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Abstract—Artificial markers are successfully adopted to solve several vision tasks, ranging from tracking to calibration. While
most designs share the same working principles, many specialized approaches exist to address specific application domains.
Some are specially crafted to boost pose recovery accuracy. Others are made robust to occlusion or easy to detect with minimal
computational resources. The sheer amount of approaches available in recent literature is indeed a statement to the fact that no
silver bullet exists. Furthermore, this is also a hint to the level of scholarly interest that still characterizes this research topic. With
this paper we try to add a novel option to the offer, by introducing a general purpose fiducial marker which exhibits many useful
properties while being easy to implement and fast to detect. The key ideas underlying our approach are three. The first one is
to exploit the projective invariance of conics to jointly find the marker and set a reading frame for it. Moreover, the tag identity is
assessed by a redundant cyclic coded sequence implemented using the same circular features used for detection. Finally, the
specific design and feature organization of the marker are well suited for several practical tasks, ranging from camera calibration
to information payload delivery.

Index Terms—RUNE Tag, Fiducial Markers, Cyclic Codes, Camera Calibration, Pose Estimation
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1 INTRODUCTION

AN artificial marker is a physical artifact consis-
tent with a given model which can be used

whenever a reliable pose estimation and identification
is sought. This is the case, for instance, for many Com-
puter Vision tasks ranging from pose recovery [1],
[2], [3] to intrinsic [4] and extrinsic camera calibra-
tion [5]. Within these scenarios, the adoption of an
artificial marker is often preferred over less invasive
alternatives, such as features that can be naturally
found within the scene. In fact, while more convenient
from a practical point of view, natural features are
not guaranteed to be abundant in every scene or to
exhibit an adequate level of detection and recognition
reliability. Furthermore, since an artificial marker can
be used to satisfy different needs, it is valuable to be
able to create application-specific designs. For these
reasons, fiducial tags are not only a widely used tool
in practice, but they are also a lively research topic.
Since a marker is usually created to be easily detected
by a pinhole-modeled camera, most approaches are
designed to exploit the projective invariance of basic
geometrical entities. Specifically, most markers that
can be found in literature are based on projective-
invariant features that are both simple and easy to
detect, such as points, lines, planes and conics. While
it is difficult to track back to the earliest marker
designs, it is sensible to believe that circular dots were
among the first shapes used. In fact, circles appear
as ellipses under projective transformations and the
associated conic is invariant with respect to intrinsic
or extrinsic parameters of the camera. This allows a

fast and robust detection of the features directly on
the image plane. Moreover, it is quite straightforward
to find a proper homography which transforms back
the found ellipses in circles, yielding an orthogonal
view of the marker itself.

Such properties are exploited, for instance, in the
earlier conception proposed by Gatrell [6], adopting a
set of highly contrasted concentric circles which, after
detection, are validated using the correspondences be-
tween the centroids of the ellipses found. In addition
to the sheer feature localization, this design also allow
to attach to each marker some additional information
payload. This is obtained by alternating white and
black circles according to some predefined pattern.
This design has been slightly enhanced in [7] where
the concentric circles are drawn using different colors
and multiple scales, thus allowing to embed more
information. Dedicated “data rings” are added to the
fiducial design in [8] and [9]. A set of four circles
located at the corner of a square is proposed in [10],
where an additional pattern is placed between the
four dots in order to distinguish between different
targets. This ability to separate a set of different
markers is crucial for complex scenes where more
than a single fiducial is required to better handle
occlusion or to track several objects at the same time.
As an additional bonus, the availability of a coding
scheme can be used to enable a validation step and
to lower the number of false positives. For these
reasons, a lot of effort has been dedicated to the design
of effective coding schemas (see for instance [11],
[12], [13]). A rather different but extensively used
approach for marker recognition is to leverage on
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Fig. 1: Some examples of fiducial markers that differ both
for the detection technique and for the pattern used for
recognition. In the first two, detection happens by finding
ellipses and the coding is respectively held by the color of
the rings in Concentric Circles (a) and by the appearance of
the sectors in Intersense (b). While ARToolkit (c) uses image
correlation to differentiate markers, ARTag (d) relies on
error-correcting binary codes. Finally, in (e) and (f) we show
two instances of RUNE-43 and RUNE-129 respectively.

the geometrical properties of the cross ratio among
detected feature points [14], [15], [16] or lines [17].
An interesting advantage of the cross ratio is that, be-
ing projective invariant, the recognition can be made
without the need of any rectification of the image.
Unfortunately, this comes at the price of a low overall
number of distinctively recognizable patterns, and
thus concurrently usable markers. In fact the cross
ratio is a single scalar with a strongly non-uniform
distribution [18] and this limits the number of well-
spaced different values that can possibly be generated.
Finally, also lines are a frequently used feature in the
design of fiducial markers. Usually, they are exploited
by detecting the border edges of a highly contrasted
quadrilateral block. This is the case, for instance, for
the ARToolkit [19] system which is often adopted as
a reference baseline since it has a wide user base and
its code is freely available in source form. Due to the
easiness of detection and reasonable pose recovery
accuracy that can be obtained with this kind of de-
sign [20], similar approaches are found in many recent
proposal, such as ARTag [21] and ARToolkitPlus [22].
With these latter methods, the recognition technique
of ARToolkit, which is based on image correlation
between arbitrary images, is replaced by the reading
of a binary coded pattern (see Fig. 1). The adoption
of an error-correcting code makes both the marker
detection and identification very robust, in fact we
can deem these designs as the most successful from
an applicative point of view.

With this paper we are introducing a novel fiducial
marker that combines several strengths of different
approaches, resulting in an all-rounder that can be
directly applied in many scenarios. The key idea un-
derlying our design is to entrust the robustness of the
detection process to a well-grounded and occlusion-
resilient cyclic code rather than to the geometrical
features themselves. While this is not the first at-
tempt in this direction [23], our proposal introduces
some notable features not available with previous
designs. For starters, the marker we are introducing
is arranged to facilitate its localization thanks to a
reading frame that can be fully constrained using only

two marker dots. Furthermore, our design is flexible
enough to allow to use different amounts of dots,
granting a higher robustness or a greater working
distance, depending on the specific scenario. Finally,
the large number of dots provided by our marker,
beside boosting the pose estimation accuracy, can
be exploited to enable applications that are usually
considered beyond the domain of fiducial markers,
such as camera calibration.

The remaining of the paper is organized as follows.
In section 2 we describe the general design and we
introduce two localization methods, to be used re-
spectively with calibrated and uncalibrated cameras.
Afterwards, we introduce the adopted coding strat-
egy and we suggest a technique to perform instant
decoding, including proper recovery from errors due
to occlusion and misdetection of the marker dots. In
section 3 we test the accuracy achieved when dealing
with different real-world problems and we compare
the obtained performance with some widely used
fiducial markers.

2 RINGS OF UNCONNECTED ELLIPSES

We design our tags as a set of circular high-contrast
features (dots) spatially arranged into concentric layers
(See Fig. 2). The tag internal area, delimited by the
outer layer, is divided into several evenly distributed
circular sectors. Each layer and sector intersection
defines a slot that may or may not contain a dot.

In a tag composed by m layers and n sectors, we
can encode a sequence of n symbols taken from an
alphabet of 2m elements. Each element of the alphabet
is simply defined as the binary number encoded by
the presence or absence of a dot. For example, if the
14th sector of a 3−layer tag contains a dot in the first
and the last layer, we encode the 14th symbol with
the number 510 = 1012. In this paper we propose
two instances of such design, namely RUNE-43 and
RUNE-129. The first is composed by a single layer
divided into 43 sectors. Since the alphabet contains

Fig. 2: Our proposed design divided into its functional parts.
An instance of a 3-layers RUNE-129 is displayed.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 3

only 2 elements (1 bit given by the presence or absence
of a dot), each RUNE-43 encodes a sequence of 43
binary symbols. Conversely, the latter is composed
by 3 layers divided into 43 sectors. 3 slots for each
sector allow to encode a sequence of 43 symbols from
an alphabet of 23 = 8 elements. Not surprisingly,
not all the possible codes can be used as valid codes
for the tag. For instance, the tag composed by only
empty slots does not make any sense. Therefore, we
require the coding strategy to respect some properties
to uniquely identify each dot regardless the projective
transformation involved. We discuss this topic in de-
tail in section 2.3.

Finally, we set the dot radius equals to κ-times to
the radius of the layer at which the dot is placed. We
can take advantage of this property to dramatically
speed up the detection as explained in section 2.1.

2.1 Candidate selection with a calibrated camera

One of the core features of every fiducial marker
system is its ease of detection. Even if one of our
principles is to promote the accuracy over the speed,
we still need to setup an efficient way to identify
each circular feature among the tags. Given an image,
we start by extracting a set of candidate dots. To do
this, we use a combination of image thresholding,
contour extraction and ellipse fitting provided by the
OpenCV library [24]. Additionally, a subsequent naive
filtering step based on dot eccentricity and area keeps
only whose features respect a reasonable prior. Finally,
each extracted ellipse can be further refined by using
common sub-pixel fitting techniques such the one
proposed in [25]. We give no additional details on the
specific procedure we follow since is not important for
all the subsequent operations. Any suitable technique
to extract a set of circular dots from a generic scene
would be fine.

At this point, we need a method to cluster all the
candidate dots into different possible tags and discard
all the erroneous ones that were originated by noise
or clutter in the scene. Since we know that the dots are
arranged in circular rings, we expect that dots belong-
ing to the same layer would appear disposed around
an elliptical shape once observed through a central
projection. Therefore, dots in the same layer can be
identified by fitting an ellipse through their 2D image
coordinates and verifying the distance assuming this
model.

Total ellipses 10 50 100 500

Exhaustive search 252 2118760 75287520 > 1010

Proposed method 45 1225 4950 124750

TABLE 1: Number of RANSAC tests required for an exhaus-
tive search of all ellipses that can be fitted given each subset
of 5 dot candidates found in an image.

A common approach would consist in the use of
a RANSAC scheme that uses a set of 5 candidate
dots to estimate the model (i.e. the ellipse) against
which quantify the consensus of all the others. Unfor-
tunately, since 5 points are needed to characterize an
ellipse into the image plane, the use of RANSAC in a
scenario dominated by false positives (even without
clutter we expect the majority of dots to belong to
different tag or even layer) would quickly lead to
an intractable problem. In Table 1 we give a quick
comparison between the number of model tests re-
quired by our method against an exhaustive search
of all possible 5-dots subsets. A possible alternative
could be the use of a specialized Hough Transform
[26], but also this solution would not be effective since
hindered by the relative low number of samples and
the high dimensionality of the parameter space.

What makes possible the detection of our tags in
reasonable time is the observation that there exists a
relation between the shape of a dot and the shape
of the ring in which is contained. Specifically, they
both appear as two ellipses (since they originate from
a projection of two circles) and the parameters of
both curves depend on the relative angle between
the camera and the plane in which they lie. Even
if from a single conic is not possible to recover the
full camera pose, there is still enough information
to recover (up to a finite set of different choices) a
rotation that transform that conic into a circle. This,
combined with a known relation between the relative
size of the dots and the rings, can give clues of the
geometry of a layer and so ease the clustering process.

In this section, we give a detailed description on
how the recovering of such rotation is done assum-
ing a known camera matrix. In many situations, the
requirement of a calibrated camera is not particularly
limiting. For instance, if our tags would be used as
a coarse registration method for a structured-light
scanner solution (we give examples of this in sec-
tion 3), the camera would certainly be calibrated as
implied by the reconstruction process. However, for
the high accuracy exhibited in points localization, it
would be interesting to use our tags as a calibration
target instead of a classical chessboard. To deal with
this situations, we propose a way to still use our tags
in an uncalibrated scenario in section 2.2.

Given the set of initial dot candidates, we start by
recovering the parameters describing their elliptical
shape. Specifically, we translate the image reference
frame so that the principal point coincides with the
origin, and parametrize each conic as the locus of
point such that:

~xTQ~x =
(
u v 1

) A B −Df
B C −Ef
−Df −Ef − F

f2


uv

1

 = 0

(1)
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Fig. 3: Steps of the ring detection: in (a) the feasible view directions are evaluated for each ellipse (with complexity O(n)),
in (b) for each compatible pair of ellipses the feasible rings are estimated (with complexity O(n2)), in (c) the dot votes are
counted, the code is recovered and the best candidate ring is accepted (figure best viewed in color).

Where f is the camera focal length and u, v are pixel
coordinates.

We follow [27] to estimate a rotation around the
optical center that transforms the ellipse described by
Q into a circle. Specifically we decompose Q via SVD

Q = VΛVT with Λ = diag(λ1, λ2, λ3)

and compute the required rotation as:

RQ = V

 g cosα s1 g sinα s2h
sinα −s1 cosα 0

s1s2h cosα s2h sinα −s1g

 (2)

g =

√
λ2 − λ3
λ1 − λ3

, h =

√
λ1 − λ2
λ1 − λ3

where s1 and s2 are two free signs, leaving 4
possible matrices and α is any arbitrary rotation aroud
the normal of the plane which remains constrained
while observing just a single ellipse. At this point, if
we fix α = 0, each detected ellipse Q may spawn
four different rotation matrices Ri

Q, i = 1 . . . 4 that
transforms the conic into a circle.

Since two of this four candidates imply a camera
observing the back-side of the marker, we can safely
discard all the Ri

Q for which the plane normal N i
Q =

Ri
Q

(
0 0 1

)T is facing away from the camera (i.e.
the last component is positive).

At this point, we search for whole markers by
simultaneously observing the rotation matrices of a
couple of ellipses. Specifically, for each pair Qk and
Qw, we produce the set of the four possible rotation
pairs < = {(Ri

Qk
,Rj

Qw
); i, j = 1 . . . 2}. From this set,

we remove the pairs for which the inner product of
the relative plane normals is below a fixed threshold
and average the remaining rotation pairs by means of
quaternion mean. Finally, we keep the best rotation
average by choosing the one that minimize the dif-
ference between the radii of Qk and Qw after being
transformed by such rotation. The rationale is to avoid
to choose ellipses with discordant orientations (as the

marker is planar) and to use a compatibility score that
takes advantage of the fact that ellipses on the same
ring should be exactly the same size on the rectified
plane.

Whenever a pair of dots Qk and Qw generate a
good average rotation R(Qk,Qw), two hypothesis on
the ring geometry can be made (Fig. 3.b). Indeed, we
expect the ring shape being such that the following
two properties holds. First, it should pass trough the
centers of Qk and Qw. Second, the ratio between the
ring radius and the radii of Qk and Qw, after being
transformed trough R(Qk,Qw), should be exactly κ.
Operatively, we first fit the two circles C1, C2 pass-
ing trough the centers of RT

(Qk,Qw)QwR(Qk,Qw) and
RT

(Qk,Qw)QkR(Qk,Qw) and having radius κ r̂ where r̂
is the average radius of the two transformed dots.
Then, we transform C1 and C2 back through the
inverse of R(Qk,Qw).

As soon as candidate rings are extracted, a circular
grid made by sector and layers can be generated
directly on the image (Fig. 3.c). Of course, if the tag
is composed by more than one layer, we need to
generate additional rings bot inward and outward.
Then, for each slot the presence or absence of a dot
can be observed to produce a binary sequence that
will be analyzed in the decoding step to identify or
discard the candidate marker.

To summarize, the detection step goal is to identify
possible markers candidates by searching groups of
dots belonging to the same ring, expecting them
arranged in an elliptical shape. To do so, we avoid
the direct estimation of ellipses in the image since
it would require an unfeasible effort. Diversely, we
take advantage of the geometrical properties of the
dots and the known ratio κ to obtain two possible
ring candidate for each pair of ellipses. As result, only
O(n2) operations are required.

2.2 Dealing with the uncalibrated case
The approach described so far assumed a calibrated
camera setup. Indeed, all the rotation matrices RQ
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were designed to transform conics lying on the
normalized image plane (hence requiring the focal
length) around the camera optical center. It has to
be noted, however, that camera intrinsics are not an
implied requirement of the tag itself but just a pow-
erful tool to dramatically speed-up the detection. As
a consequence, we would be satisfied to just guess a
raw estimation of the focal length and principal point
good enough to still produce fair rotation matrices
and sustain the detection procedure.

We decided to use the image center as our guess
of the principal point. Even if it appears a bold
assumption, we observed that this holds for most
cameras. Diversely, the focal length is difficult to guess
as it depends on the lens mounted. However, also
in this case we can take advantage on the geometric
properties involved when observing a set of coplanar
circles.

In Section 2.1 we discussed how two feasible plane
normals can be estimated from each conic. It’s cru-
cial to observe that, if we apply the same projective
transformation to two circles lying on the same plane,
only one plane normal estimated from the first circle
will be parallel to a normal extracted from a second,
whereas the other two will diverge [28]. Furthermore,
this property holds only for the correct focal length
and principal point and can be naturally expanded to
multiple coplanar conics.

To better explain this behaviour, we extracted all
orientations from a set of 3 coplanar circles assuming
to know the principal point and varying the focal
length. In fig. 4 (Left) we plotted the values of such
orientations in spherical coordinates spanning pos-
itive values of f from almost zero to 5 times the
known correct value. For the right plot we did the
same procedure but with negative values. In general,
each ellipse produces two different traces in (φ, θ)-
plane as a function of the focal length. Since all correct
orientations have to be parallel to each other when
the correct focal length is used, traces that are relative
to the correct orientation will converge to a same

Fig. 4: Estimated normals orientation in spherical coordi-
nates of three coplanar ellipses spanning positive (Left) and
negative (Right) focal length values. Note how one of the
two possible orientations converge to a common direction
while the other does the opposite.

point as f get closer to the expected value. On the
other hand, all other traces will follow different paths
and will diverge to different directions. It’s clear form
the plot that for positive values of the focal length
there is only one intersection point (in this example
φ ' −0.76, θ ' 0.83). Also, since the other possible
intersection only happens when f becomes negative,
the wrong orientation will never be present in the set
of feasible solutions.

This means that we can both estimate the correct
focal length and extract sets of coplanar circles by
solving a clustering problem among all the generated
plane normals. However, there is no simple closed
form solution to reverse the process and obtain the
best possible focal length that would have produced a
given normal. Therefore, we restrict our estimation to
a discrete set of nf possible focal length values fi, i =
1 . . . nf equally spaced inside the range fmin . . . fmax.
At this point, for each dot Q detected in a scene
and for each fi, exactly two feasible plane normals
N1

Qfi
, N2

Qfi
can be computed as described in section

2.1. All such normals will exhibit two degrees of
freedom and hence can be easily parametrized in
spherical coordinates with azimuth φ and elevation θ
as vectors in R2. Then, all these vectors are collected
in a 2D accumulator whose bins are equally divided
into equal angular ranges.

Once the accumulator is completely filled with val-
ues extracted from all the dots, local maxima with
respect of the cardinality of the bins will represent
clusters of normals oriented almost in the same direc-
tion. Finally, once a maxima is selected, we take the
median focal length of all the candidates contained
in a bin as our sought focal length estimate. More-
over, the candidates contained in a winning bin are
all coplanar and thus the dots search phase can be
restricted on such set.

An example of the proposed focal length estimation
method is given in Fig. 5. We started by rendering a
synthetic image of a RUNE-149 tag trough a virtual
camera of known focal length fvc = 1000 px and
with principal point being exactly the center of the
image (First row of Fig. 5). In the middle of the figure,
we plotted the accumulator values projected on the
front and back side of a hemisphere. As expected, a
clear accumulation of votes can be observed in the
bin containing the combination of φ, θ corresponding
to the normal of the plane on which the tag lie. On the
right, we plotted the distribution of the focal length
candidates of the winning bin, highlighting a clear
maximum around the correct value of fvc. Conversely,
we repeated the same test with two tags on the same
image lying into two different planes (Second row of
Fig. 5). This time, the accumulator shows two clear
maxima corresponding to the plane normals of the
two planes. Again, on the right side of the figure we
plotted the distribution of the focal length candidates
for the two winning bins. Two important observations
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Fig. 5: A synthetic representation of the marker dots normal voting scheme used to guess an initial value of the camera
focal length. Left: RUNE-129 markers rendered by a virtual camera with known focal length and principal point. Center:
the normal accumulator visualized on the unitary sphere. Right: Focal length distribution of the bins. See the text for a
complete discussion on the voting procedure.

can be made. First, both the two distributions show
two clear maxima around fvc, demonstrating that a
focal length guess is the same regardless of the tag
orientation. Second, the more a tag is angled the more
the guess is near the expected value. This can be
explained by noting that a tag perfectly parallel to
the imaging plane has all the dots exactly appearing
as circles and so no focal length can be recovered.
Therefore, the correct focal length is better constrained
when the eccentricity of the dots is low. In fact, from
the accumulator can be noted that the maximum
corresponding to the angled tag is far more sharp than
the other.

Even if the focal length guess is somehow biased by
the angle of the observed tag, we feel that this won’t
be a show-stopper as we can still obtain a focal length
guess good enough to let the detection procedure
work properly. To convince the reader furthermore,
we recall that the focal length is used to obtain a
good rotation matrix to transform all the dots into
circles. The more the angle is low, the more the focal
length become irrelevant to recover that rotation. In
the extreme case, to detect a perfectly parallel tag the
focal length is not necessary at all since all the dots
(and so the whole tag) already appear as circles.

To conclude, in the uncalibrated case we require
an initial camera intrinsic parameters guessing step
able to produce values good enough to perform a
subsequent tag detection. To do so, we guess the
principal point as the image center and the focal
length with a voting procedure among a discretized
set of plausible focal length values.

2.3 Marker Recognition and Coding Strategies
Once a candidate marker has been detected, dots
distribution among the slots produces a sequence of

symbols that can be subsequently used to identify
each tag. However, two coupled problems raise. First,
we don’t have a starting position of the symbols se-
quence since the detection step can only identify each
candidate up to a rotation around the normal of the
plane1. Consequently, any cyclic shift of the sequence
is equally possible and must be recovered. Second,
some dots may be missing or assigned to wrong
slots thus requiring the identification procedure being
somehow robust to this situations.

We decided to cast the problem into the solid math-
ematical framework of coding theory. Specifically, dot
patterns of the tags corresponds to codes generated
with specific properties and error-correcting capabili-
ties. In section 2.3.1 we briefly discuss the mathemat-
ical theory involved in the generation of the codes
while in section 2.3.3 we give a closed form solution to
decode each code block in case of erasures and errors.
We refer the reader to [29] for a in-depth investigation
of the field.

2.3.1 Code generation
We start by defining a block code of length n over a set
of symbols S as the set C ⊂ Sn. The elements of C
are called codewords.

Let q = pk ∈ N be a power of a prime number p and
an integer k > 1. We denote with Fq the finite field
with q elements. A linear code C is a k−dimensional
vector sub-space of (Fq)n where the symbols are taken
over the field Fq . A linear code is called cyclic if any
cyclic shift of a codeword is still a codeword, i.e.

(c0, . . . , cn−1) ∈ C ⇒ (cn−1, c0, . . . , cn−2) ∈ C

1. Note that, conversely, the verse of the sequence is induced by
the counter-clockwise ordering of the sectors that is preserved since
we always observe the frontal face of the marker plane.
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If we consider the field Fq[x]/(xn − 1) obtained by
the polynomial ring Fq[x] modulo division by xn − 1,
there exists a bijection to the vectors in (Fq)n:

(v0, . . . , vn−1)⇔ v0 + v1x+ . . .+ vn−1x
n−1

Furthermore, C is a cyclic code if and only if C
is an ideal of the quotient group of Fq[x]/(xn − 1).
This means that all cyclic codes in polynomial form
are multiples of a monic generator polynomial g(x) of
degree m < n which divides xn − 1 in Fq[x]. Since
multiplying a polynomial form of a code by x modulo
xn − 1 corresponds to a cyclic shift

x(v0 + v1x+ . . .+ vn−1x
n−1) mod (xn − 1) =

vn−1 + v0x+ . . .+ vn−2x
n−2

all codewords can be obtained by mapping any
polynomial p(x) ∈ Fq[x] of degree almost n − m − 1
into p(x)g(x) mod (xn − 1).

Since all the cyclic shift are codes, we can group
the codewords into cyclic equivalence classes such that
two codewords are in the same class if and only if
one can be obtained as a cyclic shift of the other.
Since the number of elements in a cyclic equivalence
class divides n, by choosing an n prime we only have
classes either composed by a single element (constant
codewords with n repetitions of the same symbol)
or where all codewords are distinct. The first can
be easily eliminated since it involves in at most q
codewords.

In our marker setting, the identity of the marker
is encoded by the cyclic equivalence class while the
actual alignment of the circles (i.e. its rotation around
the plane normal) can be obtained from the detected
element within the class. Using coding theory enables
us to balance the trade-off between the number of
errors that can be handled with respect to the number
of possible valid tags (i.e. the number of equivalence
classes) granted. To our knowledge, is the first fiducial
marker system that provides such feature at a geo-
metrical level, modifying its shape to accommodate
different requirements.

The Hamming distance dH : S × S → N is the
number of symbols that differ between two code-
words. Similarly, the Hamming distance of a code C
is the minimum distance between all the codewords:
dH(C) = minu,v∈C dH(u, v). The Hamming distance
plays a crucial role on the number of errors that
can be detected and corrected. Indeed, a code with
a Hamming distance d can detect d − 1 errors and
correct b(d−1)/2c erasures. When we consider a linear
code of length n and dimension k, the singleton bound
d ≤ n − k − 1 holds. Thus, with a fixed code length
n the error correcting codes capabilities are traded
with a smallest number of available codewords. In
our setting we restrict our analysis to the correction of

random errors or erasures but the same mathematical
framework can be used to improve the detection
resilience while correcting burst errors (i.e. errors
that are spatially coherent, like we have in case of
occlusions).

For the proposed RUNE-Tags, we experiment on
two specific codes instances. In the first one (RUNE-
43) we encode the single-layer circular pattern as a
vector in (Z2)43, where Z2 is the remainder class
modulo 2. The number 43 for the radial elements
was chosen because it is a prime that leads to radial
sectors of a reasonable size (slightly less than 10o),
but any cyclic code of prime length would work. The
polynomial x43 − 1 factors into 4 prime polynomial
in Z2, namely x− 1 and three polynomials of degree
14. By excluding x− 1 which generates only constant
codes, and one of the prime polynomial of degree
14, we obtain a generator polynomial resulting in a
cyclic code of dimension 15, with 762 different mark-
ers (equivalence classes) and a minimum Hamming
distance of 13, allowing us to correct up to 6 errors.
In particular, we used the polynomial (3) where the
terms in brackets are two of the three degree 14 prime
polynomials dividing x43 − 1.

g(x) = (1 + x2 + x4 + x7 + x10 + x12 + x14)

(1 + x+ x3 + x7 + x11 + x13 + x14) (3)

In the second (RUNE-129) we have 8 different
patterns (since it is a 3-layer tag) in a sequence of
43 sectors. We hold out the pattern with no dots to
detect erasures due to occlusions and we encode the
remaining 7 patterns as vectors in Z7. For the whole
target, the code is represented as vectors in (Z7)43

using the generator polynomial (4).

g(x) = (1 + 4x+ x2 + 6x3 + x4 + 4x5 + x6)

(1+4x2+6x3+4x4+x6)(1+x+3x2+5x3+3x4+x5+x6)

(1 + 5x+ 5x2 + 5x4 + 5x5 +x6)(1 + 6x+ 2x3 + 6x5 +x6)

(1 + 6x+ 4x2 + 3x3 + 4x4 + 6x5 + x6) (4)

Again, this polynomial is produced excluding one
prime factor of x43 − 1. In particular, in Z7, x43 − 1
factors into the usual x− 1 and 7 prime polynomials
of degree 6. By excluding x−1 and one of the degree 6
factors we obtain a cyclic code of dimension 7, giving
19152 different markers with a minimum Hamming
distance of 30, and allowing us to correct up to 14
errors, or 29 erasure, or any combination of t errors
and e erasures such that 2t + e ≤ 29. Unlike the
case for (RUNE-43) where any choice of the prime
factor to exclude leads to equivalent codes, here the
choice of the prime factor to exclude was dictated
by the need to have a generalized BCH code for fast
decoding, as it will be explained in the next Section.
Of the 6 prime polynomials, only 2 produced a BCH
code correcting 14 errors, while the others had smaller
correction capabilities through BCH decoding.
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2.3.2 Code generation example
To clarify what discussed so far, we present a small
example of how a RUNE-129 can be generated given
any numeric code. Suppose that we want to obtain the
tag encoding the number 9135, that can be represented
in base 7 as 3 · 74 + 5 · 73 + 4 · 72 + 3 · 71 + 0 · 70. Thus,
in Z7 the polynomial p(x) representing 9135 is

p(x) = 3x4 + 5x3 + 4x2 + 3x.

If we multiply p(x) with the generator polynomial (4)
modulus (x43 − 1) in Z7 we get:

c(x) = p(x)g(x) mod (x43−1) = 3x+6x3+2x4+4x5+

6x6 + 2x7 + 5x8 + 6x9 + x10 + 6x11 + 6x12 + x13+

5x14 + 4x15 + 4x16 + 3x17 + 4x18 + 6x19 + 2x20 + 6x21+

x22 +5x23 +6x25 +x26 +x27 +x29 +4x30 +5x31 +4x32+

x33 + 3x34 + x35 + 2x36 + 6x38 + x39 + 3x40 (5)

The polynomial c(x) has the following 43 coefficients
(including the zeros) in Z7

0, 3, 0, 6, 2, 4, 6, 2, 5, 6, 1, 6, 6, 1, 5, 4, 4, 3, 4, 6, 2, 6,

1, 5, 0, 6, 1, 1, 0, 1, 4, 5, 4, 1, 3, 1, 2, 0, 6, 1, 3, 0, 0 (6)

that can be encoded into a sequence of 43 dot triplets
(one triplet per sector) if we map 0 to , 1 to , and
so on until 6 to . In this case, the coefficients in (6)
would result in the sector sequence: , , , , , , ,
, , , , , , , , , , , , , , , , , , , , , , , ,
, , , , , , , , , , ,

2.3.3 Decoding
The recognition of a tag is divided into two main
stages: First the observed code sequence is decoded,
i.e., we find the valid codewords that is closest to the
observed sequence. Second, we align the codeword,
extracting a unique representative of the cyclic class
and the relative cyclic shift of the decoded codeword.

Given the relative high correction capabilities of the
Codes, for the first stage we opted for an algebraic
syndrome-based decoding.

Let g(x) be the generator polynomial, and w(x) =
a(x)g(x) a codeword. Given an observed sequence
v(x) = w(x) + e(x) where e(x) is the error, the goal of
the decoding process is to recover the error e(x) and
consequently, the codeword w(x) and the code a(x).

Let Fqm be an extension of Fq that splits xn−1 into n
linear terms xn−1 =

∏n
i=1(x−ai) where ai ∈ Fqm are

n-th roots of unity. Further, let α ∈ Fqm be a primitive
n-th root of unity, i.e., αn = 1 and αk 6= 1 for all k < n,
then all the roots ai of xn − 1 are of the form αj with
j ∈ {0, . . . , n−1}. Since the generator polynomial g(x)
divides xn − 1, some of these divide g(x). Let

D = {i ∈ 0, . . . , (n− 1) | g(αi) = 0} (7)
N = {i ∈ 0, . . . , (n− 1) | g(αi) 6= 0} (8)

be the set of powers i for which αi is and is not a root
of g(x), clearly, given correct codeword w(x) we have

∀i ∈ D, w(αi) = a(αi)g(αi) = 0 . (9)

We define the syndrome (S1, . . . , Sn) of an observed
sequence v(x) as

Si = v(αi) (10)
we want to connect the values of the syndromes
Si, i ∈ D with the (correctable) error e(x).

Let i1, . . . , iw be the indices of the non-zero digits
in the error sequence e(x), where w ≤ t is the number
of errors, t being the maximum number of errors
correctable by the code. We define the error locator
polynomial as

Λ(x) =

w∏
j=1

(
1− αijx

)
= 1 +

w∑
j=1

λjx
j (11)

with λj ∈ Fqm . With the error locator at hand, we can
locate the error digits by finding the powers of α that
are roots of λ(x), in fact λ(α−i) = 0 if and only if the
i-th digit of v is wrong.

The Newton equations link the coefficients λi, i =
0, . . . , (n− 1) of the locator polynomial with the syn-
dromes Sj , j = 0, . . . , (n− 1) of the error e(x):{

Si +
∑i−1
j=1 λjSi−j + iλi = 0, i ≤ t

Si +
∑w
j=1 λwS[i−j]n = 0, t < i ≤ n+ t ,

(12)

where [x]n is the remainder of the division of x by n.
note that of every index i ∈ D the syndrome Si

of e(x) is equal to the same-index syndrome of the
observed sequance v(x), in fact:

∀i ∈ D, v(αi) = a(αi)g(αi) + e(αi) = e(αi) , (13)

while for the indices in N the syndromes of e(x) are
unknown. Although there are approaches to solve the
Newton equation in the general case [30], the most
efficient algorithms are for special codes where there
are sufficient equations in (12) that only use known
syndromes to solve the system of linear equations in
Fqm .

A cyclic code is generalized BCH correcting t errors if
there are 2t consecutive powers of α (αc, . . . , αc+2t−1)
that are roots of g(x). In this case we have exactly
t of the Newton equations making use only of the
known syndromes, i.e., the syndromes computed on
those powers of α, thus we can solve (12) using those
equations. In particular, the error locator as well as
the actual error can be efficiently computed using
Forney’s algorithm [31]. Let S(x) = Sc+Sc+1x+ · · ·+
Sc+2t−1x2t− 1 be the reduced syndrome polynomial,
there are two unique polynomials Λ(x) and Ω(x) in
Fqm [x] with degree less than or equal to t for which

Ω(x) = S(x)Λ(x) mod x2t . (14)
We call Ω(x) the error evaluator polynomial, while Λ(x)
is the error locator polynomial (11). These polynomi-
als can be computed efficiently noting that (14) can be
re-written as

Λ(x)S(x) + f(x)x2t = Ω(x) . (15)

Hence, Ω(x) is the gcd between S(x) and xt, and both
Λ(x) and Ω(x) can be computed using the (general-
ized) Euclidean algorithm.
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Once the locations of the errors are computed find-
ing the roots of Λ(x) among the powers of α, the error
values are computed as follows:

ej = −α
−(c−1)jΩ(α−j)

Λ′(α−j)
, (16)

where Λ′(x) =
∑2t−1
i=1 iλix

i−1 is the formal derivative
of Λ(x).

In the case of the presence of e erasures, a BCH
code can correct up to t′ = t − de/2e errors. First we
set the erased digits to 0, and then we consider the
error/erasure locator polynomial Γ(x) = Λ(x)E(x) where
E(x) is the erasure locator polynomial

E(x) =

e∏
j=1

(
1− αijx

)
. (17)

In this context i1, . . . , ie are the indices of the e era-
sures.

With the error/erasure locator polynomial at hand,
we re-write (14) as

Ω(x) = S(x)Γ(x) mod x2t

= S(x)E(x)Λ(x) mod x2t , (18)

with S(x) and E(x) known, and Ω(x) and Γ(x) of
degree less than or equal to t′ + e. As before, we use
the Euclidean algorithm to compute Ω(x) and Λ(x).
Then, the roots of Γ(x) will give us the locations of
the errors, and their values are computed as follows:

ej = −α
−(c−1)jΩ(α−j)

Γ′(α−j)
. (19)

It is easy to show that (RUNE-129) is a generalized
BCH code correcting 14 errors, since α = x5 + 4x4 +
5x2+6x defined over Z7/(x

6+6x5+2x3+6x+1) ' F76

is a primitive 43-th root of unity, and the 28 con-
secutive powers α8 . . . α35 are all roots of (4). This
means that through Forney’s algorithm we can decode
t errors and e erasures up to 2t + e ≤ 28, thus quite
close to the code’s limit.

In the case of (RUNE-43), the code cannot be re-
duced to a generalized BCH, however, α = x7 + x5 +
x4 +x2 +x+1 defined over Z2/(x

14 +x12 +x11 +x10 +
x9 + x8 + x4 + x3 + 1) ' F214 is a primitive 43-th root
of unity, and has 3 ranges of 6 consecutive powers
that are roots of (3), namely α1 . . . α6, α19 . . . α24,
and α37 . . . α42. Limiting the correction capabilities to
5 errors, we have 8 Newton equations using only
known syndromes. Consequently, we can solve the
system of linear equations in F214 to find the error
locator polynomial and, thus, the error locations. Since
the code is binary, the error values are all 1 and we
only need to flip the codes at the error locations. Note
that we can detect whether the sequence has more
than 5 errors by the fact that the locator polynomial
has roots that are neither 0 nor powers of α, leaving
us with a margin around the decision boundary of
the codewords where we detect but cannot correct the

error. This is not a major problem in our application
where it is arguably safer to ignore a tag with enough
errors to be adjacent to the decision boundary.

2.3.4 Code Alignment
The alignment of the code is performed through an
integer Fourier Transform. Let k be an integer such
that r = kn + 1 is prime, and let α be a primitive
element of the multiplicative group Zr×, i.e., α 6= 0
and αi 6= 1 for all i < r− 1. Under these assumptions
αk has a prime period n. Assume also that for the
given k, α combination αk > q. In our cases with n =
43 we have k = 4, r = 4 · 43 + 1 = 173 prime, and 2 a
primitive element of Z173. Further 24 = 16 > 7 > 2.

Given a codeword sequence c0, . . . , cn−1 of integers
between 0 and q− 1, we define the Fourier transform
in Zr of this sequence as

Ci =

n−1∑
j=0

αkijcj mod r . (20)

We define the phase of a Fourier coefficient Ci as
φi = logα(Ci), i.e., the unique integer 0 ≤ φi ≤ r − 2
such that αφi = Ci mod r. With this definition we
compute the shift of the code as l = bφ1/kc and the
Fourier Transform of the aligned code as

Ĉi = α−kliCi mod r . (21)

Note that for constant codewords, C1 = · · · = Cn−1 =
0 so the shift is not well defined, while in all other
cases we have C1 6= 0. Also, under this rotation 0 ≤
logα(Ĉ1) < k, thus we are minimizing the phase of Ĉ1.
Once the aligned Fourier Transform is at hand, we can
compute the aligned codeword sequence ĉ0, . . . , ĉn−1
using the inverse Fourier Transform in Zr:

ĉi = n−1
n−1∑
j=0

α−kijĈj mod r . (22)

3 EXPERIMENTAL VALIDATION
We tested our proposed fiducial markers in many
different ways. To start, in section 3.1 and 3.4 we
assessed the pose estimation accuracy compared to
the ARToolkit [19] and ARToolkitPlus [22] which
are deemed as a de-facto standard markers for aug-
mented reality applications. Such tests are performed
synthetically by rendering different frames varying an
additive Gaussian noise, blur, illumination gradient
and random occlusions. In all the tests, we simulated
a 1024x768 pixel camera with a single tag placed at
the image center spanning an area of 400x400 pixels.

Furthermore, driven by the good localization accu-
racy and occlusion resilience of the composing circular
features, we tested RUNE-Tags as targets for camera
calibration and object measurement. In section 3.2 we
simulated a mono camera calibration scenario while
in 3.3 we compared the camera pose estimation for
both the mono and the stereo case. Also, we assessed
the repeatability achievable while estimating the dis-
tance between two joint tags moving in a scene.
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Fig. 6: Evaluation of the accuracy in the camera pose estimation with respect to different scene conditions. Examples of
the detected features are shown for RUNE-129 (first image column) and ARToolkitPlus (second image column).

Finally, in addition to the evaluation with synthetic
images, in section 3.6 we performed some qualitative
tests on real videos.

3.1 Accuracy and Baseline Comparisons

In Fig. 6 the accuracy of our markers with calibrated
cameras is evaluated in terms of the relative pose
angle ∆α (the arc-cosine of the dot product between
the last columns of the recovered rotation matrix
and the ground truth). In the first test, an additive
Gaussian noise was added to images with an average
view angle of 0.3 radians wrt. marker plane normal
and no artificial blur added. The performance of all
methods get worse with increasing levels of noise and
ARToolkitPlus, while in general more accurate than
ARToolkit, breaks when dealing with a noise with a
std. dev. greater than 80 (pixel intensities goes from 0
to 255). Both RUNE-43 and RUNE-129 always recover
a more faithful pose. We think that this is mainly due
to the larger number of correspondences used to solve
the PnP problem. In fact, we can observe that in all the
experiments RUNE-129 performs consistently better
than RUNE-43.

Unlike additive noise, Gaussian blur seems to have
a more limited effect on all the techniques. This is

mainly related to the fact that all of them performs a
preliminary edge detection step, which in turn applies
a convolution kernel. Thus is somewhat expected that
an additional blur does not affect severely the marker
localization. Finally, it is interesting to note that higher
angles (with respect to the marker’s normal) lead to
an higher accuracy (as long as the markers are still
recognizable). This is explained by observing that the
constraint of the reprojection increases with the angle
of view. Overall, these experiments confirm that Rune-
Tag always outperforms the other two tested tech-
niques by about one order of magnitude. In practical
terms the improvement is not negligible, in fact an
error as low as 10−3 radians still produces a jitter
of 1 millimeter when projected over a distance of
1 meter. While this is a reasonable performance for
augmented reality applications, it can be unacceptable
for obtaining precise contactless measures.

3.2 RUNE Tags for camera calibration

Since RUNE-129 provides an extremely robust yet
precise way to localize many circular features we tried
to use the proposed markers as a calibration target.
In most cases, camera calibration is performed by
exposing a well known pattern to the camera in many



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 11

Fig. 7: Accuracy of camera calibration when using a single RUNE-129 as a dot-based calibration target. Camera poses has
been divided into 3 groups based on the maximum angle between the camera z-axis and the marker plane. A random
subset of photos is used to test the calibration varying the number of target exposures. In all the experiments we achieve
a good accuracy with a decreasing st.dev. when increasing the number of photos.

different point of views. This allows the gathering of
many 3D-2D point correspondences used to simul-
taneously recover the target pose, camera intrinsics
parameters, and the lens distortion. Most of the time, a
chessboard pattern is used since it provides a good set
of feature points in the form of image corners. How-
ever, a manual chessboard boundary identification
process is required for the limited robustness of such
patterns against occlusions or illumination gradients.
As a consequence, our fiducial markers may provide
a very interesting alternative when an automatic cal-
ibration procedure is sought or an optimal visibility
of the target cannot be guaranteed.

In Fig.7 we show the calibration results while cali-
brating a camera using a single RUNE-129 as calibra-
tion target and by varying the number of exposures
used for each calibration. Specifically, we divided the
camera poses (as given by PnP) into 3 major groups
with respect to the angle between the camera z-
axis and the marker plane normal. For each group,
more than 200 photos are taken and a random subset
of them are selected for each test to compose the
plot. The ground truth is provided by a calibration
performed with a 20 × 20 chessboard target exposed
in 200 different poses using the method described in
[32] to limit the errors due to printing misalignments.
Camera calibration is performed by using the com-
mon technique described in [33] implemented by the
OpenCV library [34].

Some interesting facts can be observed. First, the
standard deviation of all the estimated parameters
decrease by increasing the number of photos. This is

an expected behaviour that agrees with the accuracy
experiments presented in section 3.1. Indeed, the more
the number of target feature points given, the more
the calibration error can be reduced by the non-linear
optimization process. Second, the focal length estima-
tion tends to be more accurate while considering the
target poses spanning trough a greater range of angles
(i.e. between 0 and 60 degrees). Differently, principal
point seems to behave in the opposite way, giving
better results when keeping the target plane more
parallel to the image plane. This is probably due to
the well known localization bias of the ellipse centers
[35]. Third, the first two radial distortion parameters
(i.e. k1 and k2) behave respectively like the principal
point and the focal length. It has to be noted that
a precise localization of the ellipse centers is only
achievable in absence of distortion since the projec-
tive invariance of conics holds only for pure central
projections. Therefore, we think that the calibration
performance can be improved by estimating an initial
calibration assuming no radial distortion followed by
an iterative undistortion and re-localization of the
circular features and a re-calibration of the camera
intrinsics. Finally, we obtained no completely wrong
calibrations due to mis-detections of the target thanks
to the extremely resilient coding scheme used for
markers identification.

In Fig.8 we compared the recovered camera in-
strinsic parameters varying the number of shots for
RuneTag and a standard 10x10 Chessboard calibra-
tion target, calibrated with the method described in
[33]. Both the two approaches shows comparable re-
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Fig. 8: Comparison between a calibration performed with RUNETag and chessboard target

sults, with the standard deviation decreasing while
increasing the number of target exposures. Overall,
chessboard target provides more stable results for the
principal point while RuneTag target performs better
in the focal length estimation.

3.3 Mono vs. Stereo Pose Estimation
To further test the camera pose estimation accuracy
we compared the results achievable comparing a
single camera setup (using PnP algorithm) with a
calibrated stereo setup that can recover the pose by
means of a 3D reconstruction of the marker followed
by an estimation of the rigid motion with respect to
the known model.

We started by calibrating a stereo rig composed
by two 1.3 Mega-pixel cameras using a marker-based
target as described in section 3.2. Then, we firmly
positioned two RUNE-129 tags (with a diameter of
30 mm) at about 50 mm apart to a rigid metal rod so
that they could only be moved without changing their
relative position. The marker pair was then moved in
a space varying from 230 to 320 mm in front of the
stereo rig.

In the first experiment (Fig. 9, Left) we plotted the
unknown distance between the two markers as esti-
mated only by the first camera (in red), by the second
(in green) and by using stereo reconstruction (blue) as
a function of the angle between the first marker plane
normal and the first camera optical axis. It can be

noted that the stereo case exhibit lower variance with
respect to single-camera scenarios with some sparse
outliers happening when the entire marker is not
visible by both the cameras. Moreover, the distance
measured by the mono case tends to be a little lower
than the stereo one if the angle is below 30 degrees
while increasing significantly for higher angles. This
behaviour is probably due to the PnP algorithm that
suffers for a non-isotropic error with respect to the
three camera axis (i.e. the localization error on the
camera z-axis is higher than the other two).

In (Fig. 9, Right) we compared the angle around
the plane normal of a single RUNE-129 tag for mono
(using the first camera) versus the stereo case. Ideally,
the ratio between the two measures should be exactly
1 and so all the points should be disposed on the 45
degrees red line shown in the plot. We can observe
that most of the measures are equally distributed
above and below such line indicating no significant
bias. This behaviour is consistent for all the angles
spanning between 10 and 60 degrees since the overall
geometrical shape of all the dots (i.e. minor and major
axis length) remains constant if a rotation around the
marker plane normal is applied. This suggests that the
proposed tags may be used as a coarse registration
initialization for a 3D scanner turntable.

We tested this possible real-world scenario to com-
pare our proposed tags against the recently developed
ArUco Tags [36] which exhibit similar reliability under

Fig. 9: Comparison between the pose accuracy for a single or stereo camera setup. Left: distance between two jointly
moving markers as a function of the angle with respect to the first camera. Right: Angle around the marker plane normal
as estimated by the first camera versus the stereo setup. Ideally, all the measures should lie on the 45 degrees red line.
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Fig. 10: Real-world reconstruction scenario. ArUco and RUNETag were placed on top of a scanner turntable to provide
the initial coarse estimation for rangemap alignment. See text for details.

heavy occlusions. In (Fig. 10, Top-Right) we show two
pictures of our setup, with a test object placed on top
of one of the two kind of tags covering the entire
turntable. To test the rangemap registration accuracy,
we took 10 ranges spanning a complete 360 turn of
the turntable. Then, for each couple of ranges, pose
recovered with each tag was used to provide an initial
coarse alignment which has been further refined with
ICP. In (Fig. 10, Left) we plotted the distance between
the initial coarse and the refined configuration of each
range couple, in terms of root mean square distance
of corresponding rangemap points. The rationale is
that the worse the pose provided by the tag, the more
ICP has to move each range for the fine alignment. In
the plot we can clearly see how RuneTag provides
lower RMS (so less ICP displacement was necessary)
at any initial relative rotation. For both the tags, the
initial relative rotation proportionally affects the pose
estimation error. Finally, in (Fig. 10, Bottom-Right) we
show a qualitative example of the coarse estimation
provided by ArUco (Left) and RuneTag (Right).

3.4 Resilience to Occlusion and Illumination
One of the main characteristics of Rune-Tag is that it is
very robust to occlusion. In section 2.3 we observed
that RUNE-129 can be used to distinguish between

Occlusion 0% 10% 20% 50% 70%

RUNE-43 100% 69% 40% 0% 0%
RUNE-129 100% 100% 100% 100% 67%

TABLE 2: Recognition rate of the two proposed marker con-
figurations with respect to the percentage of area occluded.

about 20.000 different tags and still be robust to oc-
clusions as large as about 67% of the dots. By choosing
different cyclic coding schemes is even possible to
push this robustness even further, at the price of a
lower number of available tags. In the first column of
Fig. 11 we show how occlusion affects the accuracy
of the pose estimation (i.e. how well the pose is
estimated with fewer dots regardless to the ability
of recognize the marker). Albeit a linear decreasing
of the accuracy with respect to the occlusion can be
observed, the precision is still quite reasonable also
when most of the dots are not visible.

In Table 2 we show the recognition rate of the
two proposed designs with respect to the percentage
of marker area occluded. In the second column of
Fig. 11 the robustness to illumination gradient is
examined. The gradient itself is measured unit per
pixel (i.e. quantity to add to each pixel value for a each
pixel of distance from the image center). Overall, the
proposed methods are not affected very much by the
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Fig. 11: Evaluation of the accuracy in the camera pose estimation of RUNE-Tag with respect to occlusion (left column)
and illumination gradient (right column).
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Fig. 12: Evaluation of the recognition time respectively when adding artificial false ellipses in the scene (left column) and
with several markers (right column).

illumination gradient and break only when it become
very large (in our setup an illumination gradient of
1 implies that pixels are completely saturated at 255
pixels from the image center). This agrees with the
fact that a precise sub-pixel ellipse contour estimation
is quite robust to steep changes in scene illumination.

3.5 Performance Evaluation
Our tag system is designed for improved accuracy
and robustness rather than for high detection speed.
This is quite apparent in Fig. 12, where we can see
that the recognition could require from a minimum
of about 15 ms (RUNE-43 with one tag an no noise)
to a maximum of about 180 ms (RUNE-129 with 10
tags) with a consumer Core2 Duo PC, 2Ghz clock.
By comparison ARToolkitPlus is about an order of
magnitude faster [22]. However, it should be noted
that, despite being slower, the frame rates reachable
by Rune-Tag (from 60 to about 10 fps) can still be
deemed as usable even for real-time applications (in
particular when few markers are viewed at the same
time).

3.6 Shortcomings and Limitations
In Fig. 13 some experiments with common occlusion
scenarios are presented. In the first two shots an object
is placed inside a RUNE-43 marker in a typical setup
used for image-based shape reconstruction. In the
following two frames a RUNE-129 marker is tested for
its robustness to moderate and severe occlusion. At
last, in Fig. 14 an inherent shortcoming of our design
is highlighted. The high density exhibited by the more

Fig. 14: Recognition fails when the marker is angled and far
away from the camera and the ellipses blends together.
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Fig. 15: Left: Identification percentage as a function of
observed marker size. Right: Example of a successful iden-
tification of a far-away marker in the generated set.

packed markers may result in a failure of the ellipse
detector whereas the tag is far away from the camera
or very angled, causing the dots to become too small
or blended.

To assess how much the dot size can be reduced
while still allowing a reliable detection of the tags
we generated a synthetic set of 471 images with a
resolution 1024x768 pixels for different poses of a
single RUNE129 tag. In Fig. 15 we plotted the per-
centage of the images for which the detection was

(a) (b) (c) (d)

Fig. 13: Some examples of behaviour in real videos with occlusion. In (a) and (b) an object is placed inside the marker
and the setup is rotated. In (c) and (d) the pose is recovered after medium and severe occlusion.
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successful as a function of the minor axis length of
the tag projection. Since the ratio between the inner-
most layer dot size and the whole marker size is 0.043,
we see that with a minimum observed tag size of 130
px (internal dots of ≈ 6x6 px) we achieve almost a
100% detection rate which rapidly drops if the tag
gets smaller. This suggest that the identification can
still be reliable with extremely small dots size as soon
as the ellipse detector is able to discriminate among
each individual dot.

4 CONCLUSIONS
In this paper we proposed a novel fiducial marker
system which heavily relies on the robust framework
of cyclic codes to offer superior occlusion resilience,
accurate detection and robustness against various
types of noise. We improved on the seminal version
proposed in [37] by investigating their usage even for
the uncalibrated case and developed a fast technique
to directly decode the symbol sequence encoded in
each tag (i.e. a closed-form solution to recover the
equivalence class and align the corresponding code).

Moreover, we expanded the experimental evalua-
tion by testing its adequacy to be used as a typical dot-
based camera calibration target. This is supported by
also experiments to evaluate its behaviour comparing
the pose estimation with both the mono and the stereo
scenario.

Overall, RUNE-Tags offer many advantages over
the existing fiducial marker systems. First, it gives
the user the flexibility to trade-off the occlusion re-
silience with respect to the number of simultaneously
detectable tags in a scene. Consequently, if one favors
robustness against diversity, a very limited set of tags
can be generated with high Hamming distance to
guarantee extremely high error recovery rates. Sec-
ond, the design itself may vary in the number of
possible layers. The proposed single-layered RUNE-
43 exhibit limited occlusion resilience while offering
plenty of space in the marker interior for any addi-
tional payload or even for placing a physical object for
reconstruction task. Third, by providing many circular
features on a single tag we not only achieve an order
of magnitude better pose recovery with respect to
other tags but we managed to use the tag itself as
a calibration target.

Finally, while slower than other techniques, our
method is fast enough to be used in real-time applica-
tions. However, the severe packing of circular points
may cause the ellipse detector to fail especially when
dealing with low resolution, high angles or motion-
blurred images. This limitation can be easily relieved
by using a simpler marker, such as RUNE-43, which
allows for a more extended range while still providing
a satisfactory precision.

An implementation of our proposed tags is
available at http://www.dsi.unive.it/∼bergamasco/
runetag/
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