
1

Parallel Traversal of Large Ensembles of
Decision Trees

Francesco Lettich, Claudio Lucchese, Franco Maria Nardini, Salvatore Orlando,
Raffaele Perego, Nicola Tonellotto, Rossano Venturini
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final prediction, the whole ensemble must be traversed by accumulating the contributions of all its trees. In particular, traversal cost
impacts applications where the number of candidate items is large, the time budget available to apply the learnt model to them is
limited, and the users’ expectations in terms of quality-of-service is high. Document ranking in web search, where sub-optimal ranking
models are deployed to find a proper trade-off between efficiency and effectiveness of query answering, is probably the most typical
example of this challenging issue. This paper investigates multi/many-core parallelization strategies for speeding up the traversal of
large ensembles of regression trees thus obtaining machine-learnt models that are, at the same time, effective, fast, and scalable. Our
best results are obtained by the GPU-based parallelization of the state-of-the-art algorithm, with speedups of up to 102.6x.
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1 INTRODUCTION

R ECENT advances in Machine Learning (ML) have
opened new horizons for modeling phenomena and

devising effective and actionable solutions for complex
problems in diverse application domains. In many applica-
tion contexts the widespread adoption of complex machine-
learnt models asks for novel efficient algorithmic solu-
tions. Instead of focusing on improving the efficiency of
the off-line training phase of complex machine learning
models, this paper deals with the deploying phase of such
learnt models, by efficiently exploiting their application to
a stream of data instances. In particular, the learnt mod-
els on which we focus are additive ensembles of decision
trees. These models, which are generated by boosting meta-
algorithms that iteratively learn simple decision trees by
incrementally optimizing some given loss function, have
been shown to be the most general and competitive so-
lutions for several “difficult” tasks. For example, consider
the Yahoo! challenge [?], which fostered the development of
novel Learning-to-Rank (LtR) methods, i.e., supervised ML
techniques aimed at addressing the fundamental problem
of ranking items according to their relevance to queries [?],
[?]. All these ML-based rankers assign a numerical score
to each item, in turn used to reorder the input list, and
thus are commonly known as scorers. The most robust
and effective ranking models resulted the ones based on
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ensembles of regression trees, learnt with the GBRT [?]
and λ-MART [?] algorithms. All top competitors in this
challenge leveraged decision trees and ensemble methods,
and the winner deployed an ensemble model encompassing
a total of 24,000 regression trees. Another notable example
regards Yandex, the main Russian search engine, which
repeatedly announced the exploitation of very large tree-
based ranking models within their systems, and solutions
based on multi/many-core parallelism to speed-up both
their training and testing [?], [?]. Also Amazon uses more
than 100 tree-based models, one model per category per
site, for ranking the products returned as answer to user
queries [?]. Finally, ensembles of regression trees are used in
production for ads clickthrough rate prediction [?], and are
the most common choice in solutions for ML competitions,
such as Kaggle1.

Without loss of generality, in the following we con-
centrate on the Web Search Engine (WSE) scenario, and
adopt the LtR terminology to discuss the state-of-the-art
and investigate parallel algorithms to traverse large tree-
based ensembles. However, all algorithms and processing
strategies discussed can be applied “as is” in other scenarios,
different from document ranking in WSE, since they regard
the general problem of traversing large forests of binary
decision trees, given an item represented as a feature vector.
Specifically, they can be thus used to deploy any ensemble
model trained on any kind of continue, binary, and ordi-
nal feature. Categorical features are instead not efficiently
handled by our solution since it does not support efficient
set-inclusion operations.

1. https://www.kaggle.com/competitions

https://doi.org/10.1109/tpds.2018.2860982
https://www.kaggle.com/competitions


2

Large scale WSEs commonly exploit LtR solutions within
a multi-stage ranking architecture [?], [?], [?], [?], [?] opti-
mized for top-k retrieval. This architecture design aims to
find a trade-off between effectiveness and efficiency, by ap-
plying increasingly accurate and computationally expensive
models at each stage, where each stage re-ranks candidate
items coming from the previous stage by also pruning some
of them. Ensembles with thousands of regression trees are
commonly deployed in the last ranking stage, to achieve
high quality results that meet user satisfaction. Due to
the incoming rate of queries and QoS expectations, the
efficiency requirements of the ranking stage- are very strict,
and thus the traversal of complex tree ensemble model
to score candidate items has to complete within a very
small time budget. Table 1 illustrates the difficulty in meeting
such requisites, by reporting typical figures of tree-based
rankers used by large scale WSEs [?]. Note that, for each
query, the ranking stage has to reorder hundreds/thoud-
sands documents, while each query-document pair is in
turn represented by a multidimensional numerical vector
of hundreds of features. Each ensemble model is composed
of thousand of trees, each featuring tens of leaves, where
leaves store the partial numerical contribution of a tree to
the final score of a document.

TABLE 1: Typical figures for WSEs’ tree ensembles.

Number of trees in the ensemble 1, 000− 20, 000
Leaves per tree 4− 64
Documents per query 3, 000− 10, 000
Features per query-document pair 100− 1, 000

In this paper we investigate multi/many-core paral-
lelization strategies for making the traversal of ensembles
fast and scalable. In particular, we investigate diverse strate-
gies to parallelize QUICKSCORER (QS), the state-of-the-art
algorithm for traversing tree ensembles [?], [?] (we present
QUICKSCORER in Section 2). Making faster QS allows the
deployment of very large, complex, and effective ML mod-
els, by still producing the final ranking of a set of documents
within a fixed small time budget. Alternatively, when the
desired level of accuracy is already granted by a given
model, we can rely on a parallel implementation of QS to
reduce latency and increase query processing throughput.
We devise in Section 3 three possible general strategies
for parallelizing QS by exploiting the various opportuni-
ties offered by modern CPU architectures and studying
them in three separate sections. Specifically, we study: (i)
SIMD extensions of CPUs to vectorize the code (Section
4), (ii) multi-core architecture for shared memory multi-
threading (Section 5), and (iii), many-core graphic cards
(GPUs) exploiting massive data parallelism (Section 6). We
report in Section 7 on extensive experiments conducted on
three publicly available LtR datasets. In the experiments
we fine-tune the parallel algorithms to investigate strengths
and limitations of the proposed solutions. Although the
experimental setting is the one commonly used by the
scientific community to evaluate LtR solutions, the results
achieved and the lessons learnt are completely general and
can be exported without modifications to other use cases
characterized by similar efficiency and effectiveness require-
ments – for instance, product search and recommendation,

Algorithm 1: QUICKSCORER

1 QUICKSCORER(x,T ):
2 foreach Th ∈ T do
3 leafindexes[h]← 11 . . . 11

4 foreach fφ ∈ F do // Mask Computation
5 foreach (γ, mask, h) ∈ Nφ in asc. order of γ do
6 if x[φ] > γ then
7 leafindexes[h]← leafindexes[h] ∧ mask

8 else
9 break

10 score← 0
11 foreach Th ∈ T do // Score Computation
12 j ← index of leftmost bit set to 1 of leafindexes[h]
13 l← h · Λ + j
14 score← score+ leafvalues[l]

15 return score

social media filtering and ranking, on-line advertisement,
classification or regression tasks on big data. Finally, Sec-
tion 8 discusses related works and concluding remarks are
presented in Section 9.

2 QUICKSCORER

Let us denote with T = {T0, T1, . . .} an ensemble of bi-
nary decision trees, and let Λ be the maximum number of
leaves of each tree. Moreover, let x be the feature vector
representing an input instance (e.g., a query-document pair
in the LtR WSE scenario). Let F be the feature set, and let
|F| be the number of dimensions of vector x. We use φ
to refer to the φ−th feature, with x[φ] storing the value of
feature fφ ∈ F . Moreover, let s(x) be the numerical score
eventually computed for x by traversing T .

Branching decisions in internal nodes of a tree take the
form of a boolean test x[φ] ≤ γ, where γ is a real-valued
threshold for feature fφ. The output of each decision tree
Th ∈ T , i.e, its contribution to the score s(x), corresponds
to the so-called exit leaf of Th, identified by traversing the
tree with the input instance x. QS identifies this leaf by a
bitvector leafindexes[h], made of Λ bits, one per leaf.2

Specifically, the bits of this bitvector set to 0 denote the
leaves that cannot be reached during the tree traversal for a
given x.

The traversal of a decision tree performed by QS
can be viewed as the process of converting a bitvector
leafindexes[h], where all bits are initially set to 1, to
a final bitvector where the leftmost 1 identifies the exit leaf
of the tree [?]. The bitvector is manipulated through a series
of bit masking operations that use a set of pre-computed
bitvectors mask, still of Λ bits, each associated with an in-
ternal branching nodes of Th. To pre-compute these mask’s,
we consider that the right branch is taken if the branching
internal node is recognized as a false node, i.e., if its binary
test fails. Whenever a false node is identified, we annotate
the set of unreachable leaves in leafindexes[h] through
a logical AND (∧) with the corresponding mask bitvector.
Therefore, the purpose of mask is to set to 0 all the bits of
leafindexes[h] corresponding to the unreachable leaves

2. Hereinafter we will focus on ensembles whose trees have 32 or
64 leaves (Λ = 32, 64), since they provide the best trade-off between
effectiveness and efficiency in the LtR scenario [?].
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Fig. 1: Data layout example of the QS algorithm.

of Th, i.e., all the leaves that belongs to the left subtree not
selected by the failed test of the branching node. The reader
is invited to refer to [?] for the formal proof of the correctness
of this process.

Alg. 1 illustrates the QS [?], [?] algorithm for the fast
traversal of the ensemble. The algorithm restructures the
data layout of an ensemble of regression trees to leverage
modern memory hierarchies and reduce the branch predic-
tion errors to limit the control hazards. In addition, QS
accesses data structures with high locality, since the tree
forest traversals, repeated for each query-document pair, is
transformed into a scan of linear arrays.

To efficiently identify all the false nodes in the ensemble,
QS processes the branching nodes of all the trees feature by
feature, taking advantage of the commutative and associative
property of the logical AND operand, according to which the
masking operations for traversing each tree of the ensemble
can be made in arbitrary order. Specifically, for each feature
fφ, it builds a list Nφ of tuples (γ,mask, h), where γ is the
test threshold of a branching node of tree Th performing a
test over the feature fφ of the input instance x, and mask
is the pre-computed mask that identifies the leaves of Th
that are un-reacheable when the associated test evaluates
to false. The data structure layout is illustrated in Fig. 1.
Hereinafter, we refer to the tuples (γ,mask, h) and to the
leafvalues as the model data structure. Note that the model
data structure is pre-computed off-line and accessed in
read-only mode, as opposed to the leafindexes which
are document dependent and updated at runtime. Nφ is
sorted in ascending order of γ. Hence, when processing Nφ
sequentially, as soon as a test evaluates to true, i.e., x[φ] ≤ γ,
the remaining occurrences of Nφ evaluate to true as well,
and thus their evaluation can be safely skipped. We call mask
computation the first step, during which all the bitvectors
leafindexes[h] are updated, and score computation the
second step, where such bitvectors are used to retrieve tree
predictions.

To make efficient and cache-friendly the access to the QS
data structure we adopt a Struct of Arrays (SoA) data layout
rather than a classic Array of Structs (AoS) [?]. According
to the SoA layout, the tuples (γ,mask, h) are stored in
three independent arrays, hence solving possible alignment
issues due to different sizes of the fields of each tuple and
simplifying the exploitation of data parallelism.

Time and Space Complexity. The running time of QS
depends on the number of false nodes evaluated during the
mask computation step and on the number of partial scores
accumulated during the score computation step. In the
worst case, the number of false nodes evaluated is Λ|T | and
the number of partial scores accumulated is |T |. Therefore,
the complexity of QS in the worst case is linear time, i.e.,
Θ(Λ|T |) time. However, experiments on real datasets [?]
show that the number of false nodes visited per tree is only
a small fraction of Λ, and, admittedly, QS outperforms other
algorithms with better worst-case time complexity.

Concerning the space needed to score a feature vector x
of |F| elements, the read-only data structures used to store
the tree ensemble T depends on the number of trees (|T |),
the number of internal branching nodes (Λ − 1) and leaves
(Λ) of each tree. Specifically, for each internal branching
node QS uses Λ/8+2+4 = Θ(Λ) bytes to store, respectively,
the node’s bitvector mask of Λ bits, the corresponding tree
ID h (stored as a 16 bit int), and the threshold γ used
in the test (stored as a single precision float). In total,
|T |(Λ− 1)(Λ/8 + 6) = Θ(|T |Λ2) bytes to store the internal
nodes of the whole ensemble. In addition, QS stores in
leafvalues the score contribution of each leaf (stored as a
double), for a total of 8Λ|T | bytes, and manages a per-tree
bitvector leafindex for a total of ΛT /8 bytes. Thus the
space complexity of QS is Θ(|T |Λ2) bytes.

3 QUICKSCORER PARALLELIZATION

In the following we will focus our analysis on the paral-
lelization of the mask computation step as the paralleliza-
tion of the score computation step can be achieved with a a
straightforward parallel reduction.

Given a set of query-document pairs, we want to inves-
tigate the following scoring parallelization strategies:
• Inter-document parallelism: multiple documents are eval-

uated in parallel;
• Intra-document parallelism: multiple features, trees, or

nodes are evaluated in parallel;
• Hybrid parallelism: combining the two strategies above.

Inter-document parallelism. The rationale behind this
strategy stems from the observation that each document
can be scored independently. Inter-document parallelism
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takes advantage of this property, and employs multiple
threads to score simultaneously multiple documents.
Although the latency associated with each document
scoring does not improve over the sequential case, inter-
document parallelism ensures better throughput in terms of
number of documents scored per time unit. To realize this
strategy, the data structure associated with the model must
be shared among all the threads, while each document must
be associated with its own copy of leafindexes.

Intra-document parallelism. The key idea behind this strat-
egy is to partition the scoring of a single document into
subtasks that can be executed in parallel. Consequently,
intra-document parallelization aims at reducing the scoring
latency of each document, which in turn has the effect of
increasing the throughput.

Subtasks can be naturally identified in QS by
decomposing the work performed over features; more
precisely, each subtask consists in processing the list of
tuples (γ, mask, h) ∈ Nφ associated with a single feature
fφ, and updating the corresponding leafindexes. Note
that different tuples in Nφ, related to different features fφ,
may be associated with the same tree Th. As a consequence,
updating leafindexes may generate race conditions that
have to be properly managed. Depending on the targeted
architecture, race conditions can be generally managed in
two different ways. On the one hand, one can eliminate
race conditions by creating one copy of leafindexes per
subtask, provided that increasing the memory footprint
does not represent an issue; this strategy, however, incurs
in the additional cost of having to perform a final merge
of the various leafindexes – this can be achieved by
logical AND operations. On the other hand, if memory
occupancy represents a major concern (such as in the case of
GPUs) leafindexes must be shared across the subtasks,
thus requiring the use of atomic updates to manage race
conditions.

Hybrid parallelism. This strategy exploits the combined
use of massive and fine-grained parallelism. The idea
is to process p1 documents independently in parallel
(inter-document parallelism) by using p2 threads to score
each document (intra-document parallelism), for a total of
p = p1 · p2 threads.

Tuning performance. All the above strategies have room for
several performance improvements that attempt to leverage
task granularity and model partitioning. Given a workload
split in independent tasks among a pool of concurrent
workers, task granularity impacts load balancing: in general,
the smaller the granularity and the larger the number of
tasks, the better the resulting balancing. For each of the par-
allelization strategies introduced above, task granularity can
be opportunely tuned from the finest to the coarsest level;
in the inter-document case, the finest granularity can be
achieved by associating each task with a single document,
while in the intra-document case the finest granularity is
achieved by associating each task with a single feature. In
both cases, granularity can be simply increased by assigning
multiple documents (features) to individual task.

As modern CPU and GPU architectures feature complex
memory hierarchies, devising algorithms with a reduced
memory footprint may provide remarkable benefits: smaller
data structures, accessed with high spatial and temporal
locality, easily fit into the smaller – but faster – cache mem-
ories. Large tree ensembles, however, may be too large to
even fit the lowest level of cache. Consequently, an ensemble
model may need to be partitioned in blocks of trees, such that
the data structure of each block fits into a given cache size.

The final score of a document then becomes the sum of
the scores produced by the various blocks. In this context we
note that inter-document parallelism improves the temporal
locality of memory accesses, as smaller blocks of the model
are used to score the documents; however, the very same
parallelism requires multiple copies of leafindexes, thus
increasing the memory footprint of the algorithm. Overall,
making the best use of cache memories requires to find a
proper trade-off between the size of tree blocks and the
number of documents evaluated in parallel.

Correctness and complexity. We discuss here the correct-
ness of the parallelization strategies illustrated above, start-
ing from the most expensive mask computation step.

The first strategy, named inter-document, is straightfor-
wardly correct. Each parallel thread scores one of n docu-
ments, and for this purpose is provided with a private copy
of the leafindexes bitvectors so as to make the scoring
of each document independent. The second parallelization
strategy, named intra-document, performs a parallel visit of
the branching nodes of the given ensemble. Note that the
parallel visiting order is different from the sequential one.
This does not affect the correctness of QS, thanks to the
commutativity and associativity of the logical AND opera-
tions applied to the leafindexes bitvectors. However, this
parallelism introduces race conditions on leafindexes
which can be solved either by using per-thread replicas of
leafindexes that are eventually merged together, or by
enforcing atomic updates.

Regarding the score computation step, a trivial parallel
add reduction is performed, after accessing in parallel the
exit leaves of all trees in T , to retrieve their additive contri-
butions to the final score of a given query-document pair.

The worst-case parallel complexity of QS on p pro-
cessors for scoring n documents is Θ

(nΛ|T |
p

)
time. Lim-

ited slowdowns with respect to a linear speedup derive
from synchronization overheads (atomic updates in intra-
document parallelism) or from an increase in the memory
footprint (replication in inter-document parallelism), which
may negatively impact the performance of the various levels
of dedicated/shared caches.

4 VECTORIZED QUICKSCORER

In this section we discuss V-QUICKSCORER (VQS)3, the
enhanced single-threaded version of QS that exploits CPU
vector extensions to leverage Data-Level Parallelism (DLP)
(preliminary results concerning this section were already
presented in [?]). The extended DLP instruction sets present
in modern CPUs permit the parallel execution of the same
operation on different data items, i.e., they allow to realize

3. Source code: https://github.com/hpclab/vectorized-quickscorer

https://github.com/hpclab/vectorized-quickscorer
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the single instruction multiple data (SIMD) paradigm. Specif-
ically, Streaming SIMD Extensions (SSE) and Advanced
Vector Extensions (AVX) are sets of Intel’s vector instructions
that exploit wide registers of 128 and 256 bits, where the reg-
isters pack multiple elements of some simple data type. For
instance, a 256 bit register can store eight single precision or
four double precision floats. We note that recent high-end
processors already provide support for even larger, i.e., 512
bits, registers. For the sake of clarity, we hereinafter refer to
the 256 bits register architecture (AVX), the most common
SIMD extension present in current Intel CPUs; we observe
that VQS can be modified to support wider registers in a
straightforward manner.

Inter-document parallelism represents the most natural
source of parallelism that can be exploited in VQS, although
the number of documents scored in parallel is bounded by
the number of parallel ways of the AVX-256 extension. Both
the mask computation and score computation steps of QS can
be parallelized. During the first step, multiple documents
can be tested against a given node condition, and their
leafindexes updated in parallel. Similarly, the scores
of multiple documents can be computed simultaneously
during the second step. Inter-document parallelism requires
to replicate the data structure leafindexes used to encode
the exit leaves. VQS interleaves bitvectors of 8 different
documents (256 bits) in consecutive memory locations, i.e.,
leafindexes[8h+i],∀i = 7:0. This allows to update 8
leafindexes simultaneously with a single SIMD opera-
tion.

In the following we adopt a generic vectorial notation
where variables stored in wide registers are accented by a
right arrow and SIMD operations have a subscript denoting
the width of the parallel operand. For example, the subscript
s used in the following parallel operand:

−→c ← −→a >s
−→
b

corresponds to a SIMD operation where an element-wise
greater-than comparison is executed between −→a and

−→
b

on their operands with single precision equivalent size (the
subscript d is used for double precision) and the result
is stored to −→c . If 256-bit registers are used, this parallel
operation >s would perform 8 simultaneous comparison on
32-bit operands, while >d would perform 4 simultaneous
operations on 64-bit operands. Finally, we use the notation
m[end : start] to address consecutive elements of the array
m from start to end inclusive.

Specific optimizations used by VQS depend on the maxi-
mum number of leaves Λ in the trees of the ensemble. Alg. 2
shows the pseudocode of VQS when Λ = 32. As regards
the mask computation step, VQS identifies false nodes like
QS, by processing feature thresholds in ascending order;
however, VQS exploits 256 bit registers to compare multiple
documents simultaneously against each feature threshold.
Since document features are stored as single precision floats,
we have a first register, −→γ , that stores 8 copies of the same
test threshold γ, and a second register, −→x , that stores the
features {xi[φ]}i=0,1,...,7 of the 8 input instances (lines 6-7).
A single SIMD instruction is then used to test the feature

values of the documents against the threshold (line 8): if
all tests evaluate to false (line 9), i.e., VQS does not find
any false node, the inner loop terminates and the next feature

Algorithm 2: VQS (with Λ = 32)
1 V-QUICKSCORER( {xi}i=0,1,...,7, T , scores[7 :0]):
2 foreach Th ∈ T do
3 ∀i = 7:0 : leafindexes[8h+ i]← 11 . . . 11

1© Mask Computation Step
4 foreach fφ ∈ F do
5 foreach (γ, mask, h) ∈ Nφ in asc. order of γ do
6 −→γ ← (γ, γ, γ, γ, γ, γ, γ, γ)
7 −→x ←

(x7[φ],x6[φ],x5[φ],x4[φ],x3[φ],x2[φ],x1[φ],x0[φ])
8 −→c ← −→x >s

−→γ
9 if −→c = 0 then

10 break

11 −→m ← (mask, mask, . . . , mask)

12
−→
b ← (leafindexes[8h+ 7], . . . , leafindexes[8h+ 0])

13 −→y ← −→m ∧s
−→
b

14 leafindexes[8h+ 7 : 8h+ 0]
−→c←−−→y

2© Score Computation Step
15 −→s1 ← (0, 0, 0, 0)
16 −→s0 ← (0, 0, 0, 0)
17 foreach Th ∈ T do
18 ∀i = 7:0 : ji ← index leftmost 1 bit of leafindexi[h]
19 ∀i = 7:0 : li ← h · Λ + ji
20 −→v1 ← (leafvalues[l7], . . . , leafvalues[l4])
21 −→v0 ← (leafvalues[l3], . . . , leafvalues[l0])
22 −→s1 ← −→s1 +d

−→v1
23 −→s0 ← −→s0 +d

−→v0
24 scores[7 :4]← −→s1
25 scores[3 :0]← −→s0

is processed. Unlike QS, VQS needs to pass the test over
8 documents at a time to break the loop (line 10), which
introduces some overhead.

The bitvector update is implemented as shown in Alg. 2
(lines 12–14). First, mask is replicated eight times into −→m,
then the eight leafindexes[8h + 7 : 8h + 0] are loaded to
the register

−→
b . Subsequently, a bit-wise logical and between−→

b and−→m produces the updated bitvectors, regardless of the
test outcome −→c . Finally, a masked store operation is used to
copy back to memory the updated bitvectors: the copy is
performed only for the bits of −→y where the corresponding
bits −→c are set.

The score computation step is also parallelized (Alg. 2,
from line 15). To provide the required precision, tree pre-
dictions are stored as double precision float values (64 bits)
– this implies that only 4 document scores can be processed
simultaneously using 256 bits registers. Thus, VQS uses
two registers, namely −→s1 and −→s0 , to maintain the scores of
8 documents. For each tree h, the predicted partial scores
relative to the 8 input instances {xi}i=0,1,...,7 are similarly
stored to −→v1 and −→v0 , and added up to update the final
document scores. Finally, the final document scores are
copied to scores[7 :0].

Processing ensemble models with trees featuring many
leaves, e.g. Λ = 64, impacts on the size of the arrays of
bitvectors leafindexes and mask. As a consequence, the
number of elements that can be processed simultaneously
in a register decreases. Note that −→c stores each result of a
threshold comparison test as a string of 32 bits; conversely,
the bitvectors mask and leafindexes, stored respectively in
−→m and

−→
b , are 64 bits wide. VQS handles this mismatch as

follows: instead of processing 8 input feature vectors xi[φ]
at once, VQS processes only 4 vectors in parallel by packing
them with replication:
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−→x ← (x3[φ],x3[φ],x2[φ],x2[φ],x1[φ],x1[φ],x0[φ],x0[φ])

Indeed, by replicating twice each xi[φ] VQS produces 64
bits masks that represent the output of the comparison tests,
thus solving the mismatch; in turn, this allows to process the
register −→x without any other modification of Alg. 2.

5 MULTI-THREADED QUICKSCORER

The SIMD-based parallelization strategies presented in Sec-
tion 4 are restricted within a single thread running on a
single CPU core. Since modern CPUs are multiprocessors
that provide several cores, it is interesting to investigate
a multi-threaded parallelization of QUICKSCORER. We can
mix SIMD and MIMD parallelism by running multiple
threads, where each thread exploits inter-document fine-
grained SIMD parallelism as discussed in Section 4. We
call VQS-MT (Vectorized QUICKSCORER Multi-Threading4)
such hybrid parallel implementation of QUICKSCORER.

Even in the case of multi-threading parallelism we have
different possible parallelization strategies, either inter-,
intra-document, or hybrid. From preliminary tests we found
that inter-document is always the best choice: this is due to
the large number of documents to score per query (from
hundreds to thousands in real settings) and the limited
number of cores of multicores/multiprocessors (from tens
to hundred in common configurations). We adopt the same
inter-document strategy among the various threads and
within each single thread; for example, a multicore CPU
with 8 cores, each with 256 bits wide AVX vector registers,
may run 8 threads with each thread scoring 8 documents
(when Λ = 32) in parallel, for a total of 8 × 8 = 64
documents scored in parallel.

In our study we also consider the complexity of the
shared-memory architecture of modern multiprocessors. In
particular, such system may include several multicore CPUs,
also called sockets or nodes, all accessing the same shared
memory according to a NUMA (Non-Uniform Memory
Access) scheme. To increase memory bandwith, the shared
memory in a NUMA scheme is distributed to each node,
namely a multicore CPU, thus introducing two different
speeds for accessing the shared memory – fast access to
the local one and slower access to remote ones; migrating a
thread from a multicore CPU to another may hinder perfor-
mance, hence it is good practice to restrict the execution of
threads to the same multicore CPU where they were created.

We implemented the multi-threaded version of QS by
using OpenMP [?], an API that supports multi-platform and
multi-language shared memory multiprocessing program-
ming. To realize inter-document parallelism with OpenMP,
we denote as a parallel for the loop that iterates over
the documents to score. More precisely, a single-thread
program calls Algorithm 2 from within a for, thus scor-
ing either 8 (for Λ = 32) or 4 documents at a time (for
Λ = 64). Using the directives of OpenMP, the output and
temporary data structures used to score each group of 4 (8)
documents are declared private, and thus allocated on a per-
thread basis. Specifically, such private data structures are the
leafindexes[3 :0] (leafindexes[7 :0]) bitmask arrays, and
the final scores[3 :0] (scores[7 :0]) accumulators.

4. Source code: https://github.com/hpclab/multithread-quickscorer

A final remark concerns the lower levels of cache equip-
ping each multicore CPU, and the possible issues deriv-
ing from their shared use by multiple threads. In general,
running multiple threads, each operating on a different
working set, may increase the pressure on the shared levels,
since each thread needs a different cache residency for their
data. In our case, however, the largest dataset is the tree-
based model that is accessed read-only by all the threads.
The per-document read-write data, namely the private data
structures mentioned above, are small. From our tests, we
will show that multi-threading does not impact too much
on shared cache performance of VQS-MT, except for very
large ensemble models.

6 GPU-BASED QUICKSCORER

Before detailing the strategies adopted to parallelize
QUICKSCORER on GPUs, we first introduce some GPU
background [?], [?], [?]. Although the GPU terminology used
in the following refers to the NVIDIA CUDA framework,
different programming frameworks and architectures adopt
similar solutions with slightly different names.

6.1 GPU architectural background
A GPU includes m multithreaded streaming multiprocessors
(SMs), each with n cores. Each SM is able to run blocks of
threads, i.e., thread-blocks, executing the same kernel code.
The unit of scheduling is the warp, composed of 32 syn-
chronous data-parallel threads belonging to a given thread-
block. Each SM is equipped with private registers used
to manage the stack of threads, and a fast but relatively
small shared memory. Since such shared memory is statically
partitioned and assigned to the thread-blocks running on
the SM, the amount of shared memory required by each
thread-block influences the number of blocks the SM can run
concurrently. Moreover, GPUs feature a global memory that
can be accessed and modified by both the host CPU’s cores
and the GPU SMs. Accesses to the global memory benefit
of an L2 cache, which is shared among all the SMs. In some
models, including the one used for our experiments, each
SM is also equipped with a dedicated L1 cache.
Performance optimization for GPUs. In the context of
GPUs, multi-threading becomes multi-warping as the units
of scheduling are groups/warps of 32 identical threads. As
in the case of multi-threading, executing warps concurrently
is useful to hide latencies, for instance those caused by
global memory accesses. To this end, a good strategy is
to optimize the utilization of each SM by increasing the
number of active warps per SM, thus realizing a sort of
excess parallelism. This can be attained by increasing the
number of thread-blocks concurrently running on each SM,
along with the number of threads per block. The maximum
number of warps per SM depends, however, on the specific
GPU scheduler, on the number of cores per SM, and on other
characteristics of the GPU architecture family considered.
In addition, due to the SIMD-style execution of warps, it
is important to avoid branch divergence within warps, since
these may cause under-utilization of GPU’s computational
resources, thus hindering warp efficiency.

To achieve optimal performance, the complex memory
hierarchy of GPUs must be properly exploited. As regards

https://github.com/hpclab/multithread-quickscorer
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global memory, GPU devices try to coalesce loads/stores is-
sued by the threads of a warp into as few global memory
transactions as possible. Consequently, if threads identified
by consecutive IDs access consecutive words in global mem-
ory, their accesses can be merged (coalesced) into fewer
memory transactions, thus fully exploiting the bandwidth
of global memory. Consequently, the cost of accessing the
global memory is measured in terms of number of memory
transactions needed to load/store memory blocks (of up
to 128 bytes). A fast L2 cache, shared by all SMs, may
significantly reduce global memory latencies.

The shared memory of each SM is structured in inter-
leaved memory banks; memory banks can thus work in
parallel to serve concurrent requests from the threads of a
warp. However, performance degrades in presence of bank
conflicts due to the serialization of conflicting accesses. As
a general rule, if an algorithm needs to randomly access
a data structure and the access pattern is not predictable,
it is desirable to move such data to shared memory. In
fact, random memory accesses directed to global memory
cannot be coalesced, while the same requests directed to
the shared memory may have the chance to be fulfilled
with high throughput if memory banks conflicts do not
occur. However, given the limited size of shared memory
available per thread-block, suitable data structures have to
be allocated.

6.2 GPU-QUICKSCORER

From the above discussion we highlight two main chal-
lenges in designing efficient GPU algorithms: providing a
sufficiently large degree of parallelism to profit from the
thousands of cores available and deal with the GPU complex
hierarchy of memories, by properly defining the layout of
data structures and orchestrating over such data structures
the accesses of the parallel threads.
Inter- and intra-document parallelism and task granular-
ity. To obtain a sufficient parallelism degree in parallelizing
QS, we combine inter- and intra-document parallelism, as
discussed in Section 3. This hybrid technique allows both
coarse and fine-grained parallelism to be exploited, by pro-
cessing in parallel p1 documents (inter-document parallelism)
using p2 parallel threads for scoring each document (intra-
document parallelism) – thus yielding p = p1 ·p2 threads run-
ning in parallel. The way to realize this parallelism scheme
on a GPU is to assign each of the p1 documents to a different
thread-block. Therefore we have p1 = M , where M is the
number of thread-blocks allocated, in turn scheduled over
the m GPU SMs. Moreover, if N is the number of parallel
threads in each thread-block, we have that p2 = N threads
run concurrently to score a given document. We increase
the granularity of the inter-document task (see Section 3)
by assigning multiple documents per block, since in general
we have to score large batches of input documents D ⊆ D,
where |D| �M .

Within each thread-block, rather than assigning each
document feature to a single thread of the block, we assign
each feature to a warp. The main reason behind this strategy
is to favor coalesced accesses to the tuples (γ, mask, h)
associated with a given feature. In addition, since we have
usually fewer warps than features (N32 � |F|), we also

end up increasing the intra-document task granularity by
assigning more features per warp.

Model partition and allocation. We recall that QS adopts
two main data structures besides the input vector D:

• the model data structure, composed of the tuples
(γ, mask, h) encoding the branch nodes of the forest T ,
and of leafvalues, the vector that stores the scores
associated with the leaves of the trees in T ;

• the output vectors leafindexes – one for each tree of
the forest T ; these are updated during the computation
to eventually identify the exit leaves of the trees.

The model data structure is read-only, and QS accesses it
feature-by-feature, with perfect spatial locality. Conversely,
QS needs to access randomly the output vectors in read-write
mode, thus not allowing to exploit any predictable access
pattern that promote locality. The model data structure is
too large to be entirely stored in the GPU shared memory
(typically few tens of KBs). For example, let us consider a
model T made up of a forest of 10, 000 trees, with Λ =
64 leaves each: just for storing the leafvalues of all the
trees, where each leaf value is represented as a double of
8 bytes, we need about 5 MB. The size of global memory, is
typically in the order of 4 – 8 GB, thus representing the best
candidate to store T . However, high-throughput access to
such memory is possible only when exploiting coalescing.

QS perfectly fits the above requirement: the model data
structure is stored as a Structure of Arrays in global memory,
and it is accessed sequentially feature-by-feature by means
of linear scans that promote spatial locality. More precisely,
we assign each feature to a warp, thus assigning to the
threads of the warp consecutive memory locations that
store the values of the tuples (γ, mask, h) associated with
a feature fφ ∈ F : in turn, this leads to coalesced accesses.
We finally mention that partitioning T increases the chance
that individual tree-blocks fit into the L2 cache, thus further
increasing the achieved memory bandwidth.

Regarding the output vector leafindexes, its size
depends on the number of trees |T | and on the maxi-
mum number of leaves Λ. Considering the example above:
10, 000 trees with 64 leaves per tree require 80 KB of mem-
ory, which is greater than the amount of shared memory
typically available for individual thread-blocks. Since the
threads of a warp perform unpredictable read-write ac-
cesses to leafindexes, using the global memory to man-
age leafindexes would unfortunately result into random
memory accesses that cannot be coalesced; this, in turn,
would impact negatively the performance. Hence, rather
than storing leafindexes into the global memory it is far
more efficient to partition the model, as already discussed
in Section 3. More precisely, T is partitioned into multiple
tree-blocks T ⊆ T of size τ = |T |, where τ is chosen to
be small enough to make the corresponding leafindexes
fitting the amount of shared memory available per thread-
block. Since the shared memory is at least one order of
magnitude faster than the global memory and it does not
require coalescing, it can serve up to 32 parallel requests
by effectively managing potential conflicts with efficient
atomic operations. As mentioned above, another motivation
to adopt a small size for τ is to increase the chance that each
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Algorithm 3: GPU-QUICKSCORER
1 GPU-QUICKSCORER(D,T ):
2 COPYHOSTTOGPU(T )
3 foreach document batch D, D ⊆ D do
4 COPYHOSTTOGPU&TRANSPOSE(D)
5 SD ← {s0 = 0, · · · , s|D|−1 = 0}
6 foreach tree-block T , T ⊆ T do
7 pos pivot← FINDFALSENODESGPU (D, T )
8 UPDATESCORESGPU (T,pos pivot,SD)

9 return SD

partition fits into the L2 cache, thus minimizing the average
memory access latency.

A final remark concerns where the input data, i.e., the
feature vectors associated with the documents to score, are
stored. These vectors are moved from the CPU to the GPU
global memory in large batches of D ⊆ D documents. As
the global memory is large, it can easily host large batches of
input documents: for instance, a batch of 10, 000 documents,
each having 1, 000 features, takes only about 40 MB.

The GPU algorithm. GPU-QUICKSCORER (QSGPU), the
GPU version of QUICKSCORER5, is sketched in Algorithm 3.
The algorithm starts by transferring the entire model from
the host (CPU) memory to the GPU global memory (line
2). We note that the model is stored in a partitioned layout
of disjoint tree-blocks T ⊆ T , and it is entirely loaded into
the global memory (line 2). The documents to be scored are
transferred from the host memory to the GPU global mem-
ory in batches (line 4), while their initial scores are set to
zero (line 5). Each batch of documents gets also transposed
in parallel by the GPU; more precisely, the original layout
of D is a matrix where each row stores a document vector
x ∈ D, while the transposed layout stores document vectors
column-wise. This arranges the same feature of different
documents in contiguous memory locations, thus allowing
to coalesce memory accesses.

After completing the transfer, the algorithm iterates
across the various tree-blocks T ⊆ T (line 6). Un-
like the sequential QS, the identification of false nodes
(FINDFALSENODESGPU, line 7) is executed entirely be-
fore computing leafindexes and the document scores
(UPDATESCORESGPU, line 8).

First phase – finding pivot positions. For each feature fφ in
each document x ∈ D the GPU threads in FINDFALSEN-
ODESGPU work in parallel to identify the positions of the
so-called pivots in the sorted list of tuples (γ,mask, h). Given
a feature fφ and a document x ∈ D, a pivot represents the
greatest position in the sorted list of tuples such that for all the
subsequent positions the inequality x[φ] ≤ γ holds. A pivot
thus separates the false nodes from the true nodes in the
branching nodes that perform their tests over fφ. Note that
using the transposed layout for a given batch of documents
D allows us to use an efficient GPU binary search algorithm6

to search in parallel the pivots and store them in pos pivot.
Finally, we highlight that the separation between the

FINDFALSENODESGPU and the UPDATESCORESGPU steps
implies a better access to the data structures holding the

5. Source code: https://github.com/hpclab/gpu-quickscorer
6. Available in the Thrust library, v1.7.0, provided by the CUDA

framework.

tree-based model. FINDFALSENODESGPU needs, for all x ∈
D, to access just the thresholds γ, while UPDATESCORES-
GPU needs to access just mask and h. This limits the mem-
ory footprint of QSGPU, thus favoring a better exploitation
of the global memory caching.

Second phase – updating document scores. Once the po-
sitions of the pivots are available in pos pivot (line 7),
the algorithm proceeds to update the partial scores of the
currently considered batch of documents by adding the
contributions of the tree-block T , T ⊆ T . We note that at
this point we do not need to access the model thresholds γ,
but just the masks mask and tree ids h. This second phase is
realized by function UPDATESCORESGPU (line 8, Algorithm
3) detailed in Algorithm 4.

Algorithm 4: The UPDATESCORESGPU kernel
1 UPDATESCORESGPU(T,pos pivot,SD):
2 parallelblock foreach x ∈ D do
3 shared leafindexes[τ ], where τ = |T |
4 parallelthread foreach th ∈ T do
5 leafindexes[h]← 11...11

6 synchthreads

1© Mask Computation Step
7 parallelwarp foreach fφ ∈ F do
8 parallelthread foreach (γ, mask, h) ∈ NTφ

in ascending order, up to the pos pivot[x][fφ] -th element
do

9 leafindexes[h] ← (leafindexes[h] ∧atomic

mask)

10 synchthreads

2© Score Accumulation Step
11 local accScores← 0
12 parallelthread foreach th ∈ T do
13 local j ← index of the leftmost bit set in leafindexes[h]
14 local l← h · Λ + j
15 accScores← accScores+ leafvalues[l]

16 synchthreads

3© Score Reduction Step
17 SD[x]← SD[x] + BlockSumReduction(accScores)

18 return SD

As discussed above, we need to combine inter-document
and intra-document parallelization strategies to optimize the
utilization of the GPU cores. For what concerns inter-
document parallelization, each document is assigned to a
single block of threads – in Algorithm 4, line 2, we use the
notation parallelblock to indicate that each iteration of the
loop is assigned to a different block of threads. The model
T is partitioned to make sure that each block of threads
has sufficient resources to store leafindexes in the shared
memory (line 3). For what concerns intra-document par-
allelization, this is achieved within each thread-block by
properly orchestrating the operations conducted within the
mask computation and score computation steps.

First, the elements of leafindexes are initialized
(line 4) – we use the keyword parallelthread to indicate that
iterations of the loop are partitioned among the threads of
the thread-block and executed in parallel. A barrier (line 6),
denoted by synchthreads, makes sure that the initialization
is completed by all threads before proceeding further.

The algorithm then performs the mask computation step,
where we take advantage of the grouping of threads into
warps. We explicitly assign a different feature fφ to each
warp of the thread-block – to this end, we note the use
of the notation parallelwarp (line 7). Going further on,

https://github.com/hpclab/gpu-quickscorer
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the construct parallelthread at line 8 indicates the nested
parallelism within each warp, where the threads process in
parallel the set of tuples, N T

φ , associated with φ in the tree-
block T . Due to the memory layout used with tuples, the
accesses performed by the threads of a warp are distributed
sequentially in global memory, thus yielding coalesced ac-
cesses. Subsequently, the retrieved masks are used to update
in parallel the leafindexes of the corresponding trees.
Since the accesses to leafindexes are random and poten-
tially conflicting, atomic updates are employed to guarantee
consistency (line 9). Finally, the loop ends when all the false
nodes for the current document x and feature fφ have been
processed, i.e., until the position pos pivot[x][fφ] in the
tuple array is reached by some of the threads of the warp.
Note that when this position is reached within a warp,
some of its threads may result inactive, since leafindexes
must not be modified by the nodes following the pivot: the
resulting branch divergence may have a limited impact on
the algorithm performance.

When all the features have been processed, the algorithm
proceeds to update the document score by adding the con-
tributions of the currently considered tree-block T . First, the
vector leafindexes is partitioned among the threads of
the thread-block (line 12) such that each thread accumulates
in a private, local register the contributions of a subset
of trees by identifying their exit leaves in leafindexes.
We note that accesses to leafvalues cannot be coalesced
and that this data structure is stored in the global memory.
However, thanks to the fact that the model is partitioned
into several sub-forests T ∈ T , and that leafvalues is
typically small in size, by picking up a proper τ it is possible
to maximize the chance that leafvalues fits into the L2
cache. Finally, the threads of the block perform a block-wise
sum-reduction over the accumulated scores, thus yielding a
partial score that is used to update the overall score of the
document in global memory (line 17)7.

7 EXPERIMENTS

We conduct experiments on three public datasets that are
commonly used in the scientific community to evaluate LtR
solutions. The training/test datasets are composed of query-
document pairs, in turn represented by multidimensional
feature vectors, each labeled with relevance judgments rang-
ing from 0 (irrelevant) to 4 (perfectly relevant). Specifically,
the datasets used are: the first fold of the MSN (hereinafter
MSN-1)8, the Yahoo datasets (hereinafter Y!S1)9, and the
full Istella dataset (hereinafter Istella)10. Table 2 reports their
main characteristics.

We use these datasets to train additive ensembles of
boosting regression trees by exploiting the λ-MART [?] al-
gorithm, which aims to optimize NDCG@10, i.e., a common
measure used to evaluate ranking quality [?]. The trees of
the ensembles learnt have a maximum number of leaves Λ
equal to either 32 or 64. In more detail, we use the efficient
implementation of λ-MART provided by QuickRank11, an

7. CUB lib v1.7.0, https://nvlabs.github.io/cub/
8. http://research.microsoft.com/en-us/projects/mslr/
9. http://learningtorankchallenge.yahoo.com
10. http://blog.istella.it/istella-learning-to-rank-dataset/
11. http://quickrank.isti.cnr.it

TABLE 2: Main characteristics of the three datasets.

MSN-1 Y!S1 Istella

length of feature vectors 136 700 220
queries in train/validation 8, 000 22, 938 23, 319
docs in train/validation 958, 671 544, 217 7, 325, 625
queries in test 2, 000 6, 983 9, 799
docs in test 241, 521 165, 660 3, 129, 004
avg docs/query in test 120.7 23.72 319.31

open-source LtR C++11 framework [?]. However, in the
paper we focus on the efficiency at testing time of tree en-
sembles, and thus our results are independent of the specific
LtR algorithm used to train them.
Experimental setting for efficiency tests. For the tests
we use a shared-memory NUMA multiprocessor equipped
with two Intel Xeon CPU E5-2630-v3 clocked at 2.40 GHz
(3.20 GHz in turbo mode), and with 192 GB RAM. Each
Xeon CPU has 8 general-purpose cores, where each core has
a dedicated L1/L2 cache of 32/256 KB, and a shared L3
cache of 20 MB. The system also includes an NVIDIA GTX
1080 GPU, with a global memory of 8 GB GDDR5X, a 2 MB
L2 cache, 20 SMs each featuring 128 cores, a 96 KB shared
memory unit (48 KB accessible by individual thread-blocks),
and a dedicated 48 KB L1 cache.

All the versions of QUICKSCORER are written in C++11,
and are compiled with GCC 6.3.0, plus the latest version
of CUDA 8 for the GPU version. The -O3 flag is used for
the GCC compiler, while the flags -Xptxas=-dlcm=ca and
-gencode arch=compute_61,code=sm_61 are used for
the CUDA compiler. In detail, the former flag enables global
memory caching via L1 cache, while the latter generates
optimized code for the GPU used in the experiments.

To measure the efficiency of the above methods, we run
for 10 times the scorer on the test sets of the MSN-1, Y!S1,
and Istella datasets, and compute the average per-document
scoring cost. Moreover, to profile the behavior of each
CPU-based QS version, we employ perf12, a performance
analysis tool available under Ubuntu Linux distributions.
Analoguously, to profile GPU-QUICKSCORER we employ
nvperf, a GPU performance analysis tool provided by the
NVIDIA CUDA framework.

7.1 Vectorized and Multi-threaded QUICKSCORER

Table 3 reports the per-document scoring times (µs) of VQS
and VQS-MT, and compares them with those achieved by
the sequential QS. While VQS is a single-threaded algorithm
that uses the AVX-256 SIMD extension, VQS-MT is the
multi-threaded version of VQS that exploits all the 16 cores
of our NUMA system. From the table we see that VQS
outperforms QS with significant speedups. When dealing
with trees having Λ = 32 leaves each, we observe that VQS
achieves speedups over QS that range between 1.9x and
3.2x. The superiority of VQS persists also when Λ = 64. In
this case we observe that the speedups achieved by VQS
over QS – speedups that range between 1.2x and 1.8x –
slightly decrease due to the halved number of documents
that can be scored in parallel with respect to Λ = 32 (4 rather
than 8). As explained in Section 4, this is a consequence

12. https://perf.wiki.kernel.org

https://nvlabs.github.io/cub/
http://research.microsoft.com/en-us/projects/mslr/
http://learningtorankchallenge.yahoo.com
http://blog.istella.it/istella-learning-to-rank-dataset/
http://quickrank.isti.cnr.it
https://perf.wiki.kernel.org
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TABLE 3: Per-document scoring time (µs) of QS, VQS, and VQS-MT on MSN-1, Y!S1, and Istella. Speedups of both VQS
and VQS-MT over QS are between round brackets (·), and speedups of VQS-MT over VQS between squared brackets [·].

Method Λ

Number of trees/Dataset

1, 000 5, 000

MSN-1 Y!S1 Istella MSN-1 Y!S1 Istella

QS

32

7.0 (–) 12.4 (–) 8.9 (–) 33.7 (–) 43.8 (–) 34.5 (–)
VQS 2.8 (2.5x) 3.9 (3.2x) 3.1 (2.9x) 17.4 (1.9x) 20.8 (2.1x) 14.3 (2.4x)

VQS-MT 0.2 (35.0) 0.4 (31.0) 0.3 (29.6x) 1.4 (24.1x) 1.9 (23.1x) 1.2 (28.8x)
[14.0x] [9.8x] [10.3x] [12.4x] [10.9x] [11.9x]

QS

64

12.4 (–) 19.2 (–) 13.5 (–) 70.7 (–) 83.3 (–) 69.8 (–)
VQS 8.3 (1.5x) 10.4 (1.8x) 7.9 (1.7x) 60.8 (1.2x) 64.6 (1.3x) 46.3 (1.5x)

VQS-MT 0.7 (17.7x) 1.0 (19.2x) 0.7 (19.3x) 4.9 (14.4x) 10.2 (8.2x) 3.7 (18.9x)
[11.9x] [10.4x] [11.3x] [12.4x] [6.3x] [12.5x]

Method Λ

Number of trees/Dataset

10, 000 20, 000

MSN-1 Y!S1 Istella MSN-1 Y!S1 Istella

QS

32

74.6 (–) 88.7 (–) 71.4 (–) 183.7 (–) 185.1 (–) 157.2 (–)
VQS 39.6 (1.9x) 44.2 (2.0x) 31.1 (2.3x) 87.8 (2.1x) 88.5 (2.1x) 64.8 (2.4x)

VQS-MT 3.2 (23.3x) 4.1 (21.6x) 2.5 (28.6x) 7.3 (25.2x) 8.2 (22.6x) 7.6 (20.7x)
[11.5x] [10.8x] [12.4x] [12.0x] [10.8x] [8.5x]

QS

64

194.8 (–) 186.9 (–) 167.4 (–) 470.5 (–) 377.2 (–) 326.1 (–)
VQS 146.9 (1.3x) 136.8 (1.4x) 105.9 (1.6x) 321.7 (1.5x) 274.1 (1.4x) 236.6 (1.4x)

VQS-MT 12.5 (15.6x) 14.6 (12.8x) 8.8 (19.0x) 46.2 (10.2x) 35.1 (10.7x) 26.1 (12.5x)
[11.8x] [9.4x] [12.0x] [7.0x] [7.8x] [9.1x]

of the increase in the space required to store bitvectors
mask and leafindexes (64 bits), thus limiting to only 4
the number of elements that can be stored in a single vector
register of 256 bits.

We also compare VQS-MT with VQS and QS. We em-
ploy OpenMP to distribute VQS among the processing cores
available within our multiprocessor. Each thread thus runs
VQS and uses the AVX SIMD extensions to score bunches
of documents at a time (either 8 or 4 documents, depending
on Λ). The final results, reported in terms of per-document
scoring time (µs), are obtained by running VQS-MT on the
16 physical cores of our NUMA multiprocessor, without
the use of hyper-threading – our threads are compute-
bounded, and we experimentally verified that the adoption
of INTEL’s hyper-threading actually reduces the overall
performance. Moreover, we use the numactl tool to force
thread allocation on the NUMA architecture. This means
that a thread will use the local memory of the node where
it is executed during all its life-cycle; this avoids to slow
down the accesses to the memory of different nodes of the
NUMA architecture. We also experiment several OpenMP
loop scheduling policies, i.e., static, dynamic, guided,
and auto, and report the best results obtained by using the
auto strategy.

Table 3 shows that when Λ = 32 VQS-MT achieves
speedups ranging between 20.7x and 35x over QS, while
it achieves speedups ranging between 6.3x and 14x over
VQS. Note that the best possible speedup of VQS-MT over
VQS is 16x (linear speedup), since our multiprocessor has
16 cores. We are able to approach the best possible speedup
only when considering the smallest MSN dataset (1, 000
trees), as this allows to better fit the various levels of
dedicated/shared cache. When considering Λ = 64, VQS-
MT achieves speedups over QS that range between 8.2x
and 19.3x: again, we notice a performance degradation with
respect to the Λ = 32 case caused by the reduced SIMD
parallelism within each thread. Finally, when Λ = 64 the

speedups achieved by VQS-MT over VQS are between
6.3x and 12.5x: this still represents a good result, but it is
worse than the result achieved for the Λ = 32 case. The
performance degradation is mainly due to the increased size
of the tree-based models (the size of all bitwise masks are
doubled), which in turn increases the competition among
threads over the L3 cache of each multi-core CPU: in fact, the
worst speedups are obtained when considering very large
ensembles (20, 000 trees).

Instruction level analysis. We use the perf tool to mea-
sure the total number of instructions, number of branches,
number of branch mis-predictions, L3 cache references, and
L3 cache misses for the different scorers, running on a single
core of the Intel Xeon CPU by exploiting its SIMD extension.
In these tests we compare QS against VQS over ISTELLA,
the largest and most challenging dataset. The experiments
conducted on the other datasets are not reported, as they
exhibit similar results. Table 4 reports the results achieved
with all measurements normalized per-document and per-
tree. It is worth specifying that the figures for L3 cache
references reported in the table account for memory accesses
that cause a miss in any of the previous levels of cache, while
L3 cache misses account also for the percentage of L3 cache
references that miss in L3.

Interestingly, the analysis reveals that the use of the
AVX-256 instruction set causes a significant decrease in the
average number of instructions needed to score a single
document. This reduction justifies the speedups achieved
by VQS. In terms of branch figures, VQS shows lower mis-
prediction rates than QS. The total number of per-tree per-
document branches is also lower, demonstrating that the
chosen parallelism represents a good strategy to increase
the throughput of QS. The same results are achieved for the
cache utilization. As in the preceding case, L3 cache misses
and references are always lower than the ones achieved by
QS, thus revealing a more effective use of the cache.
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The instruction level analysis of the multi-threaded im-
plementation of QUICKSCORER (VQS-MT) shows that it
inherits the same figures from VQS. The use of the OpenMP
library to parallelize VQS does not incur in computational
overhead, as the instruction count is the same as VQS – the
same considerations hold for the total number of branches
and branch mis-predictions. In terms of L3 cache misses, the
number of misses increases for VQS-MT when the model
size increases – this is again caused by an increased com-
petition in the usage of the L3 cache. Finally, we argue that
the high number of threads working concurrently affects
negatively the temporal and spatial locality, thus leading to
a higher number of cache misses.

7.2 GPU-based QUICKSCORER

GPUs have constraints that impact on the design and tun-
ing of algorithms, with different GPU models possessing
quantitatively different constraints. Since the constraints are
similar in nature across different GPUs, without loss of
generality we focus on the GPU used in our experiments, a
NVIDIA GTX 1080. Table 5 reports its constraints. In the fol-
lowing we discuss the possible impact of these constraints
on the design of QSGPU – specifically, warp efficiency, number
of resident thread-blocks and occupancy, and L2 cache size impact.

Warp efficiency. Within the UPDATESCORESGPU kernel,
which represents the time-dominant component of the al-
gorithm, QSGPU exploits the shared memory of each SM
to store leafindexes, where each bitvector is of Λ bits.
Therefore, let Στ = τ · Λ/8 be the size (in bytes) of the
shared memory footprint of a model of τ trees for each
thread-block. Since a thread-block is constrained to access
up to 48 KB of shared memory, then Στ ≤ 48 KB.

Example. Given a large model composed of 20, 000
trees with Λ = 32, the size of the leafindexes

TABLE 4: Per-tree per-document low-level statistics on Is-
tella with 64-leaves λ-MART models.

Method Number of Trees

1,000 5,000 10,000 15,000 20,000

Instruction Count

QS 67 70 79 81 73
VQS 57 61 66 65 57
VQS-MT 57 60 66 65 57

Num. branch mis-predictions (above)
Num. branches (below)

QS 0.139 0.036 0.022 0.013 0.010
7.86 7.44 8.34 8.62 7.64

VQS 0.03 0.004 0.002 0.002 0.001
4.47 4.81 5.22 5.17 4.56

VQS-MT 0.02 0.004 0.003 0.002 0.001
4.45 4.80 5.22 5.17 4.55

L3 cache misses (above)
L3 cache references (below)

QS 0.005 0.001 0.001 0.002 0.004
2.0 1.47 1.57 1.75 1.94

VQS 0.004 0.003 0.025 0.004 0.026
0.51 1.04 1.31 1.86 1.38

VQS-MT 0.005 0.004 0.190 0.085 0.151
0.47 1.14 1.59 1.62 1.64

TABLE 5: NVIDIA GTX 1080 constraints.

NVIDIA GTX 1080 Feature Limit

Threads (warps) per SM 2,048 (64)
Threads (warps) per thread-block 1,024 (32)
Thread-blocks per SM 32
Shared memory per SM 96 KB
Shared memory per thread-block 48 KB
Registers per thread-block 65 K
Warp schedulers per SM 4
L2 cache size 2 MB

data structure would be Στ = 20, 000 · 32/8 =
80, 000 bytes, thus much larger than the limit of
48 KB. Therefore, the maximum number of trees of
a single partition of the ensemble is τ = 12, 288 for
Λ = 32, and τ = 6, 144 for Λ = 64.

As discussed previously, this does not represent a major
issue for QSGPU, as any model can be evaluated in par-
titions of any custom size τ . However, splitting a model
into partitions introduces overhead, as part of the threads
constituting a warp become inactive when reaching a pivot
that separates true nodes from false ones in a given partition
of the model. This inefficiency is measured by warp efficiency,
i.e., the average fraction of active threads per executed warp.
We observe that each partition made of τ trees has its own
set of pivots: therefore, increasing the partitions of the model
increases proportionally the number of pivots, thus harming
warp efficiency. Even if this phenomenon is more evident
with large feature sets, or when the number of false nodes
is very small, in general we have that the larger the number
of partitions (or, equivalently, the smaller τ ), the smaller the
warp efficiency.

Number of resident thread-blocks and occupancy. τ also
determines the maximum number of resident thread-blocks that
can run concurrently on the same SM. Since each SM is
equipped with only 96 KB of shared memory, this limits
the number of resident thread-blocks to a maximum of
βτ = b96 KB/Στc.

While satisfying the above constraint, it is also important
to maximize occupancy, i.e., the average ratio between the
number of active warps per cycle per SM and the maximum
number of active warps that are supported per SM (64 in our
GPU, for a total of 2,048 threads). Generally, by maximizing
occupancy we increase the chance for SM schedulers to
hide/tolerate warp stalls caused by global memory accesses.

Note that we could maximize occupancy by simply in-
creasing the number of threads per thread-block. However,
this strategy may end up reducing the number of per-SM
resident thread-blocks, due to the constraint on the total
number of threads per SM (max 2,048). Instead, along with
occupancy it is also important to maximize the number of
resident thread-blocks, as this allows to mask stalled warps
of a block with eligible warps (i.e., warps that are ready to
issue their next instruction) of other thread-blocks. In fact,
all the warps of a thread-block can be stalled due to a block-
level barrier.

Given a specific τ , the policy we adopt to maximize oc-
cupancy, along with the number of per-SM resident thread-
blocks, is to choose the minimum number of threads per
thread-block (n threads) that allows to run enough con-
current thread-blocks per SM with full occupancy. More
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formally:

min n threads = 2n

subject to 5 ≤ n ≤ 10;

2 ≤ 2,048
n threads

≤ βτ .

Note that the first constraint forces n threads to be a mul-
tiple of 32 (warp size) and a divisor of 1,024 (max threads
per thread-block). Since we minimize n threads, this choice
actually maximizes the number of per-SM resident thread-
blocks (i.e, 2,048/n threads), provided that this number is
not greater than βτ .

Note also that the number of resident thread-blocks must
be at least 2: indeed, the maximum shared memory allocated
to each thread-block is 48 KB – exactly half of the total
shared memory available – while the maximum n threads
per thread-block is 1,024, exactly half of the maximum
number of threads per SM that guarantees full occupancy
(see Table 5).

We validated the above policy by conducting a grid
search over τ and n threads, with ensembles featuring
20,000 trees and Λ = {32, 64} leaves per tree (results are
omitted for brevity).

Example. Let τ = 4,000 and Λ = 32. A single
thread-block requires Στ ≈ 16 KB, which allows
to have at maximum βτ = 96/16 = 6 concurrent
thread-blocks per SM. If we use 6 thread-blocks
per SM, we can have at most n threads = 320
threads per thread-block, due to the limit of 2,048
threads per SM, thus yielding a total of 1,920
threads: this implies a sub-optimal occupancy,
i.e., 1, 920/2, 048 = 0.9375 < 1. We rather use
n threads = 29 = 512, which yields full occu-
pancy and 2,048/512 = 4 ≤ βτ thread-blocks per
SM.

Another parameter is n total blocks, i.e., the overall num-
ber of allocated thread-blocks to be dinamically scheduled
on the various SMs. In general we have that the greater
n total blocks, the finer the granularity of aggregated task
assigned to each thread-block, hence guaranteeing a better
load balancing of the workload distributed over the SMs.
Specifically, we need that n total blocks � m × βτ , where
m is the number of GPU’s SMs (m = 20 in our GPU),
and m × βτ is the maximum number of resident blocks
that can run concurrently on all the SMs of a GPU. As
QSGPU typically needs to score huge amounts of query-
document pairs, our problem setting allows us to easily set
n total blocks to a sufficiently high value – value much
larger than m× βτ – to achieve optimal performance, while
ensuring at the same time that each thread-block has an
adequate workload.

L2 cache size impact. The L2 cache memory size (2 MB) has
a strong influence on the tuning of τ . The cache size also
impacts on the access time to the remaining data structures
stored in the GPU global memory.

More precisely, for each internal node QSGPU uses Λ/8+
2 bytes to store, respectively, the node’s bitvector mask and
tree ID h, while it uses 8 bytes (a double) for each leaf score
in leafvalues. In general, note that the cache size imposes
a stricter upper bound than the shared memory constraint.

Example. QSGPU requires (Λ/8 + 2) · (Λ − 1) plus
8 ·Λ bytes for each tree. Given a model with 20, 000
trees, the 2 MB constraint is already violated when
τ = 5, 000 with Λ = 32, or τ = 2, 000 with Λ = 64.

To exploit the computational power of a GPU we need to
pursue two contrasting goals: maximizing the warp efficiency
by using a large τ , and maximizing the hit rate of the L2 cache
by using a sufficiently small τ . We argue that these goals
can be achieved by using a value of τ that is sufficiently
close to the size of the L2 cache, while the number of
threads per thread-block, n threads, and the number of per-
SM resident thread-blocks can be statically determined as
shown above.

In the batch of experiments that follows we validate our
analytic performance model and the choice of τ for optimal
performance. We vary τ in the [1, 000 − 10, 000] range, and
for each value of τ we set the number of threads per thread-
block, n threads, by means of the previously illustrated
policy. Also, the number of thread-blocks, n total blocks,
is set to the highest possible value, 64K − 1, as this ensures
an optimal balancing of the workload. The datasets feature
|T | = 20, 000 and Λ = {32, 64}. We also use nvprof to
collect two profiling metrics, i.e., the L2 cache hit ratio and the
warp efficiency. Finally, we report that the trends observed in
the plots can be reproduced with different values of |T | and
Λ (we omit the results for brevity). Figure 2 presents the
results of the analysis.

We first notice that the L2 hit rate remains close to 1
until τ ≤ 5, 000 (Λ = 32) and τ ≤ 2, 000 (Λ = 64); this is
expected, considering the amount of L2 cache available (2
MB) and the space required by each partition of the model.
Secondly, we observe that warp efficiency increases as τ
increases (this reduces the number of tree-blocks): this is
again expected, as having less partitions implies less pivots,
which in turn reduces the chances that part of the threads
making up a warp become inactive when reaching some
pivot of some feature.

Overall, increasing τ improves the scoring time (this is
mainly due to the improved warp efficiency) until the L2
hit rate remains close to 1, thus indicating the existence of
a tradeoff. When the cache performance starts to degrade
(τ ≥ 6, 000 with Λ = 32, and τ ≥ 3, 000 with Λ = 64), the
scoring time starts to increase noticeably.

Table 6 shows the per-document scoring time in µs and
the speedup obtained, for different sizes |T | of the model
and different numbers of leaves Λ. When |T | becomes large,
QSGPU partitions the model in different blocks of size τ ,
and adopts a suitable number of threads per thread-block to
ensure the best occupancy of each SM in the GPU. Details
about the two parameters that are crucial for QSGPU’s per-
formance are reported in the Threads per block and τ columns.
QSGPU achieves consistent speedups over the sequential QS
– up to 102.6x, 65.6x, and 90.9x on MSN-1, Y!S1, and Istella,
respectively. In general, we observe that QSGPU dominates
the implementations previously discussed in all the settings
considered, and achieves the best results when the size of
the ensembles becomes large in terms of number of trees
and leaves per tree – in fact, the best results are always
achieved when |T | = 20, 000 and Λ = 64, as the larger
computational workload to score each query-document pair
favours the massive parallelism of GPUs.
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Fig. 2: Performance analysis of QSGPU by varying the size of tree-blocks τ . Λ = 32 (left) and 64 (right), |T | = 20, 000,
variable number of threads per thread-block, and fixed number of thread-blocks (64K − 1).
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8 RELATED WORK

The Information Retrieval community has recently investi-
gated possible strategies to reduce the scoring time of the
most effective LtR rankers based on ensembles of regression
trees. These strategies can be roughly divided into two
groups: tree removal strategies and algorithm optimization.

Tree removal strategies focus on boosting the scoring
time by limiting the number of trees processed, trading off
effectiveness for efficiency. Cambazoglu et al. [?] proposed
to early terminate the trees traversal, on a single query-
document basis, as the score contributions of the remaining
trees become low. Lucchese et al. [?] proposed to statically
remove low-contributing trees and re-train the weights ac-
cording to a given effectiveness measure.

Algorithmic optimization, although do not change the
time complexity, aims to better exploit the underlying CPU
architecture, in particular instruction-level parallelism, data-
level parallelism, and memory hierarchies [?]. A first pro-
posal toward efficient traversal of binary regression trees
was the VPRED algorithm [?]. VPRED stores such trees as
binary heaps implemented as linear arrays, and substitutes
the branches, needed to select the traversal path of a tree in a
traditional code, with a sequence of instructions that use the
results of each Boolean test to identify the index of the next
heap cell to visit. Since the directions of branches employed
by a traditional tree traversal code are quite unpredictable,
this optimization tries to remove the problem at the root, by

completely removing conditional statements. However, this
technique, aiming to transform control dependencies into
data dependencies, is not enough to fully exploit the multi-
ple pipelines of a processor. To achieve a better exploitation
of the pipelines of the CPU VPRED scores multiple query-
document pairs on the same tree thus allowing the processor
to identify and issue independent instructions in parallel
working on distinct pairs. The memory footprint of VPRED
is not so large, since it accesses a tree of the ensemble at a
time to score groups of documents. Another investigation
toward efficient traversal of forests of regression trees relies
in the definition of a blocking strategy allowing a better
temporal and spatial cache location of the scoring process.
Tang et al. [?] propose a cache-conscious layout for ensemble
models able to achieve a up to 50% improvement over
VPRED.

The QUICKSCORER (QS) algorithm [?], [?], which re-
structures the data layout and the processing of an ensemble
of regression trees to leverage modern memory hierarchies
and reduce branch prediction errors to limit control hazards,
resulted up to 6.6x faster than VPRED.

Literature about GPU-based algorithms that score/clas-
sify with forests of trees is limited to classifiers based on
small ensembles of random trees and have a very narrow
scope. Schulz et al. [?] exploited the characteristics of a given
problem, i.e., image labeling, to overcome issues related to
the structural irregularity of random trees. Van Essen et
al. [?] proposed a GPU-based approach that use Compact
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TABLE 6: Per-document scoring time in µs of QS and
QSGPU on MSN-1, Y!S1, and Istella datasets. Speedups of
QSGPU vs. QS are reported between parentheses.

|T | Λ Method Threads per block τ Time
MSN-1

1,000
32 QS – – 7.0 (–)

QSGPU 128 1,000 0.19 (36.8x)

64 QS – – 12.4 (–)
QSGPU 256 1,000 0.25 (49.6x)

5,000
32 QS – – 33.7 (–)

QSGPU 512 5,000 0.44 (76.6x)

64 QS – – 70.7 (–)
QSGPU 256 1,500 1.08 (65.5x)

10,000
32 QS – – 74.6 (–)

QSGPU 512 5,000 0.86 (86.7x)

64 QS – – 194.8 (–)
QSGPU 256 1,500 2.29 (85.1x)

20,000
32 QS – – 183.7 (–)

QSGPU 512 4,000 1.79 (102.6x)

64 QS – – 470.5 (–)
QSGPU 256 1,500 4.67 (100.8x)

Y!S1

1,000
32 QS – – 12.4 (–)

QSGPU 128 1,000 0.85 (14.6x)

64 QS – – 19.2 (–)
QSGPU 256 1,000 0.75 (25.6x)

5,000
32 QS – – 43.8 (–)

QSGPU 512 5,000 0.94 (46.6x)

64 QS – – 83.3 (–)
QSGPU 512 3,000 1.78 (46.8x)

10,000
32 QS – – 88.7 (–)

QSGPU 512 5,000 1.56 (56.9x)

64 QS – – 186.9 (–)
QSGPU 512 2,000 3.45 (54.2x)

20,000
32 QS – – 185.1 (–)

QSGPU 512 5,000 2.82 (65.6x)

64 QS – – 377.2 (–)
QSGPU 512 3,000 5.55 (68x)

Istella

1,000
32 QS – – 8.9 (-)

QSGPU 128 1,000 0.28 (31.2x)

64 QS – – 13.5 (-)
QSGPU 256 1,000 0.37 (36.5x)

5,000
32 QS – – 34.5 (-)

QSGPU 512 5,000 0.50 (69x)

64 QS – – 69.8 (-)
QSGPU 512 3,000 1.03 (67.8x)

10,000
32 QS – – 71.4 (-)

QSGPU 512 5,000 0.96 (74.4x)

64 QS – – 167.4 (-)
QSGPU 512 3,000 2.07 (80.8x)

20,000
32 QS – – 157.2 (-)

QSGPU 512 5,000 1.73 (90.9x)

64 QS – – 326.1 (-)
QSGPU 512 3,000 3.63 (89.8x)

Random Forests (CRFs), i.e. forests of binary decision trees
having fixed depth, to control the structure and the size
of trees, thus fitting well the architectural characteristics of
the GPUs. The approach adopts design choices that make it
similar to VPRED [?]: it stores decision trees as binary heaps
and visits each tree by employing a less refined traversal
strategy than the one used in VPRED – more precisely, loops
and conditional statements are not completely eliminated.
Given a CRF and a set of documents to score, the GPU-based
approach first partitions the CRF into sub-forests that can fit
into the texture cache of a streaming multiprocessor, and
assign each sub-forest to a multiprocessor. Each document
is then assigned to a single GPU thread, which accumulates
the scores of the sub-forest assigned to the multiprocessor
executing the thread. Partial scores are finally reduced by
the host (CPU). Due to the data structures and the traversal
strategy used, the approach proposed in [?] suffers of the
same limitations that characterize VPRED when compared
to more recent approaches.

9 CONCLUSION

In this paper we presented and evaluated several strategies
to parallelize the traversal of large ensembles of decision
trees. The motivation of this this research is the need of
deploying large tree forests in real large-scale settings, and
using such complex ML models to process each incoming
item within a small time budget. Large ensembles of deci-
sion trees are adopted in different ML scenarios such as Web
or product search, social media ranking or recommendation,
on-line advertisement, classification/regression tasks, etc.
We focused the proposed parallelization strategies within
the LtR framework, where a relevance ordering of docu-
ments w.r.t. a user query is induced by the scores assigned
to the documents. The proposed solutions are seamlessy
applicable to any of the discussed ML scenarios and boost
the efficiency of decision trees processing.

Our proposed strategies take advantage of the algorith-
mic framework introduced by QUICKSCORER, the state-of-
the-art algorithm in the literature, to leverage different types
of parallelism available in modern CPUs and GPUs. We
compared the proposed parallel solutions with the original
sequential version of QUICKSCORER. The CPU-based par-
allelization strategies, namely VQS (SIMD) and VQS-MT
(multi-threading + SIMD), achieved large speedups over
QUICKSCORER: more precisely, VQS obtained speedups up
to 3.2x (32 leaves per tree) and 1.8x (64 leaves per tree),
while VQS-MT achieved speedups up to 35.0x (32 leaves
per tree) and 19.3x (64 leaves per tree) on a 16 cores machine.
The performance gains originated from the exploitation of
different types of parallelism coupled with an efficient use
of CPU resources, as observed from the low-level moni-
toring of instruction counts, branch mispredictions, and L3
cache-miss rates. The main advantage of our parallelization
strategies is to provide increased throughput, which in turn
allows to better satisfy quality-of-service constraints. In fact,
while the use of larger ensembles improves the accuracy of
machine-learned models, the reduced scoring times allow to
process such models within smaller time budgets.

Our GPU-based parallelization strategy, namely GPU-
QUICKSCORER, provides the lowest document scoring times
in all the tested settings and should be the solution of choice
when absolute performance maximization is more impor-
tant than the increase of the hardware cost for GPUs equip-
ment. Specifically, GPU-QUICKSCORER achieved speedups
up to 102.6x (32 leaves per tree) and 100.8x (64 leaves per
tree) over QUICKSCORER on a NVIDIA GTX 1080 GPU.
These impressive performance gains are the result of a care-
ful design of the data layout and of the orchestration of the
accesses over the GPU-QUICKSCORER data structures of the
massive number of parallel threads run by modern GPUs.
As future work we plan to investigate if these characteristics
of our solution can be exploited by a Field-Programmable
Gate Arrays (FPGAs) implementation.
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