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Abstract: Scientific exploration of seabed substrata has significantly progressed in the last few years.
Hydroacoustic methods of seafloor investigation, including multibeam echosounder measurements,
allow us to map large areas of the seabed with unprecedented precision. Through time-series of
hydroacoustic measurements, it was possible to determine areas with distinct characteristics in the
inlets of the Lagoon of Venice, Italy. Their temporal variability was investigated. Monitoring the
changes was particularly relevant, considering the presence at the channel inlets of mobile barriers
of the Experimental Electromechanical Module (MoSE) project installed to protect the historical
city of Venice from flooding. The detection of temporal and spatial changes was performed by
comparing seafloor maps created using object-based image analysis and supervised classifiers.
The analysis included extraction of 25 multibeam echosounder bathymetry and backscatter features.
Their importance was estimated using an objective approach with two feature selection methods.
Moreover, the study investigated how the accuracy of classification could be affected by the scale of
object-based segmentation. The application of the classification method at the proper scale allowed
us to observe habitat changes in the tidal inlet of the Venice Lagoon, showing that the sediment
substrates located in the Chioggia inlet were subjected to very dynamic changes. In general, during
the study period, the area was enriched in mixed and muddy sediments and was depleted in sandy
deposits. This study presents a unique methodological approach to predictive seabed sediment
composition mapping and change detection in a very shallow marine environment. A consistent,
repeatable, logical site-specific workflow was designed, whose main assumptions could be applied to
other seabed mapping case studies in both shallow and deep marine environments, all over the world.

Keywords: multibeam echosounder; image processing; marine geology; backscatter change detection;
tidal inlets
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1. Introduction

Precise maps of the seabed are critical for the observation and exploration of marine environments,
giving the possibility to describe the physical, biological, and geological aspects of the ocean. They are
crucial for sustainable management of coastal areas, and for marine spatial planning and benthic
habitat mapping, forming a basis for designating the Marine Protected Areas (MPAs) [1]. According to
McGonigle et al. [2], there is an immediate need to characterize the type, size, and extent of benthic
habitats. The condition of the seabed is indicative of marine environmental quality, which should
be monitored and protected due to global warming and mean sea level rise. The development of
standardized mapping methods is required to establish good environmental status (GES) of Descriptor
D6, Seafloor Integrity, of the European Union Marine Strategy Framework Directive (MSFD; D6
Commission Decision (EU) 2017/848 of 17 May 2017). Maps of the seafloor representing physical,
biological, and geological properties are required for preservation of the marine environment and its
biological resources. Moreover, the authorities of some countries are aware of seafloor exploration,
establishing national mapping programs, such as RITMARE, MAREANO, MAREMAP, AusSeabed,
and INFOMAR [3–5].

Benthic habitat mapping could be defined as follows—“plotting the distribution and extent of
habitats to create a map with complete coverage of the seabed showing distinct boundaries separating
adjacent habitats” [6], keeping in mind the possible limits in the definition of these boundaries [7,8].
This multidisciplinary approach links knowledge from oceanography, underwater acoustics, ecology,
sedimentology, geomorphology, statistics, geoinformation, and numerical modeling. Benthic habitat
mapping often means analyzing and interpreting hydroacoustic and ground truth datasets, including
developing integration methods between continuous coverage geospatial datasets and in situ point
measurements [6,9].

Despite the recent rapid development of hydroacoustic devices and tools for geomorphometric
analysis, detection of spatial and temporal changes of benthic habitats over time was only recently
investigated [10–15]. The main measuring device used for high-resolution spatial mapping of the
seafloor is the multibeam echosounder (MBES) [16]. It allows us to measure bathymetry and backscatter
responses of the seabed that reflect the seafloor substratum types. Whereas acquisition of MBES
bathymetry is standardized for hydrographic purposes, backscatter of acoustic signal from the seabed
is much more complicated, due to factors like variations of the seabed substratum, environmental
properties, different sonar characteristics, and applied acquisition settings. In order to track spatial and
temporal changes of seafloor sediments, the recent development of MBES devices is heading towards
calibration of MBES backscatter. Therefore, the majority of MBES change detection studies concentrate
on the temporal reliability of MBES backscatter levels [5,14]. This allows us to perform relative
calibration on the natural reference areas of known and stable acoustic properties. Other methods
assume absolute calibration of MBES backscatter, by cross-calibration with calibrated devices, like
a single-beam echosounder [17]. In this research, we conducted two separate surveys, using MBES
uncalibrated in terms of acoustic backscatter. For each survey, we collected separate ground-truth
datasets that were used for automatic supervised classification.

As underwater acoustic datasets become larger and more detailed, there is a need for efficient
methods of automatic classification of heterogeneous benthic habitats, to reduce the time of data analysis
and ensure repeatability [6]. Despite the progress made in recent years, acoustic seafloor classification
and monitoring using reproducible, automated methods is still in its infancy. Therefore, benthic habitat
mapping is currently strongly focused on methodological developments, and different approaches
have been applied to classify backscatter mosaics—pixel-based and object-based analysis [18–20] using
supervised and unsupervised image classification [21–23]. The use of a remote sensing approach
like object-based image analysis (OBIA) to improve the accuracy and understanding of seafloor
classification recently received much attention [24,25]. However, these automated methods were
applied in only a limited way to detect sediment composition changes over time [11]. Therefore, one of
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the main purposes of this paper was to supplement existing change detection methodology with
object-based image analysis of multibeam echosounder measurements.

This work aimed to—(a) develop the best OBIA procedure to analyses multibeam time-series
datasets; (b) investigate how classification accuracy could be affected by the scale of object-based
segmentation; and (c) assess the accuracy of the classification and its potential to detect changes in
seafloor composition. The tested OBIA procedure would not only provide insights on local changes
related to the construction of large coastal infrastructure in the Venice Lagoon inlet, but would also be a
basis for the development of automated approaches to assessing seafloor change detection, in view of
more efficient mapping opportunities (i.e., through autonomous underwater vehicles or other robotic
systems) and the increasing importance of seafloor monitoring, all over the world [26,27].

2. Materials and Methods

The following three subsections consider the study area and descriptions of MBES and ground-truth
data acquisition. Further subsections cover processing details developed in this study.

2.1. Study Area

The Lagoon of Venice is located in the northwest part of the Adriatic Sea (Figure 1). The historic city
of Venice together with its surrounding lagoon became a UNESCO World Heritage Site in 1987. Its area
of about 550 km2 makes it the largest lagoon in the Mediterranean Sea. The mean depth of the lagoon
is around 1.2 m, with a maximum depth of 30 m [28]. The lagoon has three inlets (Lido, Malamocco,
and Chioggia) that connect it with the open sea (Figure 1). Moreover, the lagoon consists of a
complicated network of navigation channels, tidal channels, intertidal mudflats, and intertidal salt
marshes [29]. Areas deeper than 5 m make up only 5% of the area, and areas shallower than 2 m
make up around 75% [30]. Centuries of high anthropogenic pressure impact the dynamic and fragile
ecosystem of the lagoon (e.g., [31]), representing one of the main causes of an increasing sinking rate and
catastrophic floods in the last and current centuries [32,33]. To prevent the city from exceptional high
tides, the Modulo Sperimentale Elettromeccanico (MoSE; Experimental Electromechanical Module)
project was established in 2002. The project led to the development of mobile barriers located at the
three inlets connecting the lagoon with the open sea [34,35]. The 79 elements of the mobile barriers are
raised whenever marine water exceeds a specified level (for now, 110 cm). Considering predictions
of sea level rise in the next few decades, the MoSE system was designed to protect the lagoon from
tides of up to 3 m [35]. Such hard anthropogenic structures located in the inlets could substantially
affect the hydrodynamics, sediment transport, and the benthic habitat distribution of the lagoon [36].
In particular, it was shown that the recent construction of the hard structures had a direct impact on
the seafloor [15,37]. Hence, there is a pressing need to understand the spatial and temporal response of
the seafloor.

From the hydrodynamic point of view, the Lagoon of Venice is a micro tidal basin [30]. After
crossing the main inlets, the tide enters major channels and reaches shallow flats and salt marshes.
Major wind systems that occur over the Adriatic Sea, like bora and sirocco, have a significant impact
on the region’s hydrodynamics. Besides exceptional conditions, sea level changes during astronomical
tides often vary around 1.0 m for spring tides. The oceanographic conditions of the lagoon lead to
salinity ranging between 20 and 35 PSU, with an average of 30.18 PSU, while temperature ranges from
8 to 25 ◦C, with an average of 17.6 ◦C [30].

The Chioggia area of interest (AOI) was greatly modified by human activity over the centuries,
though it underwent the most significant changes due to the development of the MoSE project, similar
to the Lido inlet [15]. The southernmost inlet of the lagoon had an average depth of around 8 to 12 m in
artificially maintained navigation channel areas [36]. The width of the inlet was 350 m in the narrowest
part and its length was 2 km. Between 2003 and 2006, a curved seaward breakwater was created and
the inlet channel width was reduced. The presence of the breakwater separated the outgoing flow
into the two branches. The separation caused an increase of current speed, resulting in augmented
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erosion of the seabed and sediment transport [37]. Inside the inlet, many morphological features like
scour holes, dune fields, megaripples, and rip-rap were mapped. On the landward side of the inlet,
the presence of larger structures like flood- and ebb-tide deltas was documented [38,39].Remote Sens. 2020, 12, 2117 4 of 27 
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2.2. MBES Data Acquisition

Acoustic datasets of the seafloor were collected in 2013 and 2016 by scientific surveys, using a
multibeam echosounder under the RITMARE research project (a national research program funded
with support by the Italian Ministry of Education, University, and Research). The main survey
campaign was conducted for 17 weeks in May–December 2013 [5]. An approximately 10 km2 part of
the main research area in the Chioggia inlet was covered in November–October 2013. An additional
survey covered the inlet in September 2016. All surveys were conducted onboard the R/V LITUS,
with a draught of 1.6 m.

Investigation of the Chioggia inlet was done using a Kongsberg EM 2040 DC MBES mounted
on a pole at the bow of the ship. The whole measuring system contained the MBES and components
including a Kongsberg Seatex Motion Reference Unit 5 (MRU 5), two Global Positioning System
(GPS) sensors mounted at the dual antenna, and a sound velocity sensor (SVS; Valeport). Internal
devices were mounted inside the ship—the processing and human–machine interface (HMI) unit,
a Fugro HP differential GPS (DGPS), and a sound velocity profile (SVP) Smart–X measuring probe
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(AML Oceanographic). The motion reference unit, DGPS, and processing and HMI unit are core
components of the Kongsberg Seapath 300 system. An MRU 5 inertial sensor provided precise
measurements of the linear and rotary movements in three dimensions. Two GPS receivers mounted
on the antenna provided high-quality measurements of position and velocity. DGPS accuracy reached
0.2 m, the accuracy of pitch and roll was 0.02◦, and the accuracy of heading was 0.075◦. Sound velocity
was measured using a Valeport miniSVS mounted near the MBES transducers, collecting data in
real-time during vessel movement. Another device, a Smart–X (AML Oceanographic, 2012), provided
SVP through the water column. We used the Kongsberg Seafloor Information System (SIS) to log,
display, and check acquired data in real-time, onboard the ship.

The Kongsberg EM 2040 DC MBES allowed the acquisition of data for an operating frequency
range from 200 to 400 kHz. It had two transducers (heads) equipped with 1600 receiving beams
(800 per head, 400 per swath). The MBES beam width was 1 × 1◦, and in a dual-head configuration,
it could cover up to 200◦ for frequencies from 200 to 320 kHz.

The surveys were performed after field calibration of the MBES parameters and regular tests [5].
The reliability of MBES backscatter measurements for this research was estimated in [5]. To ensure an
MBES dataset with the best possible quality, transect lines were planned with 40% overlap between the
neighboring swaths. The speed of the ship was kept constant at 4 knots. The frequency of transmitted
acoustic signals was set to 360 kHz. The number of beams was set to high-density single swath, which
meant that there were 800 beams in a dual-head configuration. Swath coverage in the inlets was 105◦

(60◦ for each head with 15◦ overlap). The applied pulse length was 35 µs. Beam widths had dimensions
of 1 × 1◦. SVP measurements were performed at least every 4 h, more often when there were changing
oceanographic conditions, due to, for example, transfer to another water body.

2.3. Ground Truth Samples

Ground truth samples collected in the AOI included superficial sediment samples and seabed
photographs. They were acquired, analyzed, and described by CNR–ISMAR for 2012–2016,
using methods described in the following paragraphs. Ground truth samples were taken in the
chosen sites with representative MBES backscatter and bathymetry characteristics. After being
analyzed and processed, they were used to conduct feature selection, supervised classification,
and accuracy assessment of the generated benthic habitat map.

Sediment samples were taken using a 7 dm3 Van Veen grab. In March 2012 and April 2014, 27 and
17 sediment samples were collected, respectively. An additional 29 ground-truth samples were collected
in 2016. These were examined using sieve analysis and laser diffraction analysis for finer fractions
(smaller than 1 mm), using a Mastersizer 3000 laser particle size analyzer. All samples were classified
using Wentworth’s [40] and Folk’s [41] methods, also determining the grain size parameters [42,43].
In the gravel fractions, information about the presence of shell detritus was also included [37].

An aluminum drop frame was designed in the CNR–ISMAR and was successfully used for ground
truth in deeper parts of the Chioggia AOI. The drop frame was equipped with a GoPro underwater
camera (manufactured by GoPro Inc., 3000 Clearview Way, San Mateo, CA 94402, USA) and two scaling
laser pointers, to guarantee appropriate measurements of dimensions. The frame was dropped down
from the vessel and allowed to take photos from 40 cm above the bottom, giving a seafloor area of
approximately 20 × 25 cm per image. In all, 60 drop frames (3 replicates for 20 stations) were collected
in 2014 at the same sites, as sediment samples from the 2014 campaign [37]. Images from photo
transects and drop frames were carefully analyzed and inspected by the CNR–ISMAR research team.

2.4. Processing of the MBES Dataset

Kongsberg CARIS HIPS and SIPS software (version 7, manufactured by Kongsberg Gruppen
ASA, Kirkegårdsveien 45, NO-3616 Kongsberg, Norway) were utilized to process raw bathymetric and
backscatter MBES data, and to create georeferenced grids for further analysis (Figure 2). Bathymetric
and backscatter data processing included common steps like sound refraction and tidal corrections.



Remote Sens. 2020, 12, 2117 6 of 26

A bathymetric digital elevation model (DEM) was cleaned, removing undesired spikes that might
have come from the presence of gas bubbles, schools of fish, etc. Backscatter processing of the
Lagoon of Venice utilized the Geocoder engine implementation for backscatter mosaic creation in the
CARIS software, allowing angle-varying gain (AVG) correction to be performed for MBES angular
dependency [44].
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s—scale of multiresolution segmentation. MBES—multibeam echosounder; CART—classification and
regression tree.

Angle-varying gain is an empirical method that was implemented in the Geocoder software
(manufactured by Quality Positioning Services BV (QPS), Handelsweg 6-2, 3707 NH Zeist, Netherlands),
to perform angular dependence compensation. As backscatter intensity was significantly dependent
on the incidence angle of the seabed, the Geocoder engine allowed correction of all MBES swaths by a
moving window, removing the backscatter angular response, creating practical backscatter mosaics for
interpretation of the seafloor substratum and mapping of habitats [45]. The choice of an AVG window
size was always subjective, as it is a compromise between the presence of artefacts and unification
across the multibeam swath [46]. For the study of the Lagoon of Venice, a 300-pixel window size was
applied [5]. In order to improve the resulting imagery, we applied a despeckle filter. This tool could
filter out noise related to pixels with outstanding grey-level values, similar to a median filter.

The summary workflow covering all processing stages for Chioggia 2013 and 2016 datasets,
is shown in Figure 2.

2.5. Feature Extraction

Pixel- and object-based secondary features were created, based on processed MBES bathymetry
and backscatter. We extracted 25 secondary derivatives, as shown in Table 1. Unless otherwise
stated, a 3 × 3 kernel size of the focal neighborhood scanning window was used for calculation of all
pixel-based derivatives. These were created using the Benthic Terrain Modeler (BTM) 3.0 Toolbox
in the ArcGIS 10.4 software (manufactured by Environmental Systems Research Institute (ESRI),
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380 New York Street, Redlands, CA 92373, USA) [47]. Object-based features were determined based on
single value per image object in the eCognition 9.0 software (manufactured by Trimble Inc., 935 Stewart
Drive Sunnyvale, CA 94085, USA). The features were created based on a multiresolution segmentation
algorithm, described in detail in the following section, with the following parameters—shape 0.1,
compactness 0.5, and scale factor 5.

Table 1. List of bathymetry and backscatter intensity features extracted in this study. BPI—bathymetric
position index; GLCM—grey-level co-occurrence matrix.

ID Bathymetry Feature ID Backscatter Intensity Feature

1 Rugosity 17 Backscatter standard deviation
2 Slope 18 GLCM mean
3 Variance 19 GLCM standard deviation
4 Aspect 20 GLCM entropy
5 Eastness 21 GLCM homogeneity
6 Northness 22 GLCM contrast
7 Curvature 23 GLCM correlation
8 Planar curvature 24 GLCM angular second moment
9 Profile curvature 25 GLCM dissimilarity
10 Small-scale BPI
11 Large-scale BPI
12 Bathymetry standard deviation
13 Rugosity standard deviation
14 Slope standard deviation
15 Small-scale BPI standard deviation
16 Large-scale BPI standard deviation

The basic statistics used in this study included mean, standard deviation, and variance. As shown in
Table 1, standard deviation was calculated for bathymetry, backscatter, rugosity, slope, and bathymetric
position index (BPI) at two scales. Considering all pixel values forming the focal neighborhood, variance
implied the second moment of their distribution. Standard deviation is equal to the square root of
variance [47]. The calculation of slope considered the maximum change in elevation in relation to eight
neighbors around a center pixel, based on simple trigonometrical rules [48]. Maximum downslope
direction, expressed by the azimuth, could be determined as an aspect [48]. Trigonometric functions
allow one to transform an aspect into two alternative measures—northness and eastness [49]. Curvature
(slope of slope) is a secondary derivative of bathymetry that was extended with features like planar and
profile curvature. Whereas planar curvature is defined as curvature in the direction perpendicular to the
maximum slope, profile curvature is calculated along the direction of the maximum slope [50]. Rugosity
(ruggedness) was calculated using the vector ruggedness measure (VRM) algorithm, measuring the
three-dimensional orientation of pixels inside a focal neighborhood, using vector analysis to estimate
dispersion between the vectors and the corresponding pixels [51,52]. BPI measures the difference in
DEM between a certain location and the neighboring locations, in relation to the overall bathymetric
scene [53]. The scale factor was the general attribute that differentiates BPI results, allowing separation
of fine and broad features, which helps in specifying geomorphological structures of different sizes.

In the object-based approach, standard deviation was calculated as one value for image object from
all pixel values forming such an object. Grey-level co-occurrence matrices (GLCMs) [54] were used to
create object-based secondary features, providing the spatial characteristics of the backscatter mosaic.
Spatial dependence between the neighboring pixels could be described by different co-occurrence
matrixes. Calculations were performed using the eCognition software for all pixels included in the
image object, along four main symmetrical directions summed together. Values of GLCM homogeneity
were calculated on the basis of proximity of the pixel distribution to the GLCM diagonal. The opposite
measure to GLCM homogeneity was the GLCM contrast, related to the contrast in intensity between two
neighboring co-occurrence pixels. Comparable to contrast, GLCM dissimilarity could be characterized
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by linear, rather than exponential growth, additionally increasing with the growth of the local contrast
area. GLCM entropy was a fundamental GLCM measure. As a measure of randomness, it had the
highest value when all matrix elements were equal [55]. GLCM angular second moment, also known
as energy or uniformity, comes from a physical term of a rotational acceleration measure and reaches
high values for orderly matrices [55]. The GLCM mean measures the weight of the frequency of pixel
value occurrence with a specified surrounding pixel value. The GLCM standard deviation was used to
determine dispersion around the mean; whereas it considered combinations of values of a certain pixel
and surrounding pixels to not be equivalent to the ordinary standard deviation. GLCM correlation was
used to calculate the linear dependency between the surrounding grey-level pixels [55]. It provided
identical information to semivariance and was almost identical to Moran’s I autocorrelation [56].

2.6. Feature Selection

In this study, we applied two feature selection methods. The first was a built-in embedded
feature-selection algorithm inside the classification and regression tree (CART) classifier [57–59].
The second was the Boruta wrapper algorithm [60]. Feature selection tools were used to improve
the classification performance, get rid of unimportant features, and provide the possibility for better
understanding of dependencies between data types.

The embedded CART feature-selection algorithm was performed as a part of CART classification
in eCognition software. It allowed us to find the optimal subset of features in the training process of
the CART classifier. As a result, an importance table was created with an array of values showing the
relative decision power for all important features. The importance of a certain secondary feature was
calculated over all splits of this feature in the decision tree [57].

The Boruta feature-selection algorithm, created on the basis of a random forest classifier,
was implemented using the R software (manufactured by the R Foundation for Statistical Computing,
Vienna, Austria, Wirtschaftsuniversität Wien, Welthandelsplatz 1, 1020 Vienna, Austria). Its operating
principle is to find all relevant variables by comparing the importance of the original features with
the possible importance that could be obtained at random, calculated with their permuted copies [61].
To perform the Boruta feature-selection algorithm, we extracted values of all considered features over
the locations of training samples. Feature importance was calculated based on the R script, using the
“Boruta” and “rgdal” libraries [61,62].

2.7. Object-Based Image Analysis: Image Segmentation and Supervised Classification

Image objects (segments) are the fundamental aspects of the object-based image analysis.
They allow analysis of the backscatter grid, considering size, shape, relationships, and the hierarchy
of the homogeneous areas of the seabed. Such generalization brings to mind human perception
in terms of looking at an image in a similar way and recognizing environmental relationships at
many scales, but not at a pixel scale [63]. Image objects were created from backscatter layers, using
a multiresolution segmentation algorithm in eCognition. Described in detail by Benz et al. [64],
multiresolution segmentation separates rasters into distinct regions, based on primary features, like
grey tone and shape [65]. The segmentation procedure merges smaller image objects (from one pixel
object size) into bigger ones. The aim was to separate areas with minimum internal pixel variability and
maximum difference from adjacent objects. Object size and internal variability were determined by a
dimensionless scale parameter that could be further defined by relationships between the color, shape,
smoothness, and compactness of the resulting image objects. Color and shape as well as smoothness
and compactness were grouped into weighted pairs, so we needed to define only one value for each
pair. We determined multiresolution segmentation parameters with shape 0.1 and compactness 0.5,
similar to other OBIA benthic habitat mapping studies [18,66–68]. As the scale of multiresolution
segmentation was the base initial parameter responsible for further image analysis, we tested different
scales from 1 to 60.
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Supervised classification is strongly related to supervised learning and machine learning.
In machine learning nomenclature, it meant generating an inferred function after analyzing the
labeled training sample data [69]. Supervised classification could be separated in two general steps.
First, the training samples were used to train a classifier algorithm, to learn the dependencies and
relationships between the data. In the second step, the trained classifier algorithm used the inferred
function to map the unclassified areas in the most correct and reasonable way possible. The performance
of the classifier could then be evaluated using validation samples in the subsequent accuracy assessment
step. Under the assumption that there is no single machine learning classifier that is always the best in
all supervised classification problems [70], we compared five supervised classifiers to produce seabed
composition maps—classification and regression trees (CARTs) [57], random forest (RF) [71], Bayes,
support vector machine (SVM) [72], and the K-nearest neighbors (KNN) [73].

CART, introduced by Breiman et al. [57], allowed the classification of data based on recursive
partitioning into more uniform groups. The method determined the final classification by utilizing
decision trees related to a system of questions and answers. RF is a machine-learning method that is an
extension of the previous one, through the development of multiple decision trees and random sets of
variables. Using many trees (generally called a forest) usually allows high performance. SVM, another
machine-learning algorithm, classified the data using so-called hyperplanes in higher-dimensional
space. Support vectors were located in the closest neighborhood to the hyperplane and were used
as key vectors to separate the dataset with the largest possible margin in higher-dimensional space.
KNN considered a defined number (k) of known training samples to classify the object based on
the Euclidean distance from the query point. Bayes, one of the simplest classifiers, produced simple
decision rules, assuming normal and independent distribution of all features. The algorithm calculated
mean vectors and covariance matrices for each class and required only small amount of training
data [23].

2.8. Evaluation of Performance

We used the validation subset of ground truth samples to evaluate the classification results.
Accuracy assessment measures were determined based on an error matrix showing cross-tabulation
among classified maps and validation samples belonging to each class [74]. The common measures of
accuracy assessment used in this study were user’s, producer’s, overall, and kappa. User’s accuracy
was a ratio between correctly classified instances to sum up all ground truth possibilities, and producer’s
accuracy was the probability of correctly classified reference pixels, compared to all classified pixels.
Overall accuracy was the sum of the major diagonal of an error matrix, divided by the total number
of instances in a confusion matrix [75,76]. Kappa was a measure that considered all elements of the
error matrix [77]. Whereas the range of the kappa coefficient was equal to [−∞,1], it could, in practice,
be interpreted as: <0.2 = poor, <0.4 = fair, <0.6 = moderate, <0.8 = good, and close to 1 = very
good [8,78].

2.9. Change Detection

Change detection is a typical term used in the quantitative analysis of multitemporal spatial
data. It tries to explain changes caused by environmental processes, allowing for the observation of
spatial changes of habitats at different time steps. In this study, we assessed seafloor sediment changes,
based on a transition matrix that included a time-series comparison of “from–to” transitions of every
sediment type [79]. While the diagonal of the matrix referred to the persistence of each class, the sum of
each class type was related to the total value of time steps. According to Pontius et al. [79], few change
detection statistics were extracted from the transition matrix. Gain and loss were related to growth
and decrease in area, respectively. Swap referred to a change in spatial location, and net change was
defined by the change of quantity of a certain sediment type between time steps [10,11]. Total change
was related to the sum of gain and loss for sediment. Quantity change, expressed by the net statistic,
was calculated by subtracting the total amount of previous habitat type from the total amount of later
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sediment category. Additionally, three ratios were provided—gain/persistence (G/p), loss/persistence
(L/p), and net/persistence (N/p). These provided information about the tendency of one habitat type
to transition to another type. Values of G/p and L/p higher than 1 indicated that the particular class
was more prone to gain or loss than other classes. Values close to 0 referred to a lack of change and a
strong tendency to persist. The sign of the N/p ratio indicated an overall negative or positive tendency
between temporal trends [10,11]. Change detection in this study was performed in ArcGIS, based on
the intersection of all sediment areas.

3. Results

3.1. Processing of MBES Datasets

Processing the multibeam echosounder datasets in two time steps, allowed us to generate the
bathymetry and backscatter intensity spatial grids presented in Figure 3. Bathymetric layers show
geomorphological structures like scour holes and megaripples. Whereas in the western part of the inlet,
anthropogenic deepening created a basement for the mobile barriers of the MoSE project, the mouth
of the inlet was covered by dune fields. The spatial coverage of the Chioggia 2016 grid was smaller
compared to that of 2013; it lacked part of the seaward area, but the inlet itself was fully covered.
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A bathymetric comparison between the surveys suggested a similar arrangement of
geomorphological structures (e.g., dune field and large dunes at the end of the seaward tidal channel
and its foreground) and progressive deepening and extension of scour holes (at breakwater tips).
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3.2. Identification of Benthic Habitat Classes

We combined the bathymetry and backscatter information with sediment and underwater photo
ground truth datasets. This allowed us to determine several classes of sediment, covering specific ranges
of backscatter intensity values (Table 2). We adopted the simplified European Nature Information
System (EUNIS) marine habitat classification scheme, based on a modified folk classification, described
by Long [80]. Sediment classes included mud, with the addition of sandy mud (M + SM), coarse
sediment (CS), medium-grained sand with the addition of muddy sand (S + MS), and coarse sediment
with sand and mud (MIX).

Table 2. Description of the acoustic backscatter of Chioggia 2013 and 2016 areas of interest (AOIs),
with corresponding sediment classes and ground truth photographs. CS—coarse sediment; M +

SM—mud and sandy mud; S + MS—sand and muddy sand; and MIX—mixed sediment.

MBES Backscatter Image Class
ID

Texture Description Seabed Image Seabed Composition
2013 2016 2013 2016
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The sedimentological classification of sediments perfectly corresponded to the hydrodynamic
regime of the area, which was proposed by [37]. Sediments appropriate for the identified benthic
habitats were classified as follows:

• M + SM: Medium-grained sediment, poorly sorted silt enriched with clay fractions accounting for
16–30% of the sediment, often covered with benthic vegetation. For the most part, these sediments
occurred in the area sheltered by the coastal breakwater.

• CS: Very coarse-grained sand, characterized by poor sorting and enriched with coarser fractions
of gravel, accounting for about 30%, and a very large amount of detritus, occurring mainly in the
tidal channel.

• S + MS: Fine-grained sand with poor sorting. Silt and clay fractions accounted for about 12% and
rarely contained benthic organisms. The sediments of this class were found mainly on the seaward
side of the breakwater, in the channel and in the inlet, i.e., in the dune field and the large dune.

• MIX: Coarse-grained sand with very poor sorting, enriched with silt and clay fractions. The
presence of detritus was negligible. Sediments were present mainly in the areas of vortices and
jets (primary and secondary), generated in the inlet area and the breakwater.

The identified classes of benthic habitats are presented in Table 2.
As all classifiers in this research were supervised, the ground truth samples were separated

approximately 50/50 into training and validation subsets, using a traditional single-split sampling
strategy [81]. The locations of all ground truth samples are shown in Figure 4.
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3.3. Feature Extraction and Selection

The bathymetry and backscatter features indicated that the seaward region, excluding the
breakwater area, was generally flat with low rugosity. Whereas the standard deviation of the
majority of bathymetry features had low values, many GLCM backscatter features indicated a high
variability. The most important derivatives were determined by the use of two feature selection
methods. The Boruta algorithm for the Chioggia 2013 dataset selected the backscatter and the GLCM
mean features, and the CART method selected the backscatter and the GLCM standard deviation.
Boruta results for Chioggia 2016 allowed us to choose two important variables, backscatter and the
GLCM mean. The CART embedded feature-selection algorithm for the same dataset confirmed three
features—backscatter, GLCM homogeneity, and large-scale BPI.

3.4. Image Segmentation, Classification, and Accuracy Assessment

The tested multiresolution segmentation scale from 1 to 60 gave an average object size of
approximately 0.55 to 3258.87 m2. Segmentation results for each scale were classified by four to
five classifiers, giving up to 300 results for each dataset. Each classifier was trained using two
sets of important features (selected by the Boruta or CART algorithm). Overall, we obtained 1124
classification results, from which we selected the outcomes with the highest accuracy assessment
statistics. The highest scores were achieved by the CART, RF, and Bayes classifiers. As many
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results had similar high overall accuracy scores, we also selected the results based on the kappa
accuracy outcomes. Summary line plots of the overall and kappa statistics for all classifiers and
multiresolution segmentation scales are shown in Figures A1–A4. They represent dependencies
between multiresolution segmentation scales and used classifiers vs. accuracy assessment scores. We
used the graphs to evaluate the models and select the results with the highest performance, based on
their accuracy.

The dependency between multiresolution segmentation scale and classification accuracy,
determined with features selected by the Boruta algorithm for the Chioggia 2013 dataset, indicated
that two classifiers had the best accuracy, RF and CART, for segmentation scales 4 and 5, respectively
(Figure A1). The highest overall accuracy reached 0.86, with kappa = 0.64. Linear dependence
between the overall and kappa accuracy was between 0.85 and 0.92 for the RF and CART classifiers.
The relationship between accuracy and the object-based segmentation scale for the Chioggia 2013
dataset using the CART feature-selection algorithm is shown in Figure A2. Two classifier algorithms
(RF, Bayes) performed with the highest accuracy at three multiresolution segmentation scales, 1, 50,
and 51. Overall accuracy was 0.86, with kappa = 0.61. The charts show the scale variability for different
classifiers. Linear dependence between the overall and kappa accuracy was average, at 0.65 and 0.66
for the RF and Bayes classifiers, respectively.

Figures A3 and A4 refer to the dependency between scale and accuracy assessment for the
Chioggia 2016 dataset, in relation to the feature selection technique. Due to the separation of more
classes, in general, the accuracy scores were worse than that for the 2013 dataset. Charts of classifier
accuracy showed low to high variability versus multiresolution segmentation scale. Independent of
the feature selection method used, the best accuracy outcomes were obtained with the CART classifier,
reaching 0.73 for overall accuracy and 0.62 for the kappa index of agreement. With the Boruta feature
selection method, the highest accuracy was achieved for multiresolution segmentation scale 2, and with
CART, the highest accuracy was obtained for scale 23 (Figures A3 and A4). For both 2016 datasets,
Pearson’s linear correlation coefficient between kappa and the overall accuracy for the best charts was
very high, from 0.95 to 0.99.

From all outcomes with the highest accuracy, we selected the following models—(A) Chioggia 2013
dataset, Boruta feature selection, RF classifier, scale 4 of multiresolution segmentation; (B) Chioggia 2013
dataset, CART feature selection, Bayes classifier, scale 50 of multiresolution segmentation; (C) Chioggia
2016 dataset, CART feature selection, CART classifier, scale 23 of multiresolution segmentation; and (D)
Chioggia 2016 dataset, Boruta feature selection, RF classifier, scale 32 of multiresolution segmentation.
Sediment composition maps for the four considered models are presented in Figure 5.

Detailed error matrices for the models with the highest accuracy are presented in Table 3, showing
a good and very good overall and kappa accuracy. The results of both 2013 datasets indicated that the
S + MS and CS classes had good and very good accuracy, up to 1.00, for all statistics of CS with CART.
The remaining class of M + SM had fair to moderate statistics per class, depending on the accuracy
statistics. The last two confusion matrices refer to the Chioggia 2016 dataset results. The dataset with
the CART feature selection method represented ideal accuracy of the CS class (1.00), good performance
for the S + MS and MIX classes, and fair to moderate accuracy of the M + SM class (depending on
the accuracy statistics). The results of the Boruta feature-selection algorithm with the RF classifier
showed that all sediment types were classified with very similar, moderate to good accuracy per class
(depending on specific accuracy statistics; see Table 3).
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Table 3. Error matrices with accuracy assessment for all Chioggia datasets: (A) Chioggia 2013
dataset, Boruta feature selection, RF classifier, scale 4 of multiresolution segmentation; (B) Chioggia
2013 dataset, CART feature selection, Bayes classifier, scale 50 of multiresolution segmentation;
(C) Chioggia 2016 dataset, CART feature selection, CART classifier, scale 23 of multiresolution
segmentation; and (D) Chioggia 2016 dataset, Boruta feature selection, RF classifier, scale 32 of
multiresolution segmentation.

A
Reference

B
Reference

M +
SM

S +
MS CS Sum M +

SM
S +
MS CS Sum

Prediction

M + SM 1 1 0 2

Prediction

M + SM 1 1 0 2
S + MS 1 16 0 17 S + MS 2 16 0 18

CS 1 0 2 3 CS 0 0 2 2
Sum 3 17 2 22 Sum 3 17 2 22

Producer’s 0.33 0.94 1.00 Producer’s 0.33 0.94 1.00
User’s 0.50 0.94 0.67 User’s 0.50 0.89 1.00

Overall accuracy 0.86 Overall accuracy 0.86
Kappa 0.64 Kappa 0.61

C
Reference

D
Reference

CS MIX M +
SM

S +
MS Sum CS MIX M +

SM
S +
MS Sum

Prediction

CS 6 1 1 0 8

Prediction

CS 5 1 0 1 7
MIX 0 2 0 1 3 MIX 1 2 1 0 4

M + SM 0 0 1 0 1 M + SM 0 0 2 0 2
S + MS 0 0 1 2 3 S + MS 0 0 0 2 2

Sum 6 3 3 3 15 Sum 6 3 3 3 15
Producer’s 1.00 0.67 0.33 0.67 Producer’s 0.83 0.67 0.67 0.67

User’s 0.75 0.67 1.00 0.67 User’s 0.71 0.50 1.00 1.00
Overall accuracy 0.73 Overall accuracy 0.73

Kappa 0.62 Kappa 0.62
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3.5. Change Detection

Models A and C were considered for further change detection analysis. The transition matrix of
selected classification results is presented in Table 4. Parts of the area covered by specific sediment
classes are expressed as percentages of the whole study area. As the number of sediment types was
not the same for both surveys, the matrix was not symmetrical. For this reason, the MIX class did
not have any persistent statistics. Table 4 indicates that the largest area for both surveys was covered
by the S + MS type. Similarly, in both cases, the smallest area was occupied by M + SM. The CS and
MIX classes covered moderate parts of the whole area; the latter was present only in the 2016 dataset.
Similar to Table 4, all results in Table 5 are presented in percentages. As the high gain statistic of the
MIX type (related to its absence in 2013), the M + SM and CS classes also had high-gain coefficients.
High loss was observed in S + MS and CS. In general, considering the total gain and loss statistics,
almost 50% of the area increased or decreased, which gave nearly 100% of the total change. From the
spatial point of view, the CS class had the largest swap between the analyzed time steps, whereas
two other classes (except the MIX class) had a moderate swap. It seemed that the quantity of S +

MS decreased almost 30%, in comparison to the smaller decrease of CS, whereas MIX and M + SM
increased almost 21%. The statistics for the last three ratios showed that the CS and S + MS classes
were generally stable. The ratio of L/p for CS indicated a loss tendency for this class. The statistics for
M + SM showed a highly positive change tendency and a probability of gain, as well as a high loss
probability, so this class was the most inconsistent of all. A map of change detection for the 2013 and
2016 datasets is presented in Figure 6.

Table 4. Change detection transition matrix of habitat classes in Chioggia 2013 and 2016 AOIs. Bold
numbers refer to the persistence of classes.

Habitat
Class

2016

CS MIX M + SM S +MS Total 2013

2013

CS 10.07 12.15 1.74 1.00 24.97
M + SM 0.08 0.30 0.91 2.50 3.78
S + MS 9.28 8.42 14.08 39.46 71.25

Total 2016 19.44 20.87 16.72 42.97 100.00

Table 5. Change detection statistics for the habitat classes of the Chioggia 2013 and 2016 study areas.

Class Total
2013

Total
2016 Gain Loss Total

Change
Swap

(Location)
Net

(Quantity) G/p L/p N/p

CS 24.97 19.44 9.37 14.90 24.26 18.73 5.53 0.93 1.48 −0.55
MX - 20.87 20.87 0 20.87 0.00 20.87 - - -

M_SM 3.78 16.72 15.81 2.88 18.69 5.76 12.94 17.47 3.18 14.29
S_MS 71.25 42.97 3.51 31.78 35.29 7.01 −28.28 0.09 0.81 −0.72
Total 100.00 100.00 49.56 49.56 99.12 31.50 67.61

According to Rattray et al. [10], accuracy assessment of change detection could be estimated by
multiplying their results for the whole time-series. Therefore, the overall accuracy of change detection
was 63% and the kappa coefficient was 0.40, meaning that 40% of the change did not occur by chance.
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4. Discussion

Change detection statistics presented in Table 5 suggests a very high dynamic of sediment
substrates located in the Chioggia inlet, which is in line with other results found in the literature
concerning bathymetry changes in 2002–2013 [37], and in 2004–2014 in the neighboring Lido inlet,
located in the north of the Venice Lagoon [15].

Sediment maps of the Chioggia dataset from the 2013 survey were previously analyzed using two
methods of pixel-based classification, maximum likelihood classifier (MLC; supervised), and Jenks
(unsupervised) [37,82]. These classifications separated the ground truth sediment samples for four
categories—sandy gravel + gravelly sand; sandy gravelly sand; sand; and slightly gravelly muddy
sand + muddy sand + slightly gravelly sandy mud. Overall accuracy for MLC was 0.71, whereas for
Jenks the natural breaks optimization reached 0.75 [37,82]. In this study, we used sediment composition
models based on the EUNIS sediment classification with different ground truth categories. The EUNIS
scheme of marine sediment classification was applied in several habitat-mapping studies [11,68,83].
In these studies, the authors emphasized on the simplicity and ease of interpreting ground truth data,
based on this scheme [83]. In our study, the EUNIS classification was enough to separate the MBES
backscatter characteristics. However, a different classification scheme should be applied for a more
complete characterization of the substrate [31,37,82].

Time series of sediment composition in this study were the result of comparing two supervised
classifications, based on separate ground truth sampling for each survey. A similar approach was
presented by Rattray et al. [10], who determined four classes of benthic habitats, based on separate
ground truth campaigns. In this study, we focused on evaluating a change-detection sediment
composition map, using the OBIA approach and comparing multiple classifiers.

4.1. Performance of Relevant Classifiers

Among others, the CART classifier was applied in a few mapping studies of seafloor
sediment [66,84]. Along with CART, other decision trees were also applied in various marine
habitat-mapping studies [22,23,85–87]. The highest overall accuracy scores of some of these studies
ranged from 0.8 [85,86] to 0.88 [66]. Compared to other studies, the performance of the CART classifier
for both Chioggia areas was good and fit well with the models concerning the decision trees.

The performance of the RF classifier was better between the two models selected in this study.
In recent marine habitat-mapping studies, RF became a very promising semi-automated method
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of habitat classification [8]. Compared to other classifiers, the accuracy of RF was often among the
highest [22,68,88]. In terms of accuracy statistics, the results presented in this study were approximately
the average of other results in the literature (see, e.g., [18,22,68]).

One selected model (Chioggia 2013 with CART) represented the high usefulness of the Bayes
classifier algorithm. A comparison with other habitat-mapping studies, based on an image-processing
approach indicated that the Bayes classifier applied in [23] was determined to have the best performance.
In that study, it reached an overall accuracy of 0.8 and a kappa coefficient of 0.5. As a signal processing
approach, the Bayes classifier was used in another study, but the accuracy assessment of the classification
results was not described using any metric [89].

4.2. Geological Interpretation of Results

Based on bathymetric and sediment distribution changes, the microtidal sedimentary environment
of the Chioggia region was described. Two sedimentary environments were determined in the region
characterized by varying energy, corresponding to the hydrodynamic regime of the area proposed in [37].
The first one comprised the channel connecting the lagoon with the sea, where the cross-section and
bottom relief were anthropogenically modified since 2003, when the MoSE project was launched [36].
This part was dominated by very coarse-grained sand, with an average content of silt-clay fractions,
not exceeding 4%. The other environment was located at the inlet front, where the grain diameter of the
sediment clearly decreased (turning into fine-grained sand and medium-grained silt). The enrichment
with fine fractions was considerably greater and spatially diverse. The content of silt-clay fractions
reached about 75% on the landward side of the breakwater, and about 12% on the seaward side. The
increased fractions in the first case were the result of microcirculation between the breakwater and the
Chioggia inlet, which could be a trap for fine fractions transported in suspension [34]. The sorting
of sediment in both environments was poor, which might be related to the highly variable energy of
the sedimentary environment. The relationship was also confirmed by mostly low values of kurtosis
(platykurtic grain-size distribution).

In addition to changes in the depositional environment along the channel, the sedimentary regime
also changed in the profile crossing of the axis of the channel (Figure 7). Grain size changes were
related to the channel’s hydrodynamics. Sediment became finer from north to south, sorting increased,
and the kurtosis values were higher (Figure 8), which corresponded to the smaller energy diversity of
the sedimentary environment. The reduced energy in the southern area might be related to rip-rap
debris, which was asymmetrically distributed along the channel in the shape of a “trail” that gradually
covered the bottom from the southern jetty to the central and the northern part of the channel, moving
towards the sea [37]. The presence of the debris controlled the accumulation of sand, which led to the
deposition of sediment in the form of large dunes at the southern jetty (Figure 7).
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The human impact associated with the construction of the MoSE barriers in the Chioggia region
had affected the hydrodynamic regime of the inlet. We observed activities such as reducing the
width of the Chioggia inlet for the MoSE infrastructure, building rip-rap revetments on the channel
bottom, and constructing a breakwater in front of inlet. These modified the length and direction of the
outflow jet patterns of currents around the inlet [34,37], which was reflected in the morphological and
sedimentary changes of this area.

4.3. Suggestions for Future Research

The results presented in this work were produced using OBIA, assuming a supervised classification.
Especially in terms of further change detection studies elsewhere, modern MBES calibrated for acoustic
backscatter, potentially allow knowledge-based unsupervised classification after single ground truth
identification of benthic habitats. It might be important especially because of cost restrictions or
specific survey plans, where ground truth sampling of the whole time-series might not be possible.
Such approaches for time-series of MBES measurements were recently applied using supervised
and unsupervised classification techniques, based on single ground truth campaigns. For example,
the change detection study of Montereale-Gavazzi et al. [11] used K-means unsupervised classification
to find the optimal solution for the results of multiple MBES time-series, based on the single results
of RF classification. In this case, the authors kept rigorous standards of the MBES backscatter data
acquisition in natural reference areas, resulting in low backscatter fluctuations through the whole
time-series of the MBES. It allowed them to compare average backscatter values from one survey
to another. The recent study of Gaida et al. [13] showed a promising application of unsupervised
Bayesian classification to time-series of MBES measurements. For comparison, OBIA was not designed
to perform typical unsupervised classification, based on backscatter intensity values. However, it
benefitted from so-called knowledge-based classification, allowing the development of rule sets,
assigning objects based on their spectral, contextual, textural, and shape properties [90]. It seems that
this provided a great opportunity for the classification of calibrated backscatter datasets, while being
much more complicated than the pixel-based approach.

Interestingly, the best accuracy results for both Chioggia surveys were achieved using the
Boruta feature-selection algorithm, which indicated two of the highest derivatives for classification—
backscatter and GLCM mean. Recent research suggests that the GLCM mean showed good agreement
with sediment classes generated using angular range analysis (ARA) [91]. Generating ARA sediment
maps on the Chioggia datasets and comparing them with just created habitat maps could contribute to
further conclusions between image and signal processing methods.
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The set of 25 secondary features used in this study fit well in the current predictive habitat mapping
literature [18,92]. According to Ierodiaconou et al. [18], the combination of pixel- and object-based
secondary features is promising and could give better results than when either were used separately.
In order to select the features properly, we compared two feature-selection algorithms. Further
study might include arranging other feature selection methods and extracting larger feature sets,
including, e.g., spectral features of rough seafloor surface or additional backscatter and oceanographic
variables. Among others, there are useful backscatter features mentioned in the literature, such as spatial
autocorrelation [23,68,93], hue, saturation, intensity [86,87,94,95], ARA [22,85,94], and Q-values [2,96,97].
Another study suggested calculating maximum orbital velocity as an oceanographic variable [95].

5. Conclusions

This study concerned the importance of research approaches and methodical tools that could be
used for marine environment assessment of various scales.

Repeated mapping of the Chioggia inlet allowed us to determine the seafloor sediment properties
and follow their temporal variability. This monitoring activity was crucial, considering that MoSE
barriers are currently in operation, given the high degree of hydrodynamic variation and strong
anthropogenic pressure and the impact on seabed sediment transport.

The overall achievement of this work was the development of an innovative method of seabed
habitat-classification, based on automated OBIA analysis and supervised classifiers. This method was
applied and tested in the tidal environment of the Lagoon of Venice. The analysis included extracting a
large number of MBES bathymetry and backscatter features. They were calculated using pixel- and
object-based methods. An objective feature-selection approach was used, applying and comparing
the CART and Boruta algorithms. Along with backscatter intensity, different secondary features were
selected, depending on the dataset. For the Chioggia AOI, secondary features based on the GLCM
texture derivatives were the most relevant for classification. Bayes, CART, and RF classifiers also
showed good performance, compared to other studies.

The study investigated how classification accuracy could be affected by the scale of the object-based
segmentation. The size of image objects was estimated using OBIA multi-scale accuracy assessment,
related to a very large set of multiresolution segmentation results. Dependencies between the scales
of multiresolution segmentation and accuracy assessment showed that using the proper scale of
object-based segmentation made it possible to reach high accuracy in classification. However, the
choice of scale should be properly tuned and tested.

Applying the classification method at the proper scale allowed us to observe the habitat changes
in the tidal inlet of the Venice Lagoon, showing that the sediment substrates in the Chioggia inlet were
subjected to very dynamic changes. In general, during the study period, the area was enriched in
mixed and muddy sediments and depleted in sandy deposits.

The methodological approaches described here could be easily applied to other geographical areas
and scales, in both shallow and deep marine environments. The main requirement was good-quality
hydroacoustic and ground truth data to support the monitoring and management of the marine
environment. The procedures developed in this study might help to establish a standard tool for
Descriptor 6 of the Marine Strategy Framework Directive, concerning the integrity of the seafloor.
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