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Abstract 

 Identifying patterns in data relating to extreme rainfall is important for classifying and estimating 

rainfall and flood frequency distributions routinely used in civil engineering design and flood 

management. This study extracts the key moisture pathways for extreme rainfall events in northern 

Spain using several novel self-organising map (SOM) models. These models are trained using various 

subsets of a backwards trajectory data set generated for extreme rainfall events between 1967 and 2016. 

The results of our analysis show 69.2% of summer rainfall extremes rely on recirculatory moisture 

pathways concentrated on the Iberian Peninsula where as 57% of winter extremes rely on deep Atlantic 

pathways to bring moisture from the ocean. These moisture pathways have also shown differences in 

rainfall magnitude, such as in the summer where peninsular pathways are 8% more likely to deliver the 

higher magnitude extremes than their Atlantic counterparts.  

Introduction 

Floods generated by extreme weather events continues to be a global issue causing widespread social 

and economic damages. Effective flood risk management requires estimates of the frequency and 

magnitude of future flood characteristics, such as for example the magnitude of the design rainfall and 

flood events with a return period of 100 or 10000 years.  Such estimates are obtained through frequency 

analysis by fitting statistical extreme value distributions directly to past extreme events. Traditional 

frequency analysis techniques do not account for differences in the underlying processes causing 

extreme events. The importance of accounting for different event-generating processes in frequency 

analysis has been discussed in several studies.  Waylen and Woo (1982) separated an annual maximum 

series of flood peak into events caused by rainfall and snowmelt, respectively, and fitted a mixture 
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distribution consisting of two Gumbel distributions. Hirschboeck (1987) manually divided a flood 

distribution into eight subcategories each representing floods caused by different atmospheric patterns. 

This resulted in a set of distributions, each with significantly different structure with some containing 

multiple peaks, whereas others showed a distinct generalised extreme value distribution (Hirschboeck, 

1987).  Merz & Blöschl, (2003) utilised a process-oriented method by separating the initial flood 

distribution by generating mechanism in Austrian catchments, which was then used to show “short rain” 

floods generally happened in the southern part of the country. Villarini and Smith (2010) found that the 

upper tail of flood distributions in the Eastern part of the US are influenced by tropical cyclones.   

Kjeldsen et al. (2018) studied extreme rainfall in South Korea and used information published by the 

Korean Meteorological Administration to create annual maximum series of one day rainfall caused by 

typhoons and non-typhoons, respectively. 

However, while most studies argue that improved process-understanding will improve the reliability of 

model predictions, there is still a need to develop objective methods for distinguishing between events 

generated by different mechanisms (Kjeldsen et al., 2018).  In addition, the benefits of process-oriented 

techniques come at a computational cost; previously constraints regarding the availability of data and 

computational power have limited our ability to identify these generation mechanisms. Where data has 

been available it has generally been provided in small sample sizes. This limitation also explains the 

preference for non-process-based methods which are less computationally expensive (Hirschboeck, 

1987).  Despite this, with increasing amounts of data are becoming available such as through the Hybrid 

Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT) (Stein et al., 2015) which opens-

up new opportunities to take advantage of auxiliary knowledge regarding these extreme events. 

This study will focus on the different processes controlling extreme precipitation events in the Douro 

catchment, located in north-western Spain. Mediero et al. (2014) found a general decrease trend in 

annual maximum flood series in Spain. In addition, a recent study found that floods towards the north 

of the Iberian Peninsula are trending towards early winter (Blöschl et al., 2017). Santos et al. (2018) 

partially explained such decreasing trends by a negative trend in the moisture amount that arrives at 

Spain, more evident in the case of Continental storms. Without high resolution knowledge of how the 

underlying processes effect flood distributions current models come with higher process uncertainty. 

Current literature explores the large-scale atmospheric processes which influence global rainfall 

variation. Utsumi et al. (2017) found the main driver for precipitation in central Europe is extratropical 

cyclones. The author’s found a similar result in the Mediterranean but with a higher tendency to be 

manipulated by extratropical cyclones. Further studies have identified the tropical-subtropical North 

Atlantic corridor (a corridor stretching from the Gulf of Mexico and the Caribbean Sea to the 

Mediterranean) to influence moisture fluxes on the Iberian Peninsula (Gimeno et al., 2010a, Gimeno et 

al. 2010b, Scoccimarro et al. 2018). Jorba et al. (2004) extracted the high-level trajectories arriving in 

the Barcelona area by using HYSPLIT, clustering them into 10 different patterns describing the 2D 

(latitude/longitude) pathways. Such work highlights the tropospheric circulation patterns that influence 

the Barcelona area by identifying that the main flows come from the Atlantic, 5500m above sea level. 
However, this study focussed on the upper portion of the atmosphere and therefore is not directly useful 

for identifying moisture transport systems which are generally found in the lower 2000m (Wallace et 

al., 1977). More recently, links have been drawn between low-level trajectory classifications and a 

temporal trend in their occurrence, by using HYSPLIT to extract trajectories associated with flood 

events and classifying them using a different clustering method (k-means). The results of this analysis 

showed the Continental storms appeared to be more common than their Atlantic/Mediterranean 

counterparts when aligned with extreme flood timings (Santos et al., 2018). 

Moisture pathways associated with seasonal extremes have been identified in Canada by following a 

similar approach, extracting and classifying trajectories for extreme rainfall events at varying altitudes 

between 0 and 5000m (Tan et al., 2017). The study identifies nine spatially coherent regions using self-
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organizing maps (SOM), highlighting the key moisture sources related to the seasonal extreme 

precipitation. Despite this there is limited consideration for varying the number of clusters the algorithm 

was initialised with and no indication of whether a numerically accurate solution was produced. 

Methods for classifying these moisture trajectories can be grouped into two main categories: supervised 

and unsupervised. Supervised methods for classification rely on having a training data set with both 

inputs and known outputs. These methods are most useful for identifying similarities and differences 

between the known classifications. An example of a supervised trajectory classification algorithm is 

TraClass (Lee et al., 2008), which utilises the known class labels to identify descriptive areas of the 

trajectories which can be used to differentiate each class. Unsupervised classification methods do not 

require a training set with known class labels. Instead these methods can be used to identify groups of 

numerically related input vectors. The most popular unsupervised methods are k-means and SOMs, 

which have recently been shown to successfully identify trajectory groups (Owens & Hunter, 2000; Lee 

et al., 2008; Tan et al., 2017; Santos et al.et al., 2018). 

This paper aims to use self-organising maps both to identify the key moisture pathways which lead to 

annual maximum (AMAX) rainfall and to highlight the magnitude differences between these 

classifications. To begin the selected case study and data used is described. Second, the classification 

methodology and models are introduced. Third, the results of the classification model development 

are presented before final conclusions are presented. 

Methods 

Precipitation & Trajectory Data 

This analysis focuses on the Douro catchment located in a north-western region of Spain. AMAX series 

of one-day precipitation were extracted from 310 gauging stations shown in Figure 1. The data sets 

available for each station vary in length with some containing data from 1948 and others only containing 

data from 1967 to 2016. In total 16,534 one-day rainfall events were extracted. The AMAX data were 

normalised between 0 and 1 using the equation below, here rainfalli refers to the annual maximum 

series vector for a given station i. 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙𝑖 =
𝑟𝑎𝑖𝑛𝑓𝑎𝑙𝑙𝑖 −min⁡(𝑟𝑎𝑖𝑛𝑓𝑎𝑙𝑙𝑖)

max(𝑟𝑎𝑖𝑛𝑓𝑎𝑙𝑙𝑖) − min⁡(𝑟𝑎𝑖𝑛𝑓𝑎𝑙𝑙𝑖)
 

This provides a more comparable view of the rainfall variation between stations, as rainfall magnitudes 

depend on height and spatial location, among other variables. Consequently, this normalisation removes 

differences between stations with high and low rainfall magnitudes, providing a baseline to analyse any 

magnitude changes without the need to use the station as a dependent variable. The normalisation 

smooths the empirical cumulative distribution curve of rainfall magnitudes (Figure 2).  
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Figure 1. Locations of gauging stations used to extract annual maximum rainfall events, black line 

indicates the catchment boundary for the Duoro river. 

Figure 2. Empirical cumulative distribution for all rainfall data both before normalisation (left) 

and after (right). 

For each AMAX event 24 backwards trajectories were generated using the HYSPLIT system (Stein et 

al., 2015). In order to generate these trajectories HYSPLIT must be initialised with a start location, start 

time and run-time which are then used alongside meteorological files to generate a trajectories. We used 

NCEP/NCAR reanalysis data files (Kalnay et al. 1996) as input for the HYSPLIT model. The primary 

variables used are related to air pressure, velocity, specific humidity and temperature (PRSS, T02M, 

U10M, V10M, TPP6, HGTS, TEMP, UWND, VWND, WWND and RELH). For a full description of 

the variables please refer to NOAA (2003). HYSPLIT uses these files to estimate the storm tracks and 

water budgets for each storm event.The method used by HYSPLIT is a hybrid between a Lagrangian 

and Eulerian approach which allow the relative calculation of the advection, diffusion and particle 

concentrations (Draxler and Hess, 1997; Draxler and Hess, 1998, Draxler, 1999, Stohl and James, 2004). 

These trajectories were initiated using a set of combinations of altitudes (10, 410, 810, 1210, 1610 and 

2010m above sea level) and times (00:00, 06:00, 12:00, 18:00) on the day of the event’s occurrence. 

The altitudes were selected to coincide with the expectation of moisture pathways generally existing in 

the lower 2000m of the atmosphere (Wallace et al., 1977). The length of the backwards trajectories was 
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fixed to 48 hours before the given initiation time and resulted in a total of 331,728 successfully extracted 

storm tracks, five examples of the output from HYSPLIT are presented in Figure 3. Each of these 

trajectories consists of 49 points identifying the position of the air parcel at each hour interval. Each 

point has the following information associated with it: Latitude, longitude, altitude, specific humidity 

and atmospheric pressure. For the purposes of this study only latitude, longitude and altitude are used 

as the goal is to identify the spatial origin of these events. 

 

Figure 3. Five backwards trajectories from a single AMAX event starting from the northern most 

point. 

Trajectory Classification 

The SOM approach was adopted to classify these trajectories, due to a significant number of successful 

hydrological applications (Kalteh et al., 2008; Fahimi, Yaseen, & El-shafie, 2016; Tan et al., 2017). A 

self-organised map is a type of neural network architecture used for classifying or reducing the 

dimensions on input data. It does this through the unsupervised learning of a data set to produce its 

discretised representation, which is often referred to as a ‘map’. The purpose of which is to describe the 

relationships between the clusters. An example of a SOM is given in Figure 4.  SOMs create this map 

through competitive learning where each output (or class) competes to represent a given input vector 

(Kohonen & Honkela, 2007). For each input vector the closest node is selected and moved closer to the 

given input vector; a neighbourhood function is then applied such that the neighbours of the node are 

also moved although to a lesser extent. This then trickles through the network until the movement is 

next to none. For a full and detailed description of how the SOM method works please see Kohonen 

and Honkela (2007). 
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Figure 4. A sample SOM architecture with 98 input nodes representing the 49 latitude and longitude 

points of a trajectory. All input nodes are connected via weighted edges to the four output nodes 

(classifications). These output nodes are arranged into a neighbourhood grid before training which 

results in classifications being similar to their neighbours. For example, classes 2 and 3 contain 

trajectories which are closer to class 1 than those contained in class 4. 

The key benefit of SOMs is the assurance that inputs which are close in the original high dimensional 

input space are close in the classified low dimensional space (output), which is not guaranteed by other 

procedures such as k-means. This works through for each training item (or in our case trajectory) 

updating both the closest matching output node and its neighbouring nodes. Further to this, although 

the SOM approach requires a determined number of output nodes or clusters it does not require an 

assumption on the distribution of the data such as would be required by, for example a Gaussian mixture 

method (Zhuang, 1996). 

Classifier Selection 

A classification model accepts many inputs and reduces them into a single class. Common approaches 

to classifying trajectories rely on the development of a single classifier, such as in Tan et al. (2017) who 

trained a single model and did not consider varying the SOMs parameters such as map size and data 

sampling. However, such approaches fail to capture the relationship between variables in the dataset 

and the classifications. Our approach will explore the differences which occur when varying two key 

parameters, the subset of data used for training and the size of the map. Further to this the separation of 

the dataset into two training sets for distinct summer/winter classifiers is used to aid in the identification 

of seasonal variation in the classifications generated. Here we define summer and winter to cover the 

warm (May-September) and cool (October – April) seasonal variations, following a similar pattern to 

that used in previous work (Tan, et al., 2017). Table 1 describes the training data set for the four 

classifiers chosen and identifies which parts of the input vectors are included as well as any filtering on 

the trajectories. 

Classifier Code Name No. Classes Altitude Date Filtering No. Inputs No. Trajectories 

Primary-4 PR-4 4 No None 98 331,728 

Primary-9 PR-9 9 No None 98 331,728 

3D 3D-9 9 Yes None 147 331,728 

Summer SUM-9 9 No May - Sep 98 88,776 

Winter WIN-9 9 No Oct-Apr 98 242,952 
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Table 1. Characteristics of the five classifiers used; here date filtering is inclusive. Number of inputs 

is defined as the size of each input vector before it is classified, and the number of classes is the 

number of output nodes available to the SOM 

Classifier Optimisation 

To ensure a numerically stable solution is reached each classifier is first trained with 10 different map 

sizes. A map size refers to the number of nodes in a square grid, for example a 2x2 map size would 

result in four output classifications and a 3x3 map size results in nine output classifications. These maps 

indicate how the output nodes (clusters) are arranged. The example given in Figure 4 shows four clusters 

arranged in a 2x2 map with Class 1 having neighbours 2 and 3, Class 3 having neighbours 1 and 4 etc. 

An alternative approach would be to use a 4x1 map. This structure enables the SOM architecture to 

identify clusters which may be related, such as classes 1 and 2 from Figure 4 are much more similar 

than classes 1 and 4. A batch processing approach is used for training because it has been shown to be 

an order of magnitude faster than the alternative linear training approach (Kohonen & Honkela, 2007). 

In addition, two error metrics are calculated for each classifier. The quantisation error calculates the 

root-mean squared Euclidean distance between each training sample and its best matching node (BMN). 

The best matching node is defined as the output node with the highest level of activation when a given 

input is used. The topological error calculates the percentage of training samples which have a first and 

second BMN which are not adjacent on the output map, ensuring topological consistency (Kiviluoto, 

1996). 

Figure 5 shows the errors produced for each of the four classifiers. Each graph gives the squared 

dimension (map size) of each model on the x-axis, such that a value of two equates to a 2x2 output map 

which contains four classifications. As is expected in any clustering procedure the quantisation error 

decreases with the increase in the number of potential classifications as illustrated in all three 

quantisation error graphs. Despite this there is still clear indication of the numerically superior 

classifiers as the magnitude of the errors vary significantly. 

 

Figure 5. This figure shows both the quantisation (top) and topological (bottom) errors for each of the 

three classifiers. 
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The large difference in quantisation error could be the curse of dimensionality, an umbrella term for the 

disadvantages caused by having large input vectors which do not occur when using lower dimensional 

vectors (Kohonen & Honkela, 2007). The 3D classifier uses 147 input variables whereas the other only 

use 98 and it is known that increasing the number of input variables in already high-dimensional 

problems can cause a decrease in search performance such as when selecting the BMN (Marimont & 

Shapiro, 1979). These differences are not replicated in the topological errors which tend to increase 

with an increase in map size. For instance, the primary classifier shows a consistently lower error 

indicating a better topological fit of the data. Due to the increasing nature of the topological error it is 

concluded that the smaller maps are more numerically accurate. Therefore, this study will utilise a 2x2 

map and 3x3 map for the primary and both seasonal models to present any differences between having 

either a high topological or quantisation error. 

Results 

This section discusses the resulting classifications for each of the five models presented in Table 1. It 

highlights the key moisture pathways as well as their prominence in the data set. This section concludes 

on an analysis of the rainfall magnitudes for each cluster. 

Classifications 

Beginning with the Primary classifiers, Figure 6 shows the classifications generated in the SOM with a 

2x2 map size, which is referred to as the Primary 4-SOM classifier (PR-4) indicating it has four output 

classifications. The results show four patterns: Class 1 contains a mid/western Atlantic originating path, 

Class 2 includes those coming from the north Atlantic, Class 3 contains the storm tracks coming from 

the south Atlantic. Class 4 contains the continental or recirculation pathways. The proportion of 

trajectories falling into each classification is provided in Table 2. The two dominant pathways are the 

recirculation and mid/western Atlantic classes which contain 46.5% (Class 4) and 35.2% (Class 1) of 

the sample trajectories respectively. The least common class was the north Atlantic class (Class 2), 

which only contained 6.7% of the sample; however, this was only slightly lower than the 11.6% of 

storm tracks classified as south Atlantic storms (Class 3). 

 

Figure 6. A sample of trajectories for each cluster in the primary 4-SOM classifier (PR-4). The 

classifications plot shows 50 randomly selected trajectories for each class (coloured grey) with a mean 
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trajectory across all relevant trajectories coloured in black. The proportion of trajectories within each 

class is given in Table 2. 

 
Class 

1 2 3 4 

% 35.2 6.7 11.6 46.5 

Table 2. Proportion of trajectories which are classified under each of the four classes within PR-4. 

Comparing the results of PR-4 with those of a larger map size, reaffirms the key pathways identified. 

Figure 7 shows the classifications produced from the SOM with a 3x3 map size in the Primary classifier 

(PR-9). Here the classifications appear to be more refined versions of the ones present in PR-4. For 

example, Classes 7, 4, 1 and 5 appear to be subclasses of the mid/western Atlantic class (Class 1) from 

PR-4. The same can be seen with the continental class (Class 4) in PR-4 which is broken down into 

Classes 3 and 6 in the PR-9. Moreover, the north Atlantic classification (Class 2) from PR-4 appears 

unchanged in the PR-9 (again Class 2). The proportions for each class in PR-9 are expectedly lower due 

to the greater spread amongst the range of classes as shown in table 3. Despite this, the same pattern 

appears with continental and mid/western Atlantic classes (Class 1 and Class 4) containing the higher 

proportions of the sample. 

Figure 7. A sample of trajectories for each cluster in the 9-SOM primary classifier (PR-9). The 

classifications plot shows 50 randomly selected trajectories for each class (coloured grey) with a mean 

trajectory across all relevant trajectories coloured in black. The proportion of trajectories within each 

class is given in Table 3. 

 
Class 

1 2 3 4 5 6 7 8 9 

% 18.6 5.7 19.4 5.7 2.8 16.2 13.8 7.6 10.2 

Table 3. Proportion of trajectories which are classified under each of the nine classes within PR-9. 

The 3D classifier (3D-9) tended to have the highest numerical errors in comparison to the other 

classifiers, and on inspection the tracks appear to have a higher visual variance. The two prominent 

classes shown in Figure 8 Classes 1 and 3 differ only in general length and cannot be linked back to 

classifications in PR-4 or PR-9. However, the spread of trajectories highlighted in table 4 shows there 

is a preference towards classes 1 and 3. 
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Figure 8. A sample of trajectories for each cluster in the 3D 9-SOM classified (3D-9). The 

classifications plot shows 50 randomly selected trajectories for each class (coloured grey) with a mean 

trajectory across all relevant trajectories coloured in black. The proportion of trajectories within each 

class is given in Table 4. 

 
Class 

1 2 3 4 5 6 7 8 9 

% 35.4 4.9 20.9 7.6 3.0 4.8 6.7 5.7 10.8 

Table 4. Proportion of trajectories which are classified under each of the nine classes within 3D-9 

Regarding the seasonal classifiers, they produced the lowest errors during the training phase with the 

winter classifier producing errors slightly higher than the summer classifier. One possible reason for 

this disparity could be the quantity of the samples used. Winter trajectories accounted for 73.2% of the 

sample with the remaining 26.8% being summer trajectories. An expected side effect of this is that the 

seasonal classifiers show consistently lower errors due to the reduced variation in the samples they are 

trained with. 

Figure 9 shows the 9-SOM trained on the summer data set (SUM-9), in this classifier there is one 

Atlantic pathway (Class 1) and two visually smaller Atlantic pathways (Classes 4 and 7). The other 

classes making up this classifier all visually appear as more refined continental storms, as discussed 

regarding PR-9 above. However, this classifier also presents three dominant pathways for the summer 

storms as given by Table 5, the mid-Atlantic (Class 1), northern-continental (Class 3) and south eastern 

Mediterranean tracks (Class 9). These pathways account for 16.8%, 17.5% and 20.7% (55% of the total 

pathways) of the summer tracks as shown in table 5, reinforcing the conclusion from PR-9 that the 

dominant summer pathways are continental (or recirculatory) and east-Atlantic originating tracks. 

These results also compare well with those found by Jorba et al. (2004) who as stated earlier identified 

recirculatory tracks as the dominant summer pathways; by separating these summer tracks we have 

further reinforced these results and shown that Atlantic tracks still play a key role in summer extremes. 
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Figure 9. A sample of trajectories for each class in the summer 9-SOM classified (SUM-9). The 

classifications plot shows 50 randomly selected trajectories for each class (coloured grey) with a mean 

trajectory across all relevant trajectories coloured in black. The proportion of trajectories within each 

class is given in Table 5. 

 
Class 

1 2 3 4 5 6 7 8 9 

% 16.8 7.0 17.5 4.8 5.3 10.7 9.2 8.0 20.7 

Table 5. Proportion of trajectories which are classified under each of the nine classes within SUM-9. 

The winter 9-SOM classifier (WIN-9) is shown in Figure 10 and appears visually similar to PR-9 which 

can be attributed to the winter storms comprising of 73.2% of the sample. Dominant pathways in this 

classifier consist of deep-Atlantic (Class 1), continental (Class 3) and southern-Atlantic (Class 7) paths; 

similarly, to SUM-9 these can be identified in earlier results such as Classes 1 and 7 in PR-9 and Class 

1 in PR-4. These classes consist of 18.4%, 18.7% and 13.7% (50.8% of the total pathways) of the 

sample, which are significantly higher than Classes 2, 4 and 5 which only hold 6.3%, 6.8% and 3.6%. 

Further to this, 38.9% of winter events were classified (classes 1, 4 and 7 in WIN-9) as deep-Atlantic 

compared to only 16.8% of summer events (class 1 in SUM-9). This shows deep-Atlantic storm 

trajectories have a seasonal dependence and generate at least twice as many AMAX events during the 

winter than during the summer. 
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Figure 10. A sample of trajectories for each cluster in the winter 9-SOM classifier (WIN-9). The 

classifications plot shows 50 randomly selected trajectories for each class (coloured grey) with a mean 

trajectory across all relevant trajectories coloured in black. The proportion of trajectories within each 

class is given in Table 6s. 

 
Class 

1 2 3 4 5 6 7 8 9 

% 18.4 6.3 18.7 6.8 3.6 12.5 13.7 8.2 11.8 

Table 6. Proportion of trajectories which are classified under each of the nine classification within the 

9-SOM winter classifier. 

Distributions of Rainfall Magnitude 

A final analysis of the classifiers concerns the distributions of each cluster. Figure 11 shows the 

empirical distributions for each cluster in both PR-4 (left) and PR-9 (right). In both classifiers the classes 

which are most likely to result in above average magnitude extreme events are from the southern 

Atlantic. For example, Class 3 from PR-4 and Class 7 from PR-9 have 21.7% and 23.4% relatively of 

their tracks above this threshold. Both PR-4 and PR-9 also show similar results for the classes which 

are least likely to produce events above the threshold, with Class 2 (northern-Atlantic) from both the 

PR-4 and PR-9 only having 18.7% and 18.6% respectively. As these trajectories are similar this further 

reinforces the case that trajectories from the north Atlantic are less likely to cause the highest/lowest 

magnitude AMAX values but trajectories from the south Atlantic being more likely to cause these same 

events. Further to this the proportions given in Tables 2 and 3 indicate that these north and south Atlantic 

trajectories are also the most uncommon. 
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Figure 11. Rainfall distributions for each cluster in PR-4 (left) and PR-9 (right). In each case the line’s 

number corresponds to the class of storm track represented. 

Figure 12 shows the rainfall distributions for the classifications of both the summer (left) and winter 

(right) classifiers. The summer distributions show a separation into two groups most prominent at a 

normalised magnitude of 0.35. This separation occurs between the Atlantic tracks (Classes 1, 4 and 7) 

and the continental tracks (Classes 2, 3, 5, 6 and 8); Class 9 is different in that it doesn’t join a group 

and instead holds a middle ground between the two. Taking a magnitude of 0.5 as a threshold there is a 

maximum difference of 7.3% in the number of tracks with a magnitude which exceed this threshold 

between the two groups (Classes 1,2 and 6), the closest difference is 4.5% between Classes 7 and 8. 

This separation indicates during the summer months it is continental tracks that are more likely to cause 

higher magnitude events. 

In contrast, the winter distributions appear more varied with no dominant group separation as in the 

summer classifier. Taking the same experiment as above, using a magnitude threshold of 0.5 the lower-

Atlantic classes (Class 7 and Class 5) have 23.8% and 24.0% of their samples exceeding this threshold. 

This indicates the lower-Atlantic storms have a higher likelihood of causing above average magnitude 

AMAX events in the winter and the continental storms have a higher likelihood of causing these same 

events in the summer. 

 

Figure 12. Rainfall distributions for SUM-9 (left) and WIN-9 (right) classifiers. In each case the line’s 

number corresponds to the class of storm track represented. 
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Conclusions 

This paper demonstrates the use of self-organising maps for improving the current understanding of 

rainfall frequency analysis through classification of the moisture pathways leading to an AMAX rainfall 

event. Five classification models were generated using different subsets of the trajectory data in 

northern Spain, each provided insight into the applicability of the SOMs and the causes of extreme 

rainfall in this region. Here we define extreme rainfall events as the annual maximum of one-day 

precipitation measurements from a series of gauging stations. 

1. Clustering on latitude/longitude (2D) trajectories for all rainfall events with four clusters (PR-

4) and nine clusters (PR-9). 

a. Two prominent classes identified in PR-4 represent 81.7% of the sample trajectories; 

Class 1 from the mid/Western Atlantic Ocean (35.2%) and Class 4 containing 

recirculation patterns (46.5%). 

b. The prominent classes from PR-4 are verified by PR-9 in which the Atlantic pathways 

(Classes 1, 4 and 7) account for 38.0% of the sample trajectories. 

c. The Southern Atlantic and mid/Western Atlantic pathways classes (Class 1 and 3:PR-

4) contained events which had 4.0% more high magnitude extreme events than the 

shorter Atlantic Class 2 as illustrated in Figure 11. A similar pattern is present in PR-

9. 

2. Clustering on altitude, latitude & longitude (3D) trajectories for all rainfall events. 

a. This model (3D-9) showed the highest numerical errors and produced clusters with 

little visual difference; this is due to the larger number of input variables required. This 

is often referred to as the curse of dimensionality. 

3. Clustering on longitude & latitude (2D) trajectories for summer events (SUM-9). 

a. Three prominent pathways are responsible for 55% of summer extremes, these 

originate from: the mid-Atlantic (Class 1), northern-Europe (Class 3) and the south-

eastern Mediterranean (Class 9). 

b. The three Atlantic clusters (Classes 1, 4 and 7) contained at least 4.5% more high 

magnitude events than the other clusters, in some cases this raised to 7.3%. 

4. Clustering on longitude & latitude (2D) trajectories for winter events (WIN-9). 

a. The three dominant pathways in this model are similar to the primary models (PR-9 

and PR-4) but only represent 50.8% of the trajectories: western-Atlantic (Class 1: 

18.4%), continental (Class 3: 18.7%) and southern Atlantic (Class 7: 13.7%). 

b. Southern Atlantic classes (Classes 5 and 7) are the most likely pathways to produce 

above average magnitude extremes at 24.0% and 24% respectively. 

These results show that clustering can provide improved insight into components of rainfall 

distributions. The SOM approach has proved capable of spatial-clustering of trajectory patterns in 2D; 

however, we have also shown why care must be taken when considering 3D trajectories to minimise 

both numerical errors and visual difference. Finally, the results revealed differences in the origins of 

winter and summer extreme rainfall in the Douro region of northern Spain as detailed above. This work 

has opened up new questions in the use of alternative input variables to the clustering algorithm; for 

example, instead of normalising station data a station type could be added as an input variable. Future 

studies could also investigate the development of a new clustering error metric accounting for both 

numerical errors and number of clusters to limit the scope of training procedures. 
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