in the regression of the
residuals from specifications (CP) and (CPG) of Panel A. The residuals are projected on a constant and
the following variables: inflation (CPI), the Chicago Fed National Activity Index (CFNAI), and the NBER
recession dummy. In parentheses, below the estimates, we report t-statistics computed using the reverse
regression delta method by Wei and Wright (2013). Significance: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01. The
intercept estimates are omitted. The convergence gap, CGt, is defined as the difference between the year-
to-year log change in potential GDP and the real interest rate. To proxy for potential GDP we use the
trend component of quarterly real GDP obtained from a one-sided Hodrick and Prescott (1997) filter. We
linearly interpolate the resultant trend series to obtain monthly observations. The short-term interest rate
is the annualized nominal funds rate, available from the Board of Governors. We use the forecast of the
twelve-month-ahead percentage change in core PCE generated from a univariate AR(9) estimated over the
prior 120 months as a proxy for inflation expectations in constructing the ex-ante real interest rate. The
sample period is 1964/01 to 2017/12.

Panel A: Forecasting average bond excess returns

Spec. f
(1)
t f

(2)
t f

(3)
t f

(4)
t f

(5)
t CGt R2

(CP) -1.46* -0.23 1.61* 1.11* -0.84* 0.21
(-1.67) (-0.54) (1.72) (1.88) (-1.80)

(CG) -0.42** 0.08
(-2.12)

(CPG) -2.23*** 0.91 1.41* 1.06* -1.46*** -0.77*** 0.33
(-2.84) (0.68) (1.80) (1.75) (-3.10) (-3.26)

Panel B: Forecasting residuals

Spec. CPIt CFNAIt NBERt R2

(CP) -0.33* -0.05*** 0.02** 0.13
(-2.24) (-3.03) (2.28)

(CPG) -0.18 -0.04* 0.01 0.06
(-1.08) (-1.66) (1.64)
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Table E.4: Forecasting average (across maturity) bond excess returns SPF inflation forecasts
into CG

Panel A of this table reports OLS slope coefficients and R2 in the regression of average (across maturities)
annual excess returns rxt+1 on a constant and various combinations of lagged one- to five-year forward rates
and the convergence gap, CGt. Panel B reports the OLS slope coefficients and R2 in the regression of the
residuals from specifications (CP) and (CPG) of Panel A. The residuals are projected on a constant and
the following variables: inflation (CPI), the Chicago Fed National Activity Index (CFNAI), and the NBER
recession dummy. In parentheses, below the estimates, we report t-statistics computed using the reverse
regression delta method by Wei and Wright (2013). Significance: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01. The
intercept estimates are omitted. The convergence gap, CGt, is defined as the difference between the year-to-
year log change in potential GDP and the real interest rate. To proxy for potential GDP we use the trend
component of quarterly real GDP obtained from a one-sided Hodrick and Prescott (1997) filter. We linearly
interpolate the resultant trend series to obtain monthly observations. The short-term interest rate is the
annualized nominal funds rate, available from the Board of Governors. We use CPI inflation forecasts from
the Survey of Professional Forecasters (SPF) to construct the real rate from 1981 onwards, and we splice it
with a four quarter moving average of past CPI inflation. We use such proxy for inflation expectations in
constructing the ex ante real interest rate. The sample period is 1964/01 to 2017/12.

Panel A: Forecasting average bond excess returns

Spec. f
(1)
t f

(2)
t f

(3)
t f

(4)
t f

(5)
t CGt R2

(CP) -1.46* -0.23 1.61* 1.11* -0.84* 0.21
(-1.67) (-0.54) (1.72) (1.88) (-1.80)

(CG) -0.42** 0.08
(-2.06)

(CPG) -2.29*** 1.08 1.35* 1.03* -1.47*** -0.76*** 0.33
(-2.74) (0.83) (1.66) (1.66) (-3.04) (-2.61)

Panel B: Forecasting residuals

Spec. CPIt CFNAIt NBERt R2

(CP) -0.33* -0.05*** 0.02** 0.13
(-2.24) (-3.03) (2.28)

(CPG) -0.15 -0.04** 0.01 0.04
(-1.10) (-2.15) (0.86)
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Table E.5: Forecasting individual bond excess returns controlling for F5 factor

This table reports OLS slope coefficients and R2 in the regressions of future annual excess returns for bonds
with maturities of two years (Panel A), three years (Panel B), four years (Panel C), and five years (Panel
D) on lagged one- to five-year forward rates (specification (1)), on lagged one- to five-year forward rates and
the convergence gap, CGt (specification (2)), and on lagged one- to five-year forward rates, the convergence
gap, CGt, and the Ludvigson and Ng (2009) macro factor, F5. The convergence gap, CGt, is defined as in
Table 1. In parentheses, below the estimates, we report t-statistics computed using the reverse regression
delta method by Wei and Wright (2013). Significance: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01. All regressions
include a constant term, whose coefficient is omitted. The sample period is 1964/01 to 2017/12.

Panel A: rx
(2)
t+1 Panel B: rx

(3)
t+1

Spec. f
(1)
t f

(2)
t f

(3)
t f

(4)
t f

(5)
t CGt F5t R2 Spec. f

(1)
t f

(2)
t f

(3)
t f

(4)
t f

(5)
t CGt F5t R2

(1) -0.70 0.22 0.58 0.34 -0.32 0.18 (1) -1.21 -0.24 1.82 0.60 -0.80 0.19

(-0.71) (-0.40) (1.23) (1.35) (-1.83) (-1.58) (-0.78) (2.01) (1.48) (-1.75)

(2) -1.07 0.79 0.47 0.33 -0.66 -0.39 0.33 (2) -1.86 0.75 1.63 0.57 -1.37 -0.68 0.33

(-1.78) (0.88) (1.14) (1.24) (-3.15) (-3.34) (-2.79) (0.59) (2.14) (1.40) (-3.20) (-3.53)

(3) -1.02 0.89 0.47 0.21 -0.62 -0.27 0.39 0.41 (3) -1.76 0.92 1.62 0.38 -1.31 -0.47 0.65 0.40

(-1.60) (1.11) (1.12) (0.82) (-2.83) (-2.38) (3.32) (-2.59) (0.83) (2.14) (1.00) (-2.89) (-2.61) (3.32)

Panel C: rx
(4)
t+1 Panel D: rx

(5)
t+1

Spec. f
(1)
t f

(2)
t f

(3)
t f

(4)
t f

(5)
t CGt F5t R2 Spec. f

(1)
t f

(2)
t f

(3)
t f

(4)
t f

(5)
t CGt F5t R2

(1) -1.76 -0.37 1.91 1.70 -1.27 0.22 (1) -2.17 -0.53 2.14 1.80 -0.96 0.22

(-1.93) (-0.43) (1.82) (2.13) (-2.01) (-1.84) (-0.53) (1.59) (2.07) (-1.53)

(2) -2.58 0.90 1.66 1.65 -2.01 -0.87 0.34 (2) -3.13 0.95 1.85 1.75 -1.82 -1.02 0.32

(-3.01) (0.68) (1.95) (2.04) (-3.24) (-3.16) (-2.79) (0.42) (1.61) (1.98) (-2.75) (-2.78)

(3) -2.46 1.11 1.66 1.41 -1.92 -0.61 0.83 0.39 (3) -2.99 1.21 1.84 1.46 -1.72 -0.70 1.00 0.37

(-2.81) (0.88) (1.93) (1.73) (-2.98) (-2.33) (3.13) (-2.58) (0.61) (1.65) (1.64) (-2.52) (-1.99) (3.24)
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Table E.6: Forecasting average bond excess returns controlling for volatility

This table reports OLS slope coefficients and R2 in the regression of future average (across maturities) annual
excess returns rxt+1 on a constant, lagged one- to five-year forward rates, the convergence gap, CGt, and
various measures of realized volatility (denoted RV). The first two measures are monthly realized volatility
computed from daily data of 1-year yield, and 3-month T-Bill, respectively. The third measure is based on a
12-month rolling standard deviation of FFR. The convergence gap, CGt, is defined as the difference between
the year-to-year log change in potential GDP and the real interest rate. To proxy for potential GDP we use
the trend component of quarterly real GDP obtained from a one-sided Hodrick and Prescott (1997) filter.
We linearly interpolate the resultant trend series to obtain monthly observations. The short-term interest
rate is the annualized nominal funds rate, available from the Board of Governors. We use a four-quarter
moving average of past inflation as a proxy for inflation expectations in constructing the ex ante real interest
rate. In parentheses, below the estimates, we report t-statistics computed using the reverse regression delta
method by Wei and Wright (2013). Significance: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01. The intercept estimates
are omitted. The sample period is 1964/01 to 2017/12.

Forecasting average excess bond returns

Spec. f
(1)
t f

(2)
t f

(3)
t f

(4)
t f

(5)
t CGt RVt R2

(CPG+RV(1y yield)) -2.04** 0.59 1.59** 1.04* -1.44*** -0.79*** -60.00 0.33
(-2.74) (0.37) (2.07) (1.74) (-3.13) (-3.22) (-0.80)

(CPG+RV(3mTbill)) -1.86*** 0.45 1.55** 1.07* -1.40*** -0.79*** -48.33 0.34
(-2.49) (0.21) (1.99) (1.79) (-3.08) (-3.24) (-1.01)

(CPG+StdDev(FFR)) -1.94** 0.41 1.83** 0.96 -1.42*** -0.80*** -32.56 0.35
(-2.50) (0.12) (2.35) (1.52) (-3.07) (-3.19) (-1.32)
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Table F.1: Maximum-likelihood estimates of ATSM

This table reports reports the estimated parameter values for the affine term structure models discussed
in Section F, with underneath bootstrapped standard errors in parentheses. Bold values are significant
at the 5% level. In our analysis we employ three factors. The first two factors are the first two principal
components (PCs) of the yield curve. The third factor is alternatively CPG (Panel A) or CP (Panel B),
each of them orthogonalized with respect to the two PCs. The convergence gap, CGt, is defined as in Table
1. The sample period is 1964/01 to 2017/12.

Panel A: Term Structure Model with the CPG factor

µ Φ Σ

0.0002 0.9935 -0.0180 -0.0211 0.0072 – –
(0.0008) (0.0009) (0.0028) (0.0013) (0.0004)
0.0000 -0.0020 0.9265 0.0091 -0.0001 0.0064 –

(0.0006) (0.0011) (0.0072) (0.0016) (0.0000) (0.0010)
0.0001 0.0252 0.0086 0.9430 0.0000 0.0001 0.0061

(0.0005) (0.0175) (0.0040) (0.0364) (0.0005) (0.0002) (0.0024)

Λ0 Λ1 δ0 δ1

-0.1149 -1.8575 19.8430 -10.4277 0.0496 1.0329
(0.0092) (0.1350) (1.3656) (0.7210) (0.0286) (0.0199)
-0.0065 -3.6300 -12.7379 4.8428 1.1898
(0.0022) (0.2320) (0.8050) (0.2823) (0.0603)
0.2823 11.9129 -2.4247 -24.9070 0.0000
(0.0206) (0.8226) (0.1604) (1.6056) (0.0107)

Panel B: Term Structure Model with the Cochrane and Piazzesi (2005) factor

µ Φ Σ

0.0005 0.9925 -0.0177 -0.0172 0.0172 - -
(0.0003) (0.0011) (0.0033) (0.0014) (0.0009)
-0.0005 -0.0050 0.9273 0.0195 0.0027 0.0014 -
(0.0002) (0.0024) (0.0047) (0.0024) (0.0009) (0.0005)
0.0000 0.0542 -0.0567 0.9000 -0.0022 0.0052 0.0066

(0.0008) (0.0346) (0.0648) (0.0428) (0.0025) (0.0023) (0.0058)

Λ0 Λ1 δ0 δ1

-0.0372 -0.9878 8.4499 -4.4629 0.0520 1.0258
(0.0024) (0.0714) (0.6211) (0.3128) (0.0069) (0.0279)
0.2269 -16.5089 -30.4812 11.6500 1.2375
(0.0155) (1.2376) (1.9620) (0.7416) (0.0590)
-0.5290 24.1527 -47.6107 -28.8604 -0.1099
(0.0354) (1.3702) (3.0420) (1.8172) (0.0284)
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Table G.1: Fama-Bliss (1987) Regressions

This table reports OLS regressions in the spirit of Fama and Bliss (1987). The leftmost panel displays
results for forecasting 1-year ahead excess returns on n-year bonds. The rightmost panel displays results
for forecasting the 1-year ahead change in the (n − 1)-year yield. Panel A: univariate regressions using the

forward spread f
(n)
t − y(1)t . Panel B: univariate regressions using the Convergenge Gap orthogonalized with

respect to the forward spread, denoted CG⊥t . Panel C: multiple regressions using the forward spread and
the (orthogonalized) Convergenge Gap. The convergence gap, CGt, is defined as in Table 1. In parentheses
below the estimates we report t-statistics based on Newey and West (1987) standard errors with 60 lags.
Significance: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01. Significance is computed using the asymptotic theory of Kiefer
and Vogelsang (2005). The intercept estimates are omitted. The sample period is 1964/01 to 2017/12.

Panel A: Forward Spread

Maturity rx
(n)
t+1 = ar + br (f

(n)
t − y(1)t ) + εt+1 (n − 1) × (y(n−1)t+1 − y(n−1)t ) = ay + by (f (n)

t − y(1)t ) + ut+1

n = br R2 by R2

2 0.83*** 0.12 0.17 0.01

(4.57) (0.92)

3 1.13*** 0.14 -0.13 0.00

(5.21) (-0.61)

4 1.36*** 0.16 -0.36 0.01

(5.69) (-1.50)

5 1.12*** 0.09 -0.12 0.00

(4.25) (-0.45)

Panel B: Convergence Gap

Maturity rx
(n)
t+1 = ar + br,CG⊥CG⊥t + εt+1 (n − 1) × (y(n−1)t+1 − y(n−1)t ) = ay + by,CG⊥CG⊥t + ut+1

n = br,CG⊥ R2 by,CG⊥ R2

2 -0.29*** 0.16 0.29*** 0.19

(-4.60) (5.06)

3 -0.50*** 0.14 0.50*** 0.16

(-4.09) (4.81)

4 -0.64*** 0.12 0.64*** 0.14

(-3.56) (4.64)

5 -0.73*** 0.10 0.73*** 0.11

(-3.26) (4.14)

Panel C: Forward Spread and Convergence Gap

Maturity rx
(n)
t+1 = ar + br (f

(n)
t − y(1)t ) + br,CG⊥CG⊥t + εt+1 (n − 1) × (y(n−1)t+1 − y(n−1)t ) = ay + by (f (n)

t − y(1)t ) + by,CG⊥CG⊥t + ut+1

n = br br,CG⊥ R2 by by,CG⊥ R2

2 0.83*** -0.29*** 0.28 0.17 0.29*** 0.19

(5.26) (-5.14) (1.05) (5.14)

3 1.13*** -0.50*** 0.28 -0.13 0.50*** 0.16

(4.77) (-4.85) (-0.56) (4.85)

4 1.36*** -0.64*** 0.28 -0.36 0.64*** 0.15

(5.24) (-4.95) (-1.38) (4.95)

5 1.12*** -0.73*** 0.19 -0.12 0.73*** 0.11

(4.38) (-4.22) (-0.46) (4.22)
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