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A B S T R A C T   

The Precision Fish Farming (PFF) approach was applied to the estimation of fish oxygen consumption of rainbow 
trout in a raceway farm. A dynamic model, simulating the evolution of Dissolved Oxygen concentration, was 
identified: the daily oscillation of fish oxygen consumption rate was simulated by means of a sinusoidal function. 
The model was applied to the data set collected during a four-week field study, which was carried out in July 
2019. Water temperature and Dissolved Oxygen concentration were measured with an hourly frequency in farm 
influent and effluent. Fish biomass was monitored on a daily basis by combining the data provided by a state-of- 
the art system for non-invasive estimation of fish weight distribution with mortality counting. The monitoring 
period was partitioned into two time-windows, as fish was not fed during the first two weeks. These windows 
were further partitioned into a calibration and validation set. Three model parameters, i.e. the average daily 
respiration rate, the amplitude of its daily oscillation, and its phase were estimated by fitting the model output to 
the time series of DO concentration in the effluent. The results of the calibration show that: 1) the daily average 
oxygen consumption rate is consistent with the literature; 2) the amplitude of the daily oscillation when fish is 
regularly fed is more than twice that estimated for fasting fish. The results of the validation suggest that the 
model could be used to implement a cost-effective automatic control of oxygen supply, based on the short-term 
prediction of oxygen demand.   

1. Introduction 

Dissolved oxygen (DO) is a fundamental parameter of intensive 
aquaculture: its concentration plays a key role in fish metabolism and 
can interact with other processes, such as bacterial activities or plankton 
metabolism, that may have a significant influence on its regulation 
(Lanari, 2007). Oxygenation is widely used in many land-based systems, 
including raceways (Lawson, 1995; Colt and Orwicz, 1991). In 2016, the 
European Union annual production of rainbow trout (Oncorhynchus 
mykiss) was about 185 thousand tons in volume and €615 million in 
value. Italy plays an important role in this context, accounting for 19 % 
of European production followed by Denmark and France (17 % and 14 
%, respectively) (STECF - Scientific Technical and Economic Committee 
for Fisheries, 2018). After feeding and labour, DO is the one of the main 
cost items in trout farming: therefore, optimizing oxygen supply is of key 
importance in improving both profits and fish welfare. 

Rainbow trout is a diurnal feeder (Boujard and Leatherland, 1992), 
whose metabolism shows a daily pattern, depending on both circadian 

rhythm and feeding regime (Bolliet et al., 2001, 2004; Heydarnejad and 
Purser, 2009). The daily pattern of oxygen consumption, in particular 
the postprandial uptake named Specific Dynamic Action (SDA) (McCue, 
2006), has been well studied. However, most studies were carried out 
using respirometers, with specimen activity that is very different from 
that in a raceway farm, (Chabot et al., 2016; Eliason et al., 2008), or do 
not propose an analytical interpretation of oxygen consumption (Alsop 
and Wood, 1997; Gélineau et al., 1998). Furthermore, the application of 
the result of laboratory studies to largescale, fully operational farms is 
not straightforward and, in some instances, can be misleading (Colt and 
Maynard, 2019). In this regard, a set of methodologies for accurate DO 
consumption in a fish farm as well as of the rates of other by-product of 
fish metabolism was proposed and thoroughly discussed in (Colt and 
Maynard, 2019). This paper focused on the design of a raceway system, 
and, therefore, on setting safety boundaries for the oxygenation capacity 
(Colt and Orwicz, 1991). 

On the other hand, the control and optimization of oxygen supply 
requires a fully dynamic approach, as DO concentration may rapidly 

* Corresponding author. 
E-mail address: edouard.royer@unive.it (E. Royer).  

Contents lists available at ScienceDirect 

Aquacultural Engineering 

journal homepage: www.elsevier.com/locate/aque 

https://doi.org/10.1016/j.aquaeng.2020.102141 
Received 5 July 2020; Received in revised form 17 November 2020; Accepted 19 November 2020   

mailto:edouard.royer@unive.it
www.sciencedirect.com/science/journal/01448609
https://www.elsevier.com/locate/aque
https://doi.org/10.1016/j.aquaeng.2020.102141
https://doi.org/10.1016/j.aquaeng.2020.102141
https://doi.org/10.1016/j.aquaeng.2020.102141
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aquaeng.2020.102141&domain=pdf


Aquacultural Engineering 92 (2021) 102141

2

change in relation to the concentration in the influent as well as to a set 
of processes occurring within a farm, such as fish consumption rate, 
photosynthesis, and bacterial activity, which are all affected by water 
temperature. 

This paper aims at filling this gap by proposing a fully dynamic 
approach to the estimation of fish oxygen consumption, which repre-
sents the first attempt at applying the Precision Fish Farming (PFF) 
framework (Fore et al., 2018) to rainbow trout farming. 

Precision Fish Farming (PFF) was introduced as an adaptation of the 
Precision Livestock Farming approach to aquaculture (Berckmans, 
2004). PFF aims at supporting farmer decisions concerning the daily 
management of fish farms by improving accuracy, precision and 
repeatability in farming operations, thus leading to improve both animal 
welfare and productivity. These goals achieved by designing and 
implementing a control system, based on the integration of real time 
data and models. A PFF system is made up of a real-time observation 
component, a dynamic model and a "control" component, which pro-
vides support to decisions and may also implement decisions, based on 
the integration of model predictions and data from on-line sensors. The 
observation component provides real time data on a set of "animal 
variables" i.e. parameters related to the behavioural or physiological 
state of an animal, and environmental variables. The dynamic model 
predicts how animal variables dynamically vary in response to envi-
ronmental variables. The control component finetunes a set of control-
lable inputs in order to ensure that the physiological state of a farmed 
organism is the desired one. In summary, in PFF, farm operations are 
supported by a four-step approach: Observe, Interpret, Decide, Act. 

At present, the main challenges to the implementation of the PFF 
approach are: 1) the availability of real time data concerning animal 
variables; 2) the development of a new generation of reliable dynamic 
models predicting the evolution of animal variables with respect to those 
of the external forcings and control variables. 

In such a perpective we implemented a dynamic mechanistic model 
of DO concentration which could be applied, in general, to raceways and 
RAS: the model is based on real time processing of water temperature 
and DO data, complemented by real time estimates of fish biomass, 
obtained from non-invasive monitoring of fish size distribution. The 
model was tested on a rainbow trout farm, as part of the activities of the 
GAIN (Green Aquaculture INtensification in Europe) H2020 EU funded 
project. 

2. Material and methods 

2.1. Case study 

The PFF system was tested at a raceway trout farm located in 
Trentino-Alto Adige, Northern Italy. The company is associated the 
ASTRO Consortium (https://www.troteastro.it/). ASTRO has developed 
a standardized protocol which covers key aspects of farm management, 
such as: feeding, stocking density, water quality standards, quality of the 
final product (e.g. condition factor and flesh chemical-physical proper-
ties). The compliance with the protocol requirements is certified by a 
Protected Geographical Indication (IGP) label. 

The farm comprises seven 200m long, 8m wide, and 0.8m deep 
raceways, which are covered by protection nets, in order to avoid bird 
predation, and equipped with oxygen supply systems. The influent 
quality varies in time, as the water is withdrawn from the Sarca river 
(Fig. 1). 

2.1.1. Oxygenation system 
Liquid oxygen is stored in a tank which supplies each raceway 

independently via a distribution network. Oxygen is gasified and then 
dissolved in water at atmospheric pressure using a Low Head Oxygen-
ator (LHO) system designed and manufactured by the farmer himself. 
Oxygen supply to each raceway is made through a manual valve 
controlled by the farmer and set to a nominal value. The LHO is char-
acterized by an Oxygen Transfer Efficiency (OTE) of 90 % 

During the test of the PFF system, no emergency procedure was 
activated for raceway 6, and pure oxygen supply rate, LO2, remained at 
its nominal value (Table 2). 

2.2. Oxygen consumption description 

In general, DO dynamic in river water depends on advection and on 
three local processes, namely photosynthetic production, ecosystem 
respiration and oxygen exchange with the atmosphere (Cox, 2003). In 
order to simulate DO dynamic within a raceway, the following as-
sumptions were made. 1) In this preliminary application of PFF, a "0D" 
DO dynamic model was applied, implicitly assuming that the raceway 
water s well mixed: in this case the mathematical representation of DO 
dynamic is an Ordinary Differential Equation (ODE); 2) Photosynthetic 
activity within the raceway was not taken into account; 3) The oxygen 
consumption term included only respiration due to farmed fish. 4) The 
exchange with the atmosphere was taken into account. The resulting 
model equation is given in Table 1, in which the first term represents the 
input and output of DO related to the volumetric flow rate (Q); the 

Fig. 1. Trout farm raceways and PFF system overview.  
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second one, the oxygen supply rate, S, which can be controlled by the 
farm; the third term the oxygen exchange with the atmosphere; and the 
fourth the oxygen consumption due to fish respiration (MR/V). 

2.3. Estimation of oxygen consumption 

In accordance with PFF terminology, a "feature variable" can be 
estimated based on measured animal variables and a "target variable", 
derived from feature variables, can be used in decision making. In this 

framework, R is a non-observable feature variable, which can be esti-
mated by fitting the model output to a set of observations. DO concen-
tration, x, was taken as a "target variable", as its level can be controlled 
by adjusting the oxygen supply, on the basis of predicted values of R, in 
order to keep DO at the desired level. R was estimated by minimizing the 
Root Mean Square Error, RMSE, Eq. (1): 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑i=n

i=1
(ŷi − yi)

2

n

√
√
√
√
√

(1)  

in which n is the number of observations, yi is the DO concentration in 
the effluent at time ti, ŷi the DO concentration at time ti estimated by 
the model. 

The "metabolic parameter" R (Colt and Maynard, 2019) depends on 
several factors, i.e., water temperature, the circadian respiration 
pattern, and daily feeding pattern. Circadian rhythms of feeding and 
locomotor activity have been widely described (Sanchez-Vazquez and 
Tabata, 1997; Boujard and Leatherland, 1992). Several studies (Bolliet 
et al., 2001; Heydarnejad & Purser, 2008) demonstrated that trout 
metabolism and activity present a daily pattern as a consequence of a 
combination of two zeitgeber (a rhythmically occurring natural phe-
nomenon which acts as a cue in the regulation of the body’s circadian 
rhythms), Light Entrainment Oscillator (LEO) in a major part, and Feed 
Entrainment Oscillator (FEO) in a minor part. (Bolliet et al., 2004) 
highlighted a sinusoidal pattern of metabolism response of trouts to 
different feeding times. Therefore, in accordance with (Tudor, 1999) the 
daily fluctuation of oxygen consumption was simulated using a sinu-
soidal function and the effect of water temperature on R was modelled 
by means of an exponential function (Brigolin et al., 2010). The average 
daily rate, Rm, the amplitude of the oscillation A, and the phase, ϕ, were 
estimated in this study (see Table 2) by minimizing the goal function 
(Eq.1). The minimization was performed using the (Nelder and Mead, 
1965) method implemented within the opt function from R stats pack-
age. This method is based on a Pascal algorithm from (Nash, 1990). In 
order to estimate both their expected values and their standard error, a 
procedure based on Monte Carlo method was adopted. The procedure 
consists in repeating the minimization of Eq. 1 by comparing the model 

Table 1 
Dissolved oxygen dynamic model.  

Table 2 
Functional expressions and parameters.  

Functional expressions 

R = (Rm + A(cos2πf(t + φ)) )epk (Tw− 15)

DOsat(Tw) = 14.589 − 0.4 Tw + 0.008 Tw
2 − 0.0000661 Tw

3  

S =
0.9 ∗ LO2 .P. Mm

Na.k.[Tw(t) + 273.15 ]V  
Parameters 
pk  0.07   Temperature coefficient Myrick and 

Cech, 2000 
krear  0.046  h− 1  Reaeration rate Ciavatta et al., 

2004 
Q  1584103  L h− 1  Volumetric flow rate  

LO2  2400  L h− 1  Oxygen supply rate  

P  101325  Pa  Atmospheric pressure  
Mm  31.998  g mol− 1  Oxygen molar mass  

Na  6.022×

1023  
mol− 1  Avogadro constant  

k  1.38×

10− 23  
J K− 1  Boltzmann constant  

V  1280  m3  Raceway volume  

f  1/24  Hz  Frequency of sinusoidal 
respiration rate  

R  This study mg h− 1 kg− 1  Oxygen consumption rate Tudor, 1999 

DOsat   mg L− 1  Oxygen Concentration at 
Saturation 

Ginot and 
Hervé, 1994 

S   mg L− 1h− 1  Oxygen concentration 
supply rate   

E. Royer et al.                                                                                                                                                                                                                                   



Aquacultural Engineering 92 (2021) 102141

4

output with a set of synthetic time series which are "consistent", from a 
statistical point of view with the observed one. The synthetic time series 
are obtained from the observe one by assuming that: 1) the pdf of each 
observation is independent; 2) DO data are normally distributed. The 
standard deviation of DO data was estimated from the sample distri-
butions ofDO data obtained after de-trending the time series. 100 syn-
thetic time series were then randomly extracted, taking DO observations 
as mean values. The minimization was repeated for each synthetic time 
series, thus obtaining empirical distributions of the three parameters 
which were consistent with the statistical hypothesis made on the pdf of 
the observed time series: mean values and standard error were then 
calculated. 

Model performances were assessed using a well-established Good-
ness of Fit, GoF, methodology, i.e. the regression between observations 
and predictions (Pineiro et al., 2008). The model and the parameter 
estimation procedure were coded using R software core (version 3.4.0), 
within R Studio (version 1.0.143). The differential equation was solved 
using deSolve R package (version 1.21). DO concentrations measured in 
the effluent at the beginning of the period were taken as initial values for 
solving the model equation. 

2.4. Monitoring strategy 

The estimation of the parameters required as input time series of: 
concentration of DO in the effluent, xout , water temperature, Tw, oxygen 
supply rate, S and fish biomass, M. The monitoring strategy for col-
lecting these data is described in detail below. The monitoring system 
(Fig. 1) was installed in raceway 6: the influent flow rate was 0.44 m3/s, 
which gives a residence time of 48 min, i.e. 0.8 h. 

2.4.1. Animal variable 
One of the goals of the H2020 project GAIN - Green Aquaculture 

Intensification in Europe (O’Donncha and Grant, 2019) is to test 
non-invasive methods for the monitoring of animal variables and to 
developnovel modelling approaches for the implementation of PFF on a 
range of aquaculture typologies, including rainbow trout raceways. Fish 
weight distribution was monitored in real time (Fig. 1) using Biomass 
Daily (BD), produced by Vaki and commercialized in Italy by Aquatrade 
L.t.d. 

The system is being used to estimate weight distribution in Atlantic 
salmon cages (Lopez Riveros, 2017) but, to our knowledge, it has not 
been previously applied to rainbow trout in a raceway farm. Biomass 
Daily system consists of a 80 × 80 cm submerged frame connected to a 
sending box. A wireless connection allows data to be transferred to a 
remote computer. 

The sensor, based on infrared technology, detects a signal whenever 
a specimen gets across the frame. Signals are postprocessed in real time 
and estimated individual weights are displayed on a dashboard. Daily 
statistics can be easily retrieved for further elaboration. All these data 
are remotely accessible through a web interface. Although the system 
requires some maintenance, e.g. weekly cleaning, it does not involve 
significant extraeffort for operators. The dashboard is userfriendly and 
data can be easily retrieved for post-processing. BD could also be used 
for non-invasive monitoring of a whole farm by moving the frame from 
one raceway to another: data gaps could be covered by interpolation or 
modelling. In this study, the frame was kept in raceway 6 for three 
months and the observations were compared with direct monthly sam-
pling of 30 individuals. 

2.4.2. External forcings and target variable 
Water temperature, Tw and DO concentration were monitored every 

hour in the influent and effluent (Fig. 1) using two identical multi-
parametric automatic EXO2 sensors, commercialied by YSI. Probes were 
placed 70 cm below the water surface. DO measurements were made 
using an optical sensor whose precision was 0.1 mg L− 1 within the range 
of observed values. Temperature measurements were obtained through 

a classical thermoresistance, with a 0.01 ◦C precision. The sensors 
include data loggers and can be connected to a cloud platform for 
visualizing and processing the data in real time. Time series were 
detrended using R software detrend() function and a Fourier analysis was 
then applied using R software fft() function. The spectral density asso-
ciated with 24 h period was then quantified as a fraction of the whole 
spectral density. 

3. Results 

The test of the PFF system started on July 3rd, 2019 and ended on 
July 31st, 2019. The monitoring of weight distribution continued until 
November 8th, 2019, in order to test the performance of the monitoring 
device over a larger size range. The initial fish number, N = 20 472,was 
estimated using a fish counting device commercialized by Calitri Tech-
nology. The initial average fish weight was 1.08 kg, for a total estimated 
initial biomass of 22,109 kg, which gives an average stocking density of 
17.27 kg/m3. The daily mortality rate was estimated by direct counting 
of dead fish, in accordance with the daily husbandry practices. 

Two feeding regimes were identified: from July 3rd to 16th fish were 
not fed or markedly underfed, as they were treated for the presence of a 
pathogen, Lactococus Garviae, while from July 17th to 31st they were 
given a full ration ranging between 0.4 % and 0.96 % of the average 
weight. These two time windows will be named FAST and FED hereafter. 

Feed used was a commercial diet of 6 mm food pellets produced by 
Aller Aqua, containing 44 % of protein and 26 % of lipids. Fish were fed 
daily, around 9 AM. Feed was delivered manually, using a mobile gantry 
going from one side to another at a 10 m/s velocity, which means that 
feeding took about 20 min. 

Fish were exposed to natural day/night cycle. Based on daily total 
solar irradiation data registered near the rearing site, this cycle was 
approximately 15 Light / 9 Dark (sunrise around 6 AM and sunset 
around 8 PM CEST). 

3.1. Animal variables 

The installation of the BD system was straightforward but, towards 
the middle of July, a technical problem concerning the connection of the 
frame to the receiver affected the quality of the data. Subsequently, data 
were regularly acquired until the beginning of November, when the 
device was transferred to another raceway. BD daily statistics, i.e. 
average weight and standard deviation, were based on 1325 detection 
per day, on average, i.e. about 6% of the population. The time series of 
average weight and standard deviation during the threemonthlong trial 
are presented in Fig. 2, which also shows the average weight estimated 
by collectively weighing 30 specimens, in accordance with farm hus-
bandry practice. 

Missing values, highlighted in grey in Fig. 2, were interpolated fitting 
a cubic spline in order to smooth the data and to better identify the trend 
on the whole period. As shown in Fig. 2, the interpolation compares the 
mean weight values estimated from direct sampling, in particular in late 
summer and autumn. The larger difference between BD estimates and 
direct sampling in early July, about 200 g, could be due to fish behav-
iour in relation to the introduction of the frame: at the beginning, bigger 
fish may get across it more frequently than smaller one. 

3.2. External forcings and state variable 

The time series of water temperature and DO measured in the 
influent and effluent are shown in Fig. 3a–b and their differences in 
Fig. 3c–d. Descriptive statistics, i.e. range, mean, median, standard de-
viation and Interquartile Range are presented in Table 3. 

As one can see from Fig. 3a–b, both variables presented a clear daily 
pattern, driven by the primary production/respiration and heat ex-
change processes occurring in the Sarca river. Water temperature ranged 
approximately from 11.5 ◦C to 20.5 ◦C and the differences were slightly 
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positive, probably due to dissipation of solar radiation energy into heat 
within the raceway. DO data, Fig. 3a, were characterized by a less reg-
ular pattern, which seems to be affected by the feeding regime. Overall, 
DO in the effluent was higher than that in the influent, see Fig. 3c, as 
oxygen was continuously supplied during the month of July: this sug-
gests that the DO control system actually in place could be markedly 
improved. A daily pattern can also be noted in the Tw and DO differ-
ences, see Fig. 3c–d. In particular, DO daily oscillations were smaller and 
more regular during the FAST sub-window but became higher and 
characterized by higher noise during the last two weeks of July, when 
fish was fed in accordance with the feeding tables. The presence of a 
daily pattern is confirmed by the results of the Fourier analysis, sum-
marized in the third column of Table 3, which shows the percentage of 
the spectral density associated with a daily period. The Fourier analysis 
confirms that DO differences were characterized by a significant daily 
component, which accounted for 42 % of the whole spectral density. 

3.3. Oxygen consumption estimation 

The oxygen consumption rate, R, was estimated for both the FAST 
and FED time windows, in order to detect changes due to feeding. The 
average daily value, Rmwas estimated only on the FAST sub-window, in 
which the fish was not fed or underfed, as no differentiated trend can be 
identified in Fig. 3c. The other two parameters were calibrated on both 
windows, as, according to the literature, the daily pattern of oxygen 
consumption depends both on LEO and FEO. In order to test the model 
predictive capability, both the FAST and FED data set were partitioned 
into two subsets: the first one was used to estimate the parameters and 
the second one to validate the estimates. 

The model output is compared with the time series of DO observa-
tions collected in each time window in Fig. 4a–d. A visual comparison 
shows that the model succeeds in simulating the daily pattern of DO 
dynamics observed in the FAST window, even though it underestimates 
the data in the validation sub-window. Furthermore, the model perfor-
mance seems acceptable also in the first five days of the FED calibration 
sub-window. On the other hand, the model does not seem to capture the 

main features of DO dynamics observed in the FED validation window. 
The results of the calibration are summarized in Table 4, which also 

presents the GoF indicators. As one can see, the phase ϕ, about two 
hours, is the same for both sub-windows but the amplitude A concerning 
the FED one is more than twice that obtained fitting the model to the 
FAST data set. A more detailed analysis of the daily pattern of DO dy-
namics highlights that the diel oscillation of water temperature can also 
play a non-negligible role in determining the daily pattern of fish oxygen 
consumption. The average hourly absolute values of DO supply, fish 
consumption and reaeration are represented in Fig. 5a and b for the 
FAST and FED windows, respectively. As one can see, the two main 
contributions to DO dynamics were fish respiration and oxygen supply. 
At constant water temperature, the oxygen consumption would be at its 
minimum around 10 PM and would peak around 10 AM, for both fasting 
and fed fish. However, due to the daily oscillation of water temperature 
(Fig. 3d), the oxygen demand kept increasing up to the early afternoon 
and peaked around 3 PM: this is clearly shown by Fig. 5a, concerning the 
FAST window. Such increase was more pronounced when fish was fed, 
due the post-prandial DO demand. It is also interesting to note that the 
average DO consumption was higher during the FED windows, when the 
average temperature was about 0.5 ◦C higher than that observed during 
the FED one. The reaeration contribution was much lower than fish 
respiration and oxygen supply. This finding could be related to the 
choice of the reaeration constant taken from (Ciavatta et al., 2004) 
which, however, is within the range given in (Cox, 2003) for small 
streams, i.e. 0.03 h− 1 - 4.7 h− 1. 

In terms of GoF indicators, see Table 4, the model calibration in the 
FAST time interval led to an RMSE of 0.19 mgO2.L− 1 for the calibration 
and 0.32 mgO2.L− 1 for the validation time series, and to higher values on 
FED sub-windows (0.49 mgO2.L− 1 for the calibration and 0.73 mgO2. 
L− 1 for the validation). The results of the predicted vs observed regres-
sion indicates that the slope is close to 1 on the FAST period. However, 
taking into account the standard error, the null hypothesis, i.e. 
slope = 1, should be rejected at a 95 % confidence level. This means that 
the fraction of variance explained by the model could still be improved: 
the visual comparison of predicted and observed values suggests that 

Fig. 2. Average fish weight (solid curve) and standard deviation range (dashed curves) estimated using Biomass Daily data, compared with mean values from direct 
sampling of 30 specimen (points) and farmer management software data (dotted curve). Interpolated data period is grey higlighted. 
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differences are larger in the first two days. As one can expect, model 
performance is worse for the validation set: the bias, i.e. the intercept in 
Table 4, is higher compared with the calibration set. The results con-
cerning the FED period gave a slope significantly different from 1 (0.13 
for calibration and 0.11 for validation) and indicate a lack of fit and a 
higher bias with intercept value of 7.9 for calibration and 8.1 for 
validation. 

4. Discussion 

The one-month-long time series of water temperature, DO and fish 
biomass data collected during this study allowed the identification, 
calibration and validation of a dynamic DO model based on three main 
components (fish respiration, oxygen supply and reaeration) and the 
estimation of the daily pattern of trout oxygen consumption in a oper-
ational context. In this section, after comparing these results with the 
literature and discussing model limitations, an example of DO supply 
control, driven by the model results, will be presented: this would be 
representative of the fourth PFF step, i.e. "Act". 

4.1. Estimation of DO consumption 

The results of the estimation of the average daily oxygen consump-
tion, Rm, are compared with literature values in Table 5. 

Table 5 shows that the results obtained estimating Rm from a dy-
namic model are consistent with those presented in previous studies. 
Our findings are very close to those presented in (Briggs and Post, 1997), 
who measured field metabolic rates (FMR) of rainbow trout of about 
1 kg using electromyogram telemetry. (Eliason and Farrell, 2014) 

Fig. 3. Time series of DO concentration (a) and water temperature (b) in the influent and effluent and their differences (c and d).  

Table 3 
Descriptive statistics of the environmental variables.  

Statistic 
DO [mg L− 1] Temperature [◦C] 

Influent Effluent Influent Effluent 

Range 6.0 - 8.9 6.1 - 10.8 11.26 – 
20.68 

11.54 – 
20.75 

Mean 9.2 9.5 15.74 15.93 
Median 9.2 9.6 15.65 15.79 
SD 0.4 0.7 1.84 1.84 
Inter Quartile Range 

(IQR) 
0.6 0.8 2.67 2.71 

% Spectral density 67 % 46 % 80 % 81 %  
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investigated rainbow trout oxygen consumptions in normoxic and 
hypoxic conditions. Their estimate of the Standard Metabolic Rate, 
adjusted for temperature, is 91 mgO2 h− 1 kg− 1: as one can expect, this is 
lower than that of this study, as fish is free to move around in a raceway. 
Oxygen consumption of a population of juvenile rainbow trout in a tank 
reported by (Alsop and Wood, 1997) is also consistent with the values 
obtained in this study. The amplitude of the daily oscillation of R ranged 
from 13.0, for fasting fish, to 31.3 mgO2 h− 1 kg− 1, when feeding, thus 
leading to a peak consumption of 143 mgO2 h− 1 kg− 1. This value is, 
again, slightly higher than that found in (Eliason and Farrell, 2014) 
under normoxic condition, i.e. 1218 ± 5.9. 

The phase of oxygen consumption did not change with respect to 
feeding indicating, at a constant temperature, a peak around 10 AM, i.e. 
about one hour after feeding and a minimum of R around 10 PM. This 
lag between feeding time and maximum DO consumption compares very 
well with the findings of (Gélineau et al., 1997), who reported a peak 
value one hour after feeding and could be explained by the fact that LEO 
is the dominant zeitgeber for rainbow trout metabolic rhythms with 
respect to FEO, as demonstrated by (Bolliet et al., 2004). It could also be 
related to a food-anticipatory activity, which takes place even when fish 

Fig. 4. Comparison between simulated and observed DO evolution concerning: a,b) model calibration and validation on the FAST time window; c,d) model cali-
bration and validation on the FED time window. 

Table 4 
Results of the DO model calibration and validation.  

FAST 

Rm [mg h− 1 kg-1] 101.5 ± 1.4 
A [mg h− 1 kg-1] − 12.1 ± 4.2 
ϕ [h] 1.9 ± 0.6 

Calibration 
RMSE 0.19 
Slope 0.81 ± 0.04 
Intercept 1.9 ± 0.4 

Validation 
RMSE 0.32 
Slope 0.71 ± 0.03 
Intercept 2.5 ± 0.2  

FED 

A [mg h− 1 kg-1] − 29.3 ± 3.5 
ϕ [h] 1.9 ± 0.4   

Calibration 
RMSE 0.49 
Slope 0.13 ± 0.05 
Intercept 7.9 ± 0.5 

Validation 
RMSE 0.73 
Slope 0.11 ± 0.04 
Intercept 8.1 ± 0.3  
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are food-deprived, as suggested by (Bolliet et al., 2001), as a conse-
quence of a regular feeding regime. 

However, as shown in Fig. 5, taking into account the daily oscillation 
of water temperature, the oxygen consumption reaches its maximum 
value in the early afternoon both in the FAST and FED windows: this 
finding is consistent with the results presented in (Colt and Watten, 
1988), who estimated a 4− 6 hour lag. Overall, the above results indi-
cated that the estimates of fish respiration rate succeeds in taking into 
account FEO, LEO, food-anticipatory activity as well as the effect of 
water temperature. 

4.2. Model performance 

The results suggest that the model gives a good description of the 
system during the FAST period. The estimate of the parameters, how-
ever, may have been affected by the uncertainty and potential bias in the 
time series of average weight, which is an important input. In fact, a 
discrepancy between DB estimates and those obtained from direct 
sampling was observed and it was necessary to interpolate the weight 
time series. As far as the first point is concerned, it should be pointed out 
that estimates from direct sampling are also affected by uncertainty, as 
the weight distribution of the sample may not be representative of that 
of the population. Therefore, such uncertainty cannot be removed but 
should be quantified by further testing the BD device. As far as the 
interpolation is concerned, growth curves are, in general, rather smooth: 
therefore, the lack of data in the second half of July definitely introduces 
another source of uncertainty, which, nevertheless, did not affect the 
estimation of the mean respiration rate. In practice, failures/interrup-
tion of any monitoring system may occur: in this case, the BD could be 
complemented by a growth model, which could supply reliable esti-
mates of fish growth when the actual monitoring system fails. 

The assumption of complete mixing can also be considered as a 

source of bias for the estimation of oxygen consumption in this specific 
case, as we were applying the model to a rather long raceway. A 1D 
model, which could simulate the dynamic of the spatial pattern of OD 
concentration along the raceway, is technically feasible. However, prior 
to the introduction of a more complex model structure, some basic ideas 
can be tested using simpler modelling approaches. The specific results 
obtained in this study could be improved by switching to a 1D transport- 
reaction model but the present model structure could already be applied 
to a large number of cases in which the hypothesis of complete mixing 
could safely be adopted. On the other hand, in this study, the model was 
fitted to the concentration of the effluent, which is likely to be the lower 
one: therefore, our findings may represent an overestimation of the 
average DO consumption. As a result, decisions based on such estimate 
could be considered robust as they ensure that DO supply is regulated on 
the basis of the "worst case" scenario. 

However, the model limitation discussed thus far can hardly explain 
the lack of fit during the FED period, in which the daily pattern of DO 
concentration in the effluent was characterized by a higher average 
value and higher and less regular daily oscillations, compared with the 
previous fortnight. 

These irregularities of daily oscillations in the effluent could be 
explained by the transition from a fasting condition to a feeding regime 
which is not fully steady. Indeed, on the FED period, feeding rations 
assume three different values in terms of ratio between feed quantity 
supplied to the raceway and fish biomass: 0% (for only two days), 0.43 
% and 0.96 %. Such a variation could lead to a lack of regularity in DO 
consumption by fish. 

As an alternative, rapid changes in the influent and in the dynamics 
of fish respiration could also be effectively dealt with using a different 
approach to the simulation of DO dynamic, based on data assimilation 
methods. In this framework, a non-observable feature variable, such as 
R, is included in the state vector. Both state variables are considered as 
stochastic ones: the trajectories of their expected values are estimated by 
solving a dynamic system, i.e. a system of ODE, until a DO observation 
becomes available. At this point, both state variables, i.e. DO and R are 
corrected in order to take into account the information provided by the 
observation. Different data assimilation algorithms are available: the 
Continuous-Discrete Extended Kalman Filter (CD-EKF) could be a good 
candidate, as it has already been tested in an application concerning 
aquaculture (Marafioti et al., 2012). All data assimilation algorithms, 
however, require the estimation of a set of hyperparameters concerning 
the probability density functions of the state variables: in practice, these 
parameters should be determined by prior calibration of a fixed 
parameter model. Therefore, the results presented can be considered as a 

Fig. 5. Hourly mean DO rates on a) FAST sub-window b) FED sub-window.  

Table 5 
Mean metabolic rate Rm comparison.  

Rm [mg 
h− 1 kg− 1] 

Water temperature 
[◦C] 

Method Source 

101.5 ± 1.4 15 ◦C PFF - dynamic model This study 
130 ± 10 15 ◦C electromyogram 

telemetry 
Briggs and Post, 
1997 

96 - 192 15 ◦C PO2 in tank 
measurement 

Alsop and 
Wood, 1997 

75 ± 3.4 10.75 Respirometer Eliason & 
Farrel, 2014  
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preliminary step towards the full implementation of a DO model based 
on data assimilation. 

4.3. Decide and Act: closing the loop 

The time series of DO differences plotted in Fig. 3d clearly shows that 
the DO control system in place could be improved, as DO in the effluent 
was often higher than that in the influent. Furthermore, an emergency 
control system is activated, composed by one DO sensor positioned at 
the outlet of the raceway, two automated ON/OFF electro-valves (30 L/ 
min) positioned at the oxygen entrance of the LHO, and a software. DO 
values are recorded every 15 min by the sensor. Three emergency 
thresholds are implemented: 1) if DO concentration is lower than 
7.5 mg.L− 1, the first electro-valve is activated. 2) if DO concentration is 
lower than 6 mg.L− 1, the second electro-valve is activated. 3) if DO 
concentration is lower than 5 mg.L− 1, an alarm is set and a notification 
is sent to the farmer through GSM connection device. Once the DO value 
return above the threshold, corresponding electro-valve is closed. At 
present, automation only regards the alarm process whereas the nominal 
process has no automated control system. 

The results presented in this study show, instead, that DO 

modulation during the day could be extremely relevant and could lead 
to a closed loop system for nominal oxygen supply management. Based 
on PFF approach and in a first approximation (because of model’s limits 
highlighted in the previous sections), the model could be used as an 
estimator of unobserved state and included in a more ambitious system 
control oxygen supply using appropriate targets. 

Two kinds of simulation were run using the recorded operational 
parameters and the oxygen model, assuming that nominal DO supply 
could be modulated.  

1) The first regulation consists supplying the oxygen quantity that 
corresponds to fish demand of the next hour, taking into consider-
ation a potential inertial effect of the raceway DO concentration and 
taking advantage of the forecast potential of the model. DO con-
centration in effluent that is more oxygenated than the influent does 
not make much sense: a control process could ensure that the DO 
level in the effluent is not higher than in the influent.  

2) The second regulation consists in ensuring that the DO concentration 
within the raceway does not fall below a target value, in order to 
avoid the emergency increase in the oxygen supply rate, which is 
activated when DO concentration falls below 7.5 mg.. 

Fig. 6. Comparison of oxygen supplied by two automatized DO control systems with regard to the actual one: a) FAST - compensation of fish demand; b) FED - 
compensation of fish demand; c) FAST - target value of 8.5 mg L-1; d) FED - target value of 8.5 mg L-1. 
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Fig. 6 shows the comparison of the results of both simulations with 
the actual values in terms of oxygen supply for both FAST and FED sub- 
windows. The leads to a volume of oxygen that is cumulatively lower 
(721 m3) than the actual one during the FAST sub-window of July 
(806 m3). Within the same sub-window, opting instead for a target value 
of 8.5 mg.L− 1 leads to an oxygen supply that is even much lower 
(343 m3) which could mean substantial cost savings. n the FED sub- 
window, the efficiency of both control a compensation of fish demand 
would cause (864 m3). It means that during this period oxygen supply as 
often lower than the fish demand. To this regard, introducing a target 
value of 8.5 mg.L− 1 for DO concentration in the raceway would have 
been very pertinent (637 m3) as it could have meant substantial cost 
savings even n this period. 

These findings highlight the improvements margins of DO supply 
system, showing it may be suitable to build a control system that lower 
oxygen supply, ensuring at the same time fish welfare; In such a 
perspective, they also indicate that the DO model could be the core of an 
advanced and robust control system, aimed at optimizing the DO supply. 
Furthermore, the predictive capacity of the model could be used for 
early warning, i.e. for anticipating the activation of emergency pro-
cedures in case DO gets close to a tolerance threshold. 

5. Conclusion 

The results presented in this study indicate that the Precision Fish 
Farming approach can be effectively implemented in raceway trout 
farms and improve the management of DO supply, which represents one 
of the main cost items, after feeding and labour. Real time monitoring of 
water temperature and DO is in place in most rainbow trout farms: these 
data can be processed using the DO model proposed for estimating and 
predicting the daily pattern of oxygen consumption rates in relation to 
water temperature, fish biomass, and feed ration. The DO simulation 
model tested in this study includes an oxygen consumption term due to 
fish respiration which mimics the daily fluctuation of oxygen demand by 
means of a sinusoidal function. The phase of the sinusoidal term did not 
vary in response to changes in the feeding regime but, as expected, the 
amplitude significantly increased when fish was fed. 

The modelling approach proposed also makes it possible to estimate 
specific DO respiration over a range of temperature and fish size, pro-
vided that time series of fish weight distribution are available. In this 
paper, time series were obtained by testing on rainbow trout Biomass 
Daily, a device for real time non-invasive monitoring of fish size dis-
tribution based on a technology previously applied to salmon farming. 
The device tested in this study may represent a suitable solution, but 
willneed further testing over a large range of fish size. Observations from 
BD could also be complemented by estimates provided by an individual 
growth model: such integrated monitoring system could be used to 
implement a cost-effective automatic control system for a whole farm, 
based on short-term predictions of oxygen demand in different basins 
stocked with trout of different size. Furthermore, it could also be used as 
a planning tool, for mid-term predictions of total DO consumption, 
based on feeding tables and/or individual growth models. 

Furthermore, oxygen demand can also be used to estimate the energy 
necessary to fasting catabolism and SDA, thus to improve individual 
growth models based on the energy budget, including the explicit 
simulation of catabolic processes which lead to ammonia emissions. As 
DO demand can be affected by other factors which are difficult to 
quantify, e.g. water turbulence, turbidity, this parameter could be esti-
mated using data assimilation methodologies in order to provide more 
reliable one-day-head predictions. Therefore, future perspective of this 
work includes: a) the development of a dynamic individual model of fish 
growth, in order to link oxygen consumption to catabolic processes b) 
the implementation of data assimilation methodologies in order to 
improve model performances and provide more reliable one-day-ahead 
forecasts of DO demand in relation to feed ration; c) the test of 
oxygenation system to allow modulation of oxygen supply according to 

reliable criteria. 
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