Comparing predictive distributions in EMOS
Distribuzioni predittive per modelli EMOS
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Abstract EMOS models are widely used post-processing techniques for obtain-
ing predictive distributions from ensembles for future weather variables. A pre-
dictive distribution can be easily obtained by substituting the unknown parameters
with suitable estimates in the distribution of the future variable, thus obtaining a so
called estimative distribution. Nonetheless, these distributions may perform poorly
in terms of coverage probability of the corresponding quantiles. In this work we
propose the use of calibrated predictive distributions in the context of EMOS mod-
els. The proposed calibrated predictive distribution improves on estimative solu-
tions, producing quantiles with exact coverage level. A simulation study assesses
the goodness of the calibrated predictive distribution in terms of coverage probabil-
ities and also logarithmic score and CRPS.

Abstract I modelli EMOS forniscono un metodo per ottenere distribuzioni predittive
a partire da un insieme di previsioni per una variabile meteorologica di interesse.
Una distribuzione predittiva si puo ottenere facilmente sostituendo i parametri non
noti con delle stime opportune nella distribuzione della variabile futura. Questa pro-
cedura da origine alle cosiddette distribuzioni estimative che pero spesso risultano
inadeguate in quanto la probabilita di copertura associata ai loro quantili differisce
da quella nominale. In questo lavoro proponiamo, nel contesto dei modelli EMOS,
una distribuzione predittiva calibrata che fornisce quantili la cui probabilita di co-
pertura coincide con quella nominale. Uno studio di simulazione evidenzia la bonta
della predittiva proposta, sia in termini di probabilita di copertura che rispetto alle
funzioni di perdita logaritmica e CRPS.
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1 Introduction

In modern society, weather conditions have wide-ranging economic impacts in fields
as diverse as aviation, shipping, tourism and agriculture, just to name a few. All
these important applications require accurate forecasts of future weather conditions.
Weather forecasts are usually provided as forecast ensembles obtained from mul-
tiple numerical models achieved using different initial conditions and different nu-
merical representations of the atmosphere [§8]. However, such ensemble forecasts
are able to capture only part of the forecast uncertainty exhibiting dispersion errors
and systematic biases [7], [2]. For this reason, ensemble forecasts are often statisti-
cally post-processed to produce calibrated predictive distributions. Many statistical
post-processing methods have been proposed in the literature. The most popular
are the ensemble model output statistics (EMOS) that allow for probabilistic fore-
casts of continuous weather variables ([4]). EMOS is nothing but a linear regression
model with heteroschedastic Gaussian errors. The EMOS mean is a linear combi-
nation of the ensemble member forecasts, with unknown coefficients that represent
the contributions of each member of the ensemble to the interest weather variable.
The EMOS variance is a linear function of the ensemble variance that accounts for
spread relationship. More precisely, it is assumed that a weather continuos vari-
able Y depends on the ensemble forecasts Xi,...,X,, in such a way that its mean
is equal to By + BiXi + ... + BnX, and its variance is equal to ¥+ 852, where
§2 = ﬁ " (X; — X)? denotes the ensemble variance and Py, ..., Bn, ¥ > 0 and
8 > 0 are unknown coefficients. Under normality assumptions, the distribution of ¥
is N(Bo+BiX1 +. ..+ BuXm, Y+ 85%). Suitable estimates are then substituted to the
unknown parameters, obtaining what is known as an estimative distribution for the
future weather quantity Y

NBo+BiXi + ...+ BuXon, 7+ 852),

where [30,[;17 ... ,ﬁm, ¥, and § are suitable estimates of Bo,Bis---,Bm, 7. and 3, re-
spectively.

Unknown parameters can be estimated using the method of maximum likelihood
or of minimum Continuous Ranked Probability Score (CRPS), which respectively
optimise the logarithmic score and the CRPS, see [5, 6].

Unfortunately, an estimative distribution can lead to poor prediction statements,
since it does not take into account for the uncertainty introduced by substituting esti-
mates to the true parameter values. In particular, the coverage of prediction intervals
obtained by the estimative distribution does not achieve the nominal coverage level,
see [1, 3].

In this work we recommend for the EMOS model the use of a calibrated predic-
tive distribution based on a bootstrap procedure proposed by [3], which improves
on the estimative solution. On a simulation study, we compare the Gaussian estima-
tive distributions obtained with minimum CRPS estimates and maximum likelihood
estimates with their calibrated counterparts. We show that the calibrated predictive
distributions always improve on the estimative ones in terms of coverage of pre-
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diction intervals and of logarithmic score. As regards the CRPS, all the considered
distributions perform in a similar way.

2 Calibrated predictive distributions

In this section we briefly review, in the context of EMOS models, the calibrating
approach proposed by [3], which provides predictive distributions whose quantiles
give well-calibrated coverage probability.

Suppose that {Y;};>; is a sequence of independent continuous random variables
with probability distribution specified by the EMOS model:

YiNN<ﬁO+ﬁlxil+---+ﬁm-xim;y+53i2)a i>1,

where x;; is the i-th value of the ensemble variable X;, j=1,...,m, 51'2 is the ensem-
ble variance of x;1, ..., X, and 8 = (o, B1,...,Bm, 7, 8) is the unknown parameter
vector. We assume that Y = (Y1,...,Y,), n > 1, is observable, while Z =Y, is a fu-

ture or not yet available variable. We indicate with ®(z; 0) the Gaussian cumulative
distribution function of Z.

Given the observed sample y = (yy,...,y,), an a-prediction limit for Z is a func-
tion c(y) such that, exactly or approximately,

Prz{Z<cq(Y);0} =, (1)

for every 6 € ©® and for every fixed a € (0,1). The above probability is called
coverage probability and it is calculated with respect to the joint distribution of
(Z2,Y).

Consider a suitable asymptotically efficient estimator 6 = 6(Y) for 6 and the es-
timative prediction limit z (), which is obtained as the @-quantile of the estimative
distribution function &(-; ). The associated coverage probability is

Prz{Z <2a(8(Y));0} = Ey[®{2a(8(Y));:6}:6] = C(0., 6) @)

and, although its explicit expression is rarely available, it is well-known that it does
not match the target value a even if, asymptotically, C(,0) = o+ O(n '), as
n — 4o, see e.g. [1]. As proved in [3], the function

Gc(2:0,0) =C{®(z:0),6}, 3)

which is obtained by substituting o with ®(z;6) in C(a, 8), is a proper predictive
distribution function, provided that C(-,0) is a sufficiently smooth function. Fur-
thermore, it gives, as quantiles, prediction limits z{, (é, 0) with coverage probability
equal to the target nominal value ¢, for all o € (0,1).

The calibrated predictive distribution (3) is not useful in practice, since it depends
on the unknown parameter 8. However, a suitable parametric bootstrap estimator for
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G.(z; 0, 6) may be readily defined. Let y*, b= 1,..., B, be parametric bootstrap sam-
ples generated from the estimative distribution of the data and let 0 b=1,...,B,
be the corresponding estimates. Since C(ct, 0) = Ey [®{zq(6(Y)); 0}; 6], we define
the bootstrap calibrated predictive distribution as

00 a) 1 d a )
G2 (2;,0) = E; D{20(6"):0} y—op(c:6)- 4)

The corresponding o-quantile defines, for each o € (0, 1), a prediction limit hav-
ing coverage probability equal to the target o, with an error term which depends on
the efficiency of the bootstrap simulation procedure.

3 A simulation study

In order to assess and compare the performance of the estimative and the cali-
brated predictive distributions for the EMOS model we perform several experi-
ments with simulated ensembles. The ensemble members are drawn from a m-
variate normal distribution with zero mean and identity covariance matrix, with
m =15,10,15. The i-th observation is generated from a normal random variable with
mean fo + Y71 Bjxij where ;= (j+1)/ X4 Br, j=0,...,m, and variance y+ 552,
withy=0and 6 =1,i=1,...,n with n = 20. The bootstrap procedure is based on
500 bootstrap samples. The estimation is based on 1000 Monte Carlo replications.
We evaluate the estimative and calibrated predictive distributions in terms of cover-
age probabilities and also using the logarithmic score and CRPS as loss functions,
as commonly used in the literature, see [4, 9]. It should be noted that the calibra-
tion procedure is based on asymptotic considerations. Thus the improvement over
estimative results is more evident with small sample sizes. Here we have chosen
n = 20, having in mind to use the 20 most recent daily observations of a meteoro-
logical variable as the training period for estimating the EMOS model parameters,
see [4].

Table 1 provides the results of a simulation study for comparing coverage proba-
bilities of 66.7% and 90% central prediction intervals obtained from the estimative
and the calibrated distributions with minimum CRPS and maximum likelihood esti-
mates. For this aim, we consider prediction limits of levels o« = 0.05,0.167,0.833,
and 0.95. It can be noted that the coverage probabilities associated to the calibrated
quantiles almost equal the nominal values, showing accurate coverage. Average
width of prediction intervals, not shown here, demonstrates that the calibrated pre-
dictive distributions yield slightly longer prediction intervals with respect to the es-
timative ones, but this can be explained by the greater coverage of these prediction
intervals.

We assess the improvement of the calibrated predictive distributions over the es-
timative ones by computing also the logarithmic score and the CRPS, averaged over
1000 replicates, as shown in Table 2. The superior performance of the calibrated dis-
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tributions is reflected in the values of the logarithmic score. Indeed average values
of the logarithmic score for estimative distributions are significantly worse with re-
spect to their calibrated counterparts. In terms of the CRPS, the estimative solutions
perform similarly to the calibrated ones.

4 Conclusions

This work proposes a comparison between estimative and calibrated predictive dis-
tributions based on a bootstrap resampling procedure. The comparison is carried out
on a simulation study, where appropriate verification measures, such as the CRPS,
logarithmic score and coverage probabilities, are used for assessing the predictive
performance of the considered distributions. From the results one can conclude that
the calibrated predictive distributions always improve on the estimative ones, in
terms of logarithmic score and coverage. Instead, the considered predictive distribu-
tions perform similarly with respect to the CRPS. Future development of the work
will explore sliding training periods of constant size in the same way as in the work
of [4]. Moreover other verification measures will also be considered.
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m=>5
a Estlog Callog Estcrps Cal crps
0.05 0.125 0.052 0.128  0.050
0.167 0.249 0.181 0274  0.180
0.833 0.730 0.803 0.722  0.809
095 0.865 0946 0.854  0.935
m=10
o Estlog Callog Estcrps Cal crps
0.05 0.162 0.050 0.184  0.046
0.167 0.290 0.191 0304  0.187
0.833 0.719 0.822 0.719  0.823
095 0.845 0939 0836 0.941
m=15
a Estlog Callog Estcrps Cal crps
0.05 0.146 0.044 0.151 0.035
0.167 0.265 0.152 0265 0.134
0.833 0.766 0.864 0.757  0.867
095 0.864 0959 0.852  0.967

Table 1 Coverage probabilities of the four predictive distributions for different nominal levels c.
Standard errors are always smaller than 0.015. Est log denotes the estimative distribution with
maximum likelihood estimates and Est crps the estimative distribution with CRPS estimates, while
Cal log and Cal crps are the respective calibrated counterparts.

m=>5
Estlog Callog Estcrps

Cal crps

1.672 1.56

1.716

(0.043)  (0.022) (0.047)

1582
(0.023)

m=10
Estlog Callog Estcrps

Cal crps

2.2717 1.825

2.539

(0.085) (0.0295) (0.114)

1.87
(0.0368)

m=15
Estlog Callog Estcrps

Cal crps

2.493 1.656

3.052

(0.116)  (0.024) (0.158)

1.687
(0.022)

m=>5
Estlog Callog Estcrps Cal crps
0.636 0.636  0.644  0.645
(0.016) (0.014) (0.016) (0.015)
m=10
Estlog Callog Estcrps Calcrps
0.792 0.806  0.809  0.817
(0.020) (0.0179) (0.021)  (0.18)

Est log

m=15
Cal log Estcrps Cal crps

0.695
(0.018)

0601 0.716  0.706
0.015) (0.019) (0.015)

Table 2 Logarithmic (left) and CRPS (right) values of the four predictive distributions for different
values of m. Est log denotes the estimative distribution with maximum likelihood estimates and Est
crps the estimative distribution with CRPS estimates, while Cal log and Cal crps are the respective

calibrated counterparts.
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