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Abstract

The use of historical data can significantly reduce the uncertainty around estimates of the

magnitude of rare events obtained with extreme value statistical models. For historical data

to be included in the statistical analysis a number of their properties, e.g. their number and

magnitude, need to be known with a reasonable level of confidence. Another key aspect of the

historical data which needs to be known is the coverage period of the historical information,

i.e. the period of time over which it is assumed that all large events above a certain threshold

are known. It might be the case though, that it is not possible to easily retrieve with sufficient

confidence information on the coverage period, which therefore needs to be estimated. In

this paper methods to perform such estimation are introduced and evaluated. The statistical

definition of the problem corresponds to estimating the size of a population for which only

few data points are available. This problem is generally refereed to as the German tanks

problem, which arose during the second world war, when statistical estimates of the number

of tanks available to the German army were obtained. Different estimators can be derived

using different statistical estimation approaches, with the maximum spacing estimator being

the minimum-variance unbiased estimator. The properties of three estimators are investigated

by means of a simulation study, both for the simple estimation of the historical coverage and

for the estimation of the extreme value statistical model. The maximum spacing estimator
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is confirmed to be a good approach to the estimation of the historical period coverage for

practical use and its application for a case study in Britain is presented.

1 Introduction

Natural hazards like floods, sea surges or earthquakes are some of the most dangerous threats

both to human lives and infrastructures. Throughout history, strategies to manage the risks

connected to natural hazards have been devised, and still at present these risks cannot be

eliminated, but must be managed and planned for. A key step in the management of risks

is the estimation of the frequency of events of large magnitude, which is needed to assess

the likelihood of severe damages happening in specific areas. However by definition, very

large events happen rarely and there are consequently few records available to perform such

estimation. This is particularly true when the estimation is based on systematic measures of the

process of interest, which might cover a period of time much shorter than the time scale at which

one would imagine to actually record very rare events, such as events happening less frequently

than once every 100 years. The statistical models typically used to estimate the frequencies

of rare events are based on extreme value theory, which provides some general asymptotic

results on the behaviour of events of great magnitude. Moreover the methods generally used

in the estimation procedure make an attempt to use as much data as is available. For example

regional methods, which pool together the information of a large number of stations are used to

estimate the frequency of large storm surges (Bernardara et al., 2011) and floods (Hosking and

Wallis, 1997). Alternatively, it would be possible to augment the data available at the time of

analysis by including not only the systemically measured data, but also additional data from

past events on which some information is still available from historical records or evidence in

the landscape. This approach has been shown to greatly reduce the uncertainty of estimates

at sites of interest for different natural hazards like coastal water levels (e.g. Bulteau et al.,

2015), volcanic eruptions (e.g. Coles and Sparks, 2006) and peak river flow (e.g. Macdonald

et al., 2014). This study gives some results on the estimation of a specific quantity needed

when fitting statistical models on data series of historical and systematic records, namely the

time of coverage of the historical record. Although this quantity can often be retrieved in



the investigation which leads to the construction of the historical record, it is in some cases

unknown, so that an estimated value needs to be used instead. In the remainder of this paper

the focus will be the use of historical records in flood frequency estimation applications, but

the results could be useful in any situation in which historical data would be used to improve

an estimate of the frequency of rare events and no clear information can be retrieved on the

actual historical period covered by the non-systematic data. Statistical models for inference are

presented in Section 2, with extreme value modeling briefly discussed in Section 2.2. Section

3 introduces the model used to include historical data in extreme value frequency estimation,

while the different estimators for the coverage of the historical record are presented in Section

4. The performance of these estimators is investigated by means of a simulation study in

Section 5 while Section 6 shows an application for the assessment of the rarity of large floods

for a gauging station in the UK which recently experienced a record breaking event. Finally,

Section 7 gives a brief summary and discussion of the results.

2 Statistical Models

Broadly speaking, statistical inference aims at characterising the behaviour of a process of

interest using some relevant sample of data. It is typically assumed that the available sample

is representative of the process of interest (e.g. large floods) so that it can be used to infer

properties of the stochastic distribution of the process. It is generally assumed that the process

under study follows a certain known distribution f , parametrised by some parameters θ =

(θ1, . . . , θd) whose values are unknown. Finding estimates of the distribution parameters θ

gives a full description of the behaviour of the process under study.

In the simplest case it is assumed that each element xi in the sample x = (x1, . . . , xn)

is a realisation of independent and identically distributed (i.i.d.) random variables Xi, whose

probability distribution function is a certain f(xi,θ). In the following subsection some methods

commonly used to estimate the parameter vector θ are discussed. These methods have long

been established and are discussed in most introductory book to statistical inference (e.g. Rice,

2006); only some basic details are provided here as a reference.



2.1 Statistical parameter estimation approaches

Maximum Likelihood

A very common method used to estimate θ is maximum likelihood, which, under some

conditions, provide asymptotically unbiased and efficient estimators. Maximum likelihood

estimates are obtained as the θ values which maximise the likelihood function L(θ;x), defined

as

L(θ;x) =
n∏

i=1

f(θ, xi).

The ML estimate θ̂ML can be thought of as the value of θ which make the data more likely

to have happened under the assumed distribution. In some cases the θ which maximise the

likelihood function can be found analytically, but in many applications numerical methods are

used to maximise L(θ;x) and find the estimated values θ̂ML.

Method of moments

Another very intuitive and commonly used approach for the estimation of θ, is the method

of moments, in which the parameters are first expressed as functions of the distribution mo-

ments (e.g. µ1 = E[X], µ2 = E[X2], and so forth) and then directly estimated by plugging

in the sample estimates of the moments (e.g. µ̂1 =
∑n

i=1 xi, µ̂2 =
∑n

i=1 x
2
i , and so forth).

For example, the mean and variance of a normal distribution X ∼ N(µ, σ), can be expressed

as µ = E[X] and σ2 = V ar[X] = E[X2] − (E[X])2. Method of moment estimates are then

obtained as µ̂Mom = µ̂1 =
∑n

i=1 xi and σ̂Mom = [µ̂2 − (µ̂1)
2]1/2 = [

∑n
i=1 x

2
i − (

∑n
i=1 xi)

2]1/2.

Method of moments estimates θ̂Mom do not enjoy the optimal asymptotic properties of ML

estimates, but can be shown to be consistent and are computationally easy to derive.

Maximum spacing method

A less widespread, but also useful, inference approach is the maximum spacing method

introduced simultaneously with a different naming and a different reasoning by Cheng and

Amin (1983) and Ranneby (1984). Defining the ordered sample (x(1), . . . , x(n)) such that

x(1) < x(2) < . . . < x(n−1) < x(n), the spacing between the cumulative distribution functions



of successive points is taken to be

Di(θ) = F (θ, x(i))− F (θ, x(i−1)), i = 1, . . . , (n+ 1)

taking, for convenience, x(0) = −∞ and x(n+1) = ∞. The maximum spacing estimator is

defined as the value θ̂MSP which maximises

S(θ) =
1

n+ 1

n+1∑
i=1

lnDi(θ) =
1

n+ 1

n+1∑
i=1

ln(F (θ, xi)− F (θ, x(i−1))).

The estimate θ̂MSP can be thought of as the value of θ which makes the distribution of

the estimated cumulative distribution function (cdf) as close as possible to the Uniform(0,1)

distribution, which is how the cdf of a i.i.d. sample is expected to behave. The maximum

spacing method can give valid results in cases for which the likelihood approach fails and is

shown to be consistent.

All the above methods have been developed under the general framework in which it is as-

sumed that the available sample is representative of an existing parent distribution parametrised

by some true parameters θ whose values need to be estimated. Another very popular approach

to statistical inference is the Bayesian approach in which it is assumed that the distribution

parameters are also random variables, and that the aim of the inference is to characterise the

distribution of these random variables given the available sample. The method is not discussed

further in the paper, but its use is widespread in statistical applications and should be men-

tioned, in particular given its wide use for the estimation of extreme value models in presence

of historical data.

2.2 Statistical models for the frequency of extremes events

Most statistical applications aim at describing the behaviour of the central part of the distribu-

tion of the process under study. It is often the case though, that it is not the typical behaviour

of the process that is of interest, but its tail behaviour, i.e. the rarely observed events. When

the interest of the estimation lies in the frequency of extreme events it is common practice to

use only a subset of the available data which is actually informative of the behaviour of the tail

of the distribution rather than its central part. A frequently used approach is to only use the

maximum value of the measured process in a block, for example a year or another fixed period



of time. The block maxima are assumed to follow some appropriate long-tailed distribution,

with the Generalised Extreme Value (GEV) distribution being motivated by the asymptotic

behaviour of maxima of stationary processes (see Coles, 2001). The GEV is often used in prac-

tice when investigating the frequency of rare events, although other distributions have been

proposed in some cases as discussed in Salinas et al. (2014). The Generalised Logistic (GLO)

distribution, for example, has been shown to provide a better goodness of fit for samples of

British peak flow annual maxima (Kjeldsen and Prosdocimi, 2015) and the Pearson-Type-III

distribution is frequently used when modelling peak flow values of basins in the USA (U.S.

Interagency Advisory Committee on Water Data, 1982). Once a decision is made on the ap-

propriate form of f(x,θ) to represent the distribution of the data, and the values of θ are

estimated, the magnitude of the events which are expected to be exceeded with a certain prob-

ability p can be derived via the quantile function q(1−p, θ̂). Conversely, it is possible to obtain

an estimate of the frequency at which an event of magnitude x̃ is expected to be exceeded via

the cumulative distribution function F (x̃, θ̂). In practice, since only a subset of a record is

used in the estimation of the frequencies of extreme events, samples tend to be relatively small

and long observations are needed to obtain large samples of annual maxima. For example,

gauged flow records in the UK tend to be less than 40-year long (see Kjeldsen and Prosdocimi,

2016), which means that samples of less than 40 units would be used in the estimation of

the frequency of rare events when annual maxima are analysed. The review carried out in

Hall et al. (2015) indicate that records throughout Europe are of similar length. Given that

typically the interest is in the estimation of events which are expected to be exceeded at most

every 100-year, there is a large difference between the available information and the target

of the estimation. Several strategies, aiming at augmenting the available information, have

been developed. A popular approach is to somehow pool together information across different

series: this is referred to as the regional approach and has been widely used in flood frequency

applications following, for example, in the work of Hosking and Wallis (1997). The justification

for the regional approach is that, given that series only cover a short period of time, one can

trade space for time and augment the available information by combining different stations.

The idea of augmenting the information used in the inference process pooling is also used in

probabilistic regional envelop curves, which pool together information on extreme events and

are used to estimate exceedance probabilities for homogeneous regions (see for example Lam



et al., 2016) Finally methods which are less reliant on the theoretical statistical properties of

the peak flow process, but make use of the understanding of hydrological processes are often

used. For example rainfall-runoff models use information on the catchment to provide esti-

mates of the entire hydrograph, for rainfall events of given rarity. ReFEH (Kjeldsen, 2007) is

the model used in the UK within the Flood Estimation Handbook, but several other models

are proposed in the literature. In general, when estimating flood frequency curves, it would be

ideal to use as much knowledge as possible about the site for which the estimation is carried

out, combining both the hydrological knowledge of the analysis and using all available data

in the best possible way. This is strongly advocated in a series of companion papers by Merz

and Blöschl (2008a,b) and Viglione et al. (2013), which showcase the usefulness and impor-

tance of combining different sources of information to improve the accuracy of flood frequency

estimation. A similar message is also found in Environment Agency (2017), which showcase

how the use of catchment-specific information can improve the quality of the estimation of

flood risk. The usage of information on past large event, for example, is often suggested as a

way to improve inference about flood risk. Indeed, historical data can be used to extend the

length of time covered by the available series, thus diminishing the discrepancy between the

estimation horizon and the amount of data used in the estimation. These type of events would

not have been gauged using the modern-day technology, but would nevertheless be informa-

tive of the size of very large events which happened in the past. The usefulness of including

historical data in flood frequency analysis has long been recognised (e.g. Hosking and Wallis,

1986; Stedinger and Cohn, 1986). Different methods to combine historical and systematic data

have been proposed (e.g. Cohn et al., 1997; Gaume et al., 2010), historical flow series have

been reconstructed for several river basins (see among others Macdonald, 2014; Elleder, 2015;

Machado et al., 2015, in a recent HESS special issue) and several countries in Europe at present

recommend that evidence from past floods is included when estimating the magnitude of rare

flood events (Kjeldsen et al., 2014). The case study in Section 6 gives some discussion of the

possible difficulties and advantages of using historical data in flood frequency estimation for a

specific location in the UK. The standard framework to include historical data builds on the

construction of the likelihood outlined in Section 3.



3 The inclusion of historical data for frequency es-

timation

Assume that a series of gauged annual maxima x = (xi, . . . , xn) is available and that addi-

tionally some information on the magnitude of k historical events y = (y1, . . . , yk) pre-dating

the systematically recorded observations is also available. It is assumed that all k events are

bigger than a certain value X0, which is referred to as perception threshold, since it corre-

sponds to a magnitude above which events would have been large enough to leave visible

marks in the basin or be worthy of being recorded for example in diaries, local newspapers

or as epigraphic marks in urban developments. Further, it is assumed that the underlying

process generating the extreme events in the past and in the present day can be modelled

using the same distribution X with pdf fX(x,θ) and cdf FX(x,θ). One important assump-

tion that is made is that all events above X0 in the period of time covered by the historical

information, denoted by h, are available. The different quantities involved in the inclusion

of historical data are exemplified in Figure 1 which shows the systematic and selected his-

torical data for the Sussex Ouse at Lewes case study described in Macdonald et al. (2014).

The number of historical events k can then be thought of as a realisation of a Binomial

distribution K ∼ Bin(h, p), with p = P (X > X0) = [1 − FX(X0)]. Finally, by taking

f(y) = fX(y|y ≤ X0)P (y ≤ X0) + fX(y|y > X0)P (y > X0) and reworking some of the formu-

lae (see Stedinger and Cohn, 1986) the likelihood for the combined sample of historical and

gauged records (y1, . . . , yk, x1, . . . , xn) can be written as

L(x,y, h, k;θ) =
n∏

i=1

fX(xi,θ)

(
h

k

)
FX(X0)

(h−k)
k∏

j=1

fX(yj ,θ). (1)

Numerical methods are generally used to maximise the above likelihood and the use of Bayesian

methods has extensively been advocated for this type of applications (e.g. Parent and Bernier,

2003; Reis and Stedinger, 2005; Neppel et al., 2010). As discussed in Stedinger and Cohn

(1986) the likelihood in Equation (1) can be modified when only the number of historical

events and not their magnitude can be ascertained with sufficient confidence, but this case is

not explored in the present work.

A number of features on the historical data are required in Equation (1), namely h, k and y,

and these are assumed to be correctly specified. In particular it is assumed that the period of
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Figure 1: Display of the quantities involved when combining historical and systematic records using

the Sussex Ouse at Lewes data from Macdonald et al. (2014).

time covered by the historical information h is correctly known: this paper discusses methods

to estimate h when it can not be accurately quantified from the historical information. The

impact of the value of h on the final estimation outcome can be seen in Figure 2 where the

different estimated flood frequency curves obtained using a range of h values and the Sussex

Ouse data shown in Figure 1 are shown. Using different values of h can have a noticeable effect

of the estimated flood frequency curves, in particular the magnitude of rare events would be

estimated very differently depending on which value of h is used. Note that some of the values

of h in Figure 2 are of course not possible given the historical record for the station: results

for values of h smaller than 190 year are given as reference and they correspond to the case

in which the historical events would have all happened in the years just before the beginning

of the systematic record. The importance of correctly assessing the value of h is discussed in

Hirsch (1987) and Hirsch and Stedinger (1987), which indicate that biases can be introduced

in the assessment of the of extreme events if the wrong value of h is used, and Bayliss and

Reed (2001) state that no guidelines appear to be available on how to correctly asses a realistic

period of record to historical information. This is an indication that the issue of the correct

identification of h has been given little attention in the large literature on the use of historical



−4 −2 0 2 4

10
0

20
0

30
0

40
0

 

 
P

ea
k 

flo
w

 (m
3

s)

Reduced variate: log(T−1)

h = 60 yrs
h = 160 yrs
h = 210 yrs (true)
h = 260 yrs
h = 360 yrs

| | | |
 2 yrs 20 yrs 100 yrs 250 yrs

Figure 2: The impact of using different values of h on the estimated flood frequency curve.

data and in several studies which combine historical and systematic data it is unclear whether

a realistic value of h could be determined in the retrieval of the historical information and

which value of h is effectively used in the estimation. It is often the case that the value of h

is taken to be the time between the first historical record available and the beginning of the

systematic record. The drawbacks of this approach are discussed later in the paper, and have

been already pointed out in Strupczewski et al. (2014), which is to the author’s knowledge, the

only effort to give guidance on how to obtain reliable values of h since the review by Bayliss

and Reed (2001).

Finally some cautionary warnings on the routine inclusion of historical data in flood fre-

quency estimation should be given. An important assumption that is made in the estimation

procedure is that all the information in sample, i.e. both the historical and the systematic

peaks, comes from the same underlying distribution. That is to say that the process from

which the high flows are extracted is stationary throughout time. In simpler words, it is as-

sumed that all peaks are somewhat representative of the flood risk at the present time, and

that flood risk is unchanged throughout the record. Given the natural and anthropogenic



changes in climate and the potential impacts that changes in the catchment would have on

flood risk, this is indeed a very strong requirement and assumption. The significance of po-

tential non-stationarities driven from climatic variations and man-made changes to the river

basin can be derived by means of statistical models, but to be reliable and representative of

large scale changes these would need to be based on long records, whether from instrumental

measurements (Mudersbach et al., 2015), or from a mixture of instrumental measurements and

historical records as in Machado et al. (2015). Again, combining all available knowledge about

the history and properties of the river basin under study allows for a more precise character-

isation of risk in the area of interest and how this changes in relationship to anthropogenic

changes and natural variability. See for example Silva et al. (2015, 2016) for an analysis which

combines different sources of information to assess how flood risk change as a function of sev-

eral explanatory variables. Further, methods to include uncertain values of for historical peak

flows values have been widely employed (see for example Viglione et al., 2013; Gaume et al.,

2010) and these can be used to acknowledge that the value of the past peaks corresponds to a

range of possible values for the flow as it would have been recorded in the present time.

4 The estimation of h

To estimate the parameter h it is assumed that some reliable information on the timing of

the historical events y is available. The differences between the time of occurrence of the

historical events and the start of the systematic records are denoted as t = (t1, . . . , tk): each

value of ti corresponds to the number of years between each historical event yi and the onset of

the systematic records. Since annual maxima are assumed to be independent the exceedance

of the high perception threshold can happen in any year of the historical periods with equal

probability. Each ti can then be seen as a realisation of a uniform distribution with lower limit

equal to 1 and an unknown upper limit h: T ∼ U(1, h). Alternatively, one could see the sample

t as a random draw without replacement of k elements from the population of past annual

maxima which happened in the years (1, . . . , h). The estimation of h would then correspond

to the estimation of the size of the population of annual maxima from which the sample t is

extracted. This problem corresponds to the so called German tanks problem, which arised

during World War II when an estimate of the total number of German tanks and warfare



was obtained based on the serial number of the captured items. As discussed in Ruggles and

Brodie (1947) the statistical estimates of the number of weapons and components available

to the German army proved to be more accurate than the numbers deducted by intelligence.

Johnson (1994) presents a series of possible estimators of h derived on the population size

characterisation of the problem, listing their expected values and variances. The same esti-

mators, derived using the Uniform distribution characterisation, are presented below with an

indication of their advantages and issues.

Maximum likelihood

Assuming that T ∼ U(1, h), the likelihood function to be maximised to estimate h corre-

sponds to:

L(t, h) =

k∏
i=1

f(ti, h) =


(h− 1)−k for 1 < t(1) < . . . < t(k) < h

0 otherwise

so that the maximum likelihood estimator of h, ĥML, corresponds to the largest value of the

sample for which the likelihood has a positive value: ĥML = t(k) = max(t1, . . . , tk). In other

words, the estimated time span for which historical information is available is estimated to be

starting at the time at which the first historical event is recorded. The ML estimate hML can

be shown to be biased, as E[ĥML] = hk/(k + 1) + k/(k + 1).

Method of moments

The Method of moments estimator of the upper bound h of a uniform distribution T ∼

U(1, h) can be derived knowing that E[T ] = (h + 1)/2, so that h = 2E[T ] − 1. Taking

t̄ =
∑k

i=1 ti, the average time before the start of the systematic record at which historical

events happened, the Method of Moments estimator can be written as ĥMom = 2t̄ − 1. The

estimator hMom is unbiased since E[ĥMom] = h. Notice though that in practice the value of ĥ

might be a non-integer and might be smaller than the maximum value observed, t(k). The first

issue is easily fixed by rounding ĥMom to the nearest integer, and one could take the estimate

of h to be the maximum between ĥMom and t(k), but it is undesirable for an estimator to

produce results that are not possible for a given sample.

Maximum spacing method

The maximum spacing estimator of the upper bound h of a uniform distribution T ∼ U(1, h)



can be derived as the value which maximises the function

S(h, t) = {ln(t(1)−1)− ln(h−1)+
n∑

i=2

ln(t(i+1)−t(i))−(n−1)ln(h−1)+ln(h−t(n))− ln(h−1)}.

The estimator ĥMSP is then found to be ĥMSP = t(k)(k + 1)/k − 1 = t(k) + t(k)/k − 1. Note

that this corresponds to taking the maximum value of t(k) and add the average gap between

the observed timings. The expected value of ĥMSP is E[ĥMSP ] = h. For the case at hand, the

MSP estimator can also be shown to have minimal variance (see. Johnson, 1994), and should

therefore be the preferred estimator. In the case in which only one observation is available,

k = 1, the hMom and hMSP estimator are identical and their form corresponds to the one

already presented in Strupczewski et al. (2014).

The different estimators of h correspond to different approaches that hydrologists could use

when including historical data in flood frequency estimation: the three approaches are listed

in Section 4.4.3. of Bayliss and Reed (2001) where they are presented using common sense

reasoning rather than a statistical framework. Using the time of the first historical event as

an indicator of the whole period of coverage of the historical record corresponds to using the

maximum likelihood estimator of h: this is relatively easy to apply, but it has been shown

to give less reliable results. Indeed if a large historical record was recorded at a distant time

t(k), it would be unlikely that a similarly large event would have happened the year before, so

it would be reasonable to shift the starting period of the historical record to a earlier date.

Taking the starting point to be the point in time that precedes the first event by the average

time between the historical events corresponds to the maximum spacing estimator. Finally it

seems plausible to think that the amount of time passed between the start of the historical

coverage and the first historical record should be the same as the amount of time between the

first historical record and the starting of systematic record: when k = 1 this corresponds to

the method of moments estimator.

For the Sussex Ouse data presented in Figure 1 the t sample is found to be equal to

t = (85, 95, 108, 159, 189), and the known value of h is 210. If h was unknown the different

estimates would correspond to: ĥML = 189, ĥMom = 220.6 and ĥMSP = 225.8. The impact of

using the different estimated values can be guessed by comparing the flood frequency curves

in Figure 2.

The performance of the different estimation approaches for the estimation of h in practice



is investigated by means of a simulation study in the next Section. The impact of the different

estimation approaches within the wider scope of return curve estimation when combining

historical and systematic data is further investigated within the simulation study.

5 Simulation study

A simulation study is performed to investigate the performance of the different methods in

estimating the value of h and successively the impact of estimating h on the overall performance

of flood frequency estimation when augmenting systematic data with historical information.

The simulation study is designed to be representative of possible data availability situations in

real applications and realistic distributional assumptions based on observed characteristics of

British peak flow data are used. The parent distribution for the synthetic data generated in the

simulation study is taken to be a GLO, which is the default distribution for British peak flow

data, with location, scale and shape parameter taken to be, respectively, equal to 33, 6.5 and

-0.3, approximately the median values of the at-site estimates of the 960 stations included in

the National River Flow Archive (NRFA) peak flow dataset v3.3.4 (http://nrfa.ceh.ac.uk).

Samples of systematic sample size n equal to 20, 40 and 80 are generated sampling from the

known parent distribution. The true historical period covered by the historical information h is

taken to vary among the values of 200, 400 and 800 years. In the data generation procedure for

the simulation study, exactly h data points using the same parent distribution of the systematic

data, are generated and the largest k points which are also larger than the defined perception

threshold are taken to constitute the historical information used in the estimation procedure.

The values of k are taken to be 1, 3, 5 and 10. For each combination of k and h values the

perception threshold X0 is taken to be the (1 − k/h)th quantile of the parent distribution,

which is to the say the value above which one would expect to observe k values over h years. A

total of 36 combinations of parameters are included in the study, to allow a full investigation

of the impacts of different properties on the final performance of the estimation procedures.

For each of the total 36 combinations, 10000 samples of historical and systematic data are

generated and analysed: different estimation procedures are applied to estimate h and these

estimates are then plugged in the methods to estimate the distribution parameters discussed

in Section 3 which finally allowes to estimate the magnitude of rare events for each generated
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Figure 3: Boxplots showing estimates of h for different values of k : each row shows the estimates

obtained using the three proposed methods, while each column shows the results for different true

values of h. The true value of h is indicated as a vertical line in each plot and indicated in the text.

The violet cross in each boxplot indicates the average value of the estimates

sample.

At first the ability of the different estimators presented in Section 4 to estimate h is assessed.

Figure 3 shows boxplots of the estimated values of h using the maximum likelihood (ML)

approach, the method of moments (Mom) and the minimum spacing (MSP) approach for

different values of k (e.g. the number of historical events in the sample) and h (the historical

period cover which corresponds to the quantity being estimated). Also shown in the Figure

is the true value of h. It is clearly visible that for all estimation procedure the variability of

the estimators decreases for increasing values of k: this is not surprising, as a larger sample

(i.e. more information) is used in the estimation. Another remarkable feature is that the

ML estimates are indeed biased, while both the MSP approach and the method of moments

give unbiased estimates, with the MSP approach estimator being less variable, as expected
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Figure 4: RMSE for log(Q100) for different values of k and h. Each line shows the RMSE for

log(Q100) using different approaches to estimate the parameter h.

from the theoretical result. The asymmetric shape of the boxplots for the ML and MSP

estimates is consistent with the behaviour of the distribution of the maximum shown in Johnson

(1994), while the MOM estimates, which are based on the average value of samples from a

uniform distribution, exhibit a more symmetric behaviour, which is not surprising under the

Central Limit Theorem. The properties of the estimation procedures is not impacted by the

actual value of h, and the MSP approach consistently gives unbiased estimated with smaller

variability. When h = 1 the boxplots for the MSP approach the method of moment are

identical, since the two estimators have the same form. It would then appear that in cases

where no reliable information can be retrieved on the real value of h the MSP approach should

be used to estimate the length of time covered by the historical data.

Nevertheless, when including historical data in flood frequency analysis, the aim is generally

to estimate the parameters of the flood distribution and to then obtain estimates for its upper

quantiles. The performance of this inference when using the different estimators for h are

explored in Figure 4 and Figure 5. Figure 4 shows the RMSE values of the log(Q100) for each



combination of systematic record length (n), number of historical record (k) and historical

period length (h). Each line shows the RMSE values obtained using a different approach to

estimate h, including the solid line which corresponds to the case in which only systematic

data are used and no estimation of h takes place and the case in which the true value of h is

used (dotted line and triangle). The RMSE for any estimated quantity τ , either a parameter

of a property of the distribution, is defined as the square root of the expected value of the

squared difference between the estimated value τ̂ and its true value. In a simulation study

with s synthetic data, the RMSE(τ̂) can be determined taking:

RMSE(τ̂) =
1

s

√√√√ s∑
i=1

(τ̂i − τ)2.

Low values of RMSE indicate that the estimated value do not vary much around the true

value of τ , giving an indication of a good performance in estimation. Figure 4 shows that more

precise estimates can be obtained for high quantiles when using historical data, compared to

when using systematic data only, even when there is some uncertainty on the actual time

covered by the historical data. Further it would appear that when including historical data,

if the MSP approach or the method of moments are used to estimate h the RMSE values for

the Q100 are similar to the one obtained when the true value of h is used even if only k = 3

historical events are available.

To investigate the impact of the different methods of estimating h on the flood frequency

model estimation the RMSE for the shape parameter of the GLO distribution are shown

in Figure 5. The shape parameter plays an important role in extreme value modeling and

its estimate are generally quite variable due to the limited sample sizes normally available

for estimation. Figure 5 shows that, when the parameter h is estimated, both the method

of moments and the MSP approach lead to similar reductions in RMSE. The use of the ĥML

estimator is heavily discouraged, although when a large number of historical events are available

it appears to still give, on average, a good improvement on the quality of the estimation.

Interestingly, from both Figure 4 and 5 it can be concluded that it is not necessary to have a

very large amount of historical events to obtain large improvements in the precision of flood

frequency analysis. Another interesting aspect to notice from Figure 4 is that, when knowing

the real value of h, the decrease in RMSE is already very large when including just one historical

event for an historical period of h = 200 year. There is also an improvement in the estimation
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when longer historical periods are considered and more historical events are included in the

estimation, but the RMSE does not decrease very much. In Figure 5 one can notice that

the RMSE of the shape parameter obtained when using systematic data with a 80-year long

record is comparable to the one obtained using a 20-year systematic record combined with

k = 3 historical events covering a time span of h = 200 year. Thus, for practical purposes

it might be very useful to retrieve even sparse knowledge on the recent past to improve the

overall estimation.

6 The Lune at Caton and the December 2015 floods:

an historical perspective

In December 2015 several large flood events were recorded in northern Britain as a result of

extremely large storms (Desmond, Frank and Eva) which occurred after a period of substantial

rain. The extent of the flooding was reported to be unprecedented and several record-breaking

events were recorded (Met Office, 2016; Parry et al., 2016). Information on historical records

of large floods in the proximity of some of the gauging stations involved in the Winter 2015

floods is readily available and could be used to put the recent floods into the historical context.

A full appraisal of the rarity of the events recorded in Winter 2015 is out of the scope of this

investigation, which aims at discussing some practical aspects of the inclusion of historical data

for a specific location. Volume IV of the Flood Studies Report (FSR, Natural Environment

Research Council, 1975) contains a long list of gauging stations for which some form of historical

data is available, with historical series of extreme flow values available for several stations. In

particular, a series of peak flow annual maxima between 1968 and 2013 is available for the

site of the present day station measuring the peak flow of the Lune at Caton (NRFA Station

72004).

The Lune at Caton peaked at about 1700 m3/s on December 5th 2015 (Parry et al., 2016):

this peak corresponds to the highest peak ever recorded at the gauging station, exceeding

the previous record of 1395.222 m3/s of January 1995, the highest peak registered in the 46

years of available data since the station started operating in 1967. Annual maxima in the

UK are extracted as the highest peak recorded in a Water Year, which runs from October to



Date Water Year Peak Flow

02 Sep 1892 1891 977.000

26 Jan 1903 1902 1104.000

10 Feb 1920 1919 878.000

13 Nov 1923 1923 1119.000

21 Sep 1927 1926 906.000

03 Nov 1927 1927 1048.000

14 Feb 1936 1935 991.000

02 Dec 1954 1954 1161.000

Table 1: Historical peak flow values for the Lune at Caton listed in Volume IV of the FSR

September, thus the event of January 1995 would be listed as the maximum of Water Year

1994. The gauged peak flow records for this station, and all other stations in the UK, can be

easily retrieved via the National River Flow Archive (NRFA) website. Volume IV of the FSR

lists eight major annual maxima events recorded at the gauging station location in the years

before the station started its regular recording in 1967 (see Table 1).

Beside the information on the peak flows, the following note is given:

Chapman & Buchanan - Frequency of Floods of normal maximum intensity in upland ar-

eas of Great Britain. ICE Symposium, River Flood Hydrology, 1965. Listed and ranked are

discharges estimate at Caton Low mill, 2.5 miles upstream of Halton gauging station. The

figures ‘might be said to give a complete record of the very highest floods for a period of some

80 years...’ [...].

It is therefore likely then that the historical record give information for the period starting

in a year between 1875 and 1885. Note that the list of historical records was compiled some

years before the gauging station started its operation, but it is very likely that no major event

happened in the catchment in the few years between the creation of the list and 1967, otherwise

this would have been noted in the FSR. For this station the estimates of h using the different

methods can be derived from t = (13, 32, 40, 41, 44, 48, 65, 76) as: hML = 76, hMom = 91.75

and hMSP = 85.625, which would lead to the historical coverage to start, respectively, in 1892,

1876 and 1882.
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Figure 6: Upper panel: historical and systematic data combined. The perception threshold used

in the analysis and the magnitude of the December 2015 flood are also shown. Lower panel: at-

site estimates of flood frequency curve with 95% confidence intervals for the Lune at Caton using

systematic data only and systematic data combined with historical records.

To use the historical information to estimate the flood frequency curve for the station a

value for the perception threshold X0 also needs to be identified. Nevertheless, from the text

reported above it is not evident what perception threshold should be used in the estimation

procedure. To eliminate possible subjective choices on which perception threshold to use, it

was decided to take the lowest event in the historical record, the February 1920 event, as

perception threshold and to only include the largest seven events in the record in the analysis.

Indeed, if we are confident that the historical events capture accurately past large events we

should be quite certain that all the highest seven events in the record are larger than the

1920 event. When only the highest seven historical events are used the estimated values of h

correspond to hML = 76, hMom = 90.86 and hMSP = 87: the difference compared to when

using the full historical record is very small. The combined historical and systematic records



are displayed in the upper panel of Figure 6. The lower panel of Figure 6 shows the flood

frequency curves obtained when using only the 46 years of systematic data available for the

gauging station and the curve obtained when historical data are also included in the analysis

using the estimated hMSP = 87 value. Also shown in the Figure is a line which indicates

the magnitude of the December 2015 flood (1700 m3/s): this event was not included in the

estimation procedures. For both curves the GLO distribution was assumed to be the underlying

distribution for the high flow process and 95% confidence intervals are derived by means of

the delta method as in Macdonald et al. (2014). Comparing the two curves, it is immediately

noticeable that when including historical data in the analysis the probability of high flows

exceeding the magnitude recorded in December 2015 is much smaller than when systematic

data only are used. In terms of return period, these two probabilities correspond to 126 years

(annual exceedance probability equal to 0.0080) and 526 years (annual exceedance probability

equal to 0.0019) respectively. The at-site estimate gives results comparable to the estimates

obtained when using the regional analysis approach described in Environment Agency (2008),

which gives an estimated return period for the December 2015 event of 132 years (annual

exceedance probability equal to 0.0076).

To assess the difference that the different estimates of h would have on the overall es-

timation, Figure 7 show the 95% confidence intervals for the 100-year (annual exceedance

probability equal to 0.01) and 1000-year event (annual exceedance probability equal to 0.0001)

using different values of h, either estimated using the different estimators presented in Section

4 and some hypothetical high values of h: these are included to showcase the potential benefit

of including records covering very long periods of time. It is immediately obvious that using

the historical information in the estimation procedure gives much tighter confidence intervals,

but little difference can be seen in the estimate and the variability obtained when using the

three estimators for h. This is not so surprising given the fact the the actual estimated values

of the h parameter are not so different for the three estimation methods, but this might not

always be true for other case studies, especially if information is available only on few historical

events. On the other hand, if the seven historical events would have been recorded in a much

longer period of time than the one available for the Lune, the reduction in the estimation

variability would be even more significant. This indicates how including information on long

records can be extremely beneficial in terms of uncertainty reduction. Viglione et al. (2013)
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Figure 7: 95% confidence intervals for Q100 and Q1000 using systematic data only and the seven

historical events higher than 878 m3/s with varying parameter h values (i.e. the coverage of the

historical period).

had already noted that very large increases in the historical coverage would be needed for the

variability in the estimation to reduce significantly, and it is often the case that decisions about

the values of the perception threshold X0 and the number of historical events for which some

information on the flow values can be determined also play a role in the assessment of the time

coverage used in the analysis. To give a more complete assessment of the sensitivity of the

estimation of flood risk for the Lune at Caton, the 95% confidence intervals for the 100-year

and 1000-year event using increasing subsets of the historical records are shown in Figure 8.

For each value of k, the number of historical events in the record, the perception threshold is

set to be the peak flow of the largest historical event smaller than the largest k peaks. For

example when k = 2, only the November 1923 and December 1954 events are included in the

analysis, and the perception threshold is set to X0 = 1104, the peak flow value of the January

1903 event, i.e. the third largest event in the historical record. The case of k = 7 corresponds

to the curve shown in Figure 6. The historical record length is kept fixed at h=87. It is quite

striking how little is the effect of including a smaller set of historical values and changing the



perception threshold for this case study. This might not be the case in all situations, and it is

sometimes the case the very different flood frequency curves can be obtained depending on the

decision of which subset of the available historical data is used in the estimation. Once again

the most striking feature in Figure 8 is how including historical information results in much

tighter confidence intervals around much smaller design event (i.e. the return period of large

floods is estimated to be higher when historical information is included in the estimation).
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Figure 8: 95% confidence intervals for Q100 and Q1000 using systematic data only and varying

number of historical events k (with corresponding varying perception threshold X0).

The fact that tighter confidence bands are obtained when using historical data indicates that

a higher confidence is attached to the estimated return curve. This is the natural consequence

of using more information in the estimation procedure, although the estimated value is very

different from what would have been obtained when applying the standard procedures used

in the UK. This is mostly due to the fact that there appear to be more extreme events in

the systematic record than in the historical period: there are a total of 11 events above the

perception threshold in the 46 years of the systematic record, against the seven events in the

87 years of the historical record. Further, the 2015 event was indeed very large and well above

any of the systematic and historical events. Similar findings in terms of how excessively high



the Winter 2015 events in Northern Britain were compared with a long historical record, are

also discussed in Parkes and Demeritt (2016), which presents the history of flooding of the

city of Carlisle from the river Eden. As a reference for how influential the most recent events

might be for the estimation of flood risk in the area it is here noted that the return period for

the value of 1700 m3/s when including the peak flow value of December 2015 in the sample

would be approximately 60 years (annual exceedance probability equal to 0.0165) when using

systematic records only and 240 years (annual exceedance probability equal to 0.0042) when

historical data are used in the estimation. These are spectacular increases of the frequency at

which very high events might be expected to occur compared to the values one would have

obtained before the December 2015 events. This questions the validity of the methods used to

estimate the frequency of flooding, which ultimately rely on the working assumptions that past

events can be informative of the present and future risk. An attribution of the drivers which

caused a higher number of large flooding events in the more recent years is beyond the scope

of this investigation, although climate change (van Oldenborgh et al., 2015) and large scale

natural cycles (Macdonald, 2014) have been connected with increased likelihood of extreme

events. It is finally worth to point out that the higher confidence in statistical terms which is

obtained when using historical data can sometimes not coincide with a higher confidence in

the final estimate, given that very different results are obtained when using the more recent

and systematically gauged record. The decision of which frequency curve to use for design

event estimation would lead to very different results: Bayliss and Reed (2001) discuss some

practical ways in which decisions could be made on whether to rely on the results which include

historical data or how to modify estimates obtained using the standard methods based on the

regional frequency analysis approach. One of the possible and simplest ways to assess how

including historical data impacts the overall flood risk estimation is to run some sensitivity

analysis as those presented above or in Viglione et al. (2013). See also Environment Agency

(2017) for a large simulation study which investigates the impact on the overall estimation

under different scenarios of historical data availability. For this specific case study it appears

that simply including even few historical records already gives large differences in the final

estimates and in the confidence intervals around them, and this is partially due to the fact

that the largest events in the record have been recorded in the last decades rather than in the

historical period. Of course this is not always the case, and sensitivity studies can be useful to



assess how different historical peak flows samples correspond to different final estimates. There

is often some trade-off between the length of the historical period for which information can be

retrieved, and the level at which the perception threshold can be reliably fixed, as information

on very large floods which happened in the far past might be available, but it would then

be unclear what perception threshold could be used since it is assumed that all historical

events in the sample are higher than X0. A possible approach to this would be to use varying

perception threshold, as done for example in Naulet et al. (2005), although this requires a very

thorough study of the history of the catchment. Further, as mentioned earlier in the paper,

considerations on the suitability of using information from a time in which the catchment

was likely very different from its present form also need to be taken into account. These

consideration are made even more complicated by all the possible sources of non-stationarity,

as statistical models which rely on the assumption of an underlying stationary process might

be not appropriate and thus additional structures would need to be added in the model to

account for the impact of changes in the climate and in the catchment (as in Machado et al.,

2015).

7 Discussion

The use of historical data can help in reducing the uncertainty around the estimation of the

frequency of rare events as testified by the widespread recommendation that they should be

used when available (Kjeldsen et al., 2014; Environment Agency, 2017). Caution should be

taken in ensuring that the historical records included in the estimation procedure can indeed

be deemed representative of the present day risk, as the standard procedure assumes that

the data generating process for the whole sample (systematic and non-systematic data) is

unchanged in time: this might be a restrictive assumption and the statistical models might

need to be adjusted to account for possible non-stationarities. Further, when historical records

are used in the estimation, it is generally assumed that the properties of the historical events

are correctly characterised and that all information needed to compute the likelihood shown

in Equation (1) is available. If the historical events are not properly characterised, there is

a risk of actually increasing the uncertainty in the estimation procedure (Strupczewski et al.,

2014). The importance of using accurate historical data can therefore not be stressed enough,



and all efforts should be made to collect as much information as possible regarding past large

events. It might nevertheless be the case that the start date of the period of time covered

by the historical events can not be accurately retrieved in the historical information. In such

cases, rather than discarding the historical information, an estimate for the coverage of the

historical record can be obtained and plugged in the estimation procedure. Interestingly, the

question of estimating the length of time covered by the historical record corresponds to the

problem of estimating the size of a population, a classic statistical problem which is often

referred to as the German tanks problem. Different estimators of the total size of a population

are available in the literature: their theoretical derivation and properties have been presented

and their performance has been investigated by means of a simulation study. The simulation

study confirmed that the preferred method to estimate h should be the MSP estimator, which

is unbiased and has minimal variance. The MSP estimator gives the best results in terms of

the estimated value of h itself and in terms of the estimation of the extreme value model, which

is the ultimate goal of the estimation in this application. The performance of the estimation

improves with increasing sample sizes, as it would be expected. The use of historical data

reduces the uncertainty in the estimation of the extreme value modeling, even when the detail

of the temporal coverage is estimated and not known a-priori.
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E. Sauquet, M. Šraj, J. Szolgay, A. Viglione, E. Volpi, D. Wilson, K. Zaimi, and G. Blöschl
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