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Abstract
In this paper we consider a renowned stochastic model from sociophysics reported in [1, 2], which describes
the diffusion of information by word-of-mouth processes. This general model has a terrific impact to capture
both social dynamics among agents and information percolation, in case interaction among individuals plays a
keynote role. Here we generalize this model, by means of Linear Programming (LP) formulations, which exploit
to some extent the potentialities of sociophysics from a mathematical programming perspective. Our overall
approach aims to formally combine a stochastic model with a Linear Programming framework.
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1. Introduction

Social sciences provide plenty of applications, where the importance of diffusion dynamics is studied
in a number of papers and books, covering marketing (see e.g. [3, 4, 5]), agent-based modeling (see
e.g. [6]) and sociophysics (see e.g. [2, 7]).

Dating back to the seminal paper [8], in a social network people might tend to influence other
persons in their neighborhood, so enhancing diffusion processes. As a matter of fact, in a consumers
market the interaction among individuals may fruitfully affect the spreading of information, along
with the adoption of new products exploiting different communication channels [9]. Hence, assessing
accurate models of such diffusion processes may have a considerable impact on practical applications.
In this regard, the correct setting of models parameters becomes crucial.

The diffusion process we consider in this paper relies on a stochastic model, which was first pro-
posed by Galam in [1]. In this model each member (agent) of a given population can have one of two
opposite opinions, and may change opinion after discussing with other individuals in the population.
As a consequence, each agent may affect the opinion diffusion after a number of repeated discussions
in groups.

We consider both theoretical and numerical results, when pairing Galam’s model with specific
Linear Programming (LP) formulations, and focusing on the role of certain parameters in order to
route/speed up the diffusion process. More specifically, we first show that Galam’s model can be
easily generalized; then, we give evidence that some of the parameters which govern its behaviour
can be fruitfully determined exogenously, by coupling the model with a LP framework.

The paper is organized as follows: Section 2 reviews some basics of Galam’s model [1]. In Section 3
we describe a possible generalization for Galam’s model. Section 4 analyzes an LP formulation paired
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with Galam’s model, and includes some theoretical properties. Finally, in Section 4.1 we report a
numerical experience and Section 5 completes the paper.

2. Basics on Galam’s Model

This section recalls some basics of Galam’s model in [1]. Let us consider a set of𝑁 individuals (agents),
who may have one of two different opinions (say ‘+’ or ‘−’) about a certain topic. These agents
periodically meet in subgroups of individuals, in order to join a discussion and possibly change their
respective opinion. Assume at each time step 𝑡 ≥ 0 the 𝑁 agents meet to discuss, and let 𝑁+(𝑡) (𝑁−(𝑡))
be the number of agents that at time 𝑡 have opinion ‘+’ (‘−’). Clearly 𝑁 = 𝑁+(𝑡) + 𝑁−(𝑡) for any time
step 𝑡 .

More specifically, at time 𝑡 , each agent can belong to a 𝑘-sized group with probability 𝑎𝑘 , being 𝑘
the cardinality of the group, 𝑘 = 1, ..., 𝐿 and 𝐿 ≤ 𝑁 . In Galam’s model (see [1]) the values 𝑎1, … , 𝑎𝐿 are
exogenous parameters which satisfy

𝐿
∑
𝑘=1

𝑎𝑘 = 1, 𝑎𝑘 ≥ 0, 𝑘 = 1, … , 𝐿.

After a discussion in the group, at the outset of the next period 𝑡 + 1, any agent can possibly change
their opinion (e.g. ‘+’ becomes ‘−’ or viceversa) according to a majority rule; i.e. all agents in a group
take the view of the majority in that group. We highlight that in [1], the rule for reversing opinion is
assumed to be slightly biased in favor of the negative opinion ‘−’, since tie breaks in favor of ‘−’.

Clearly, indicating with 𝑃+(𝑡) the ‘estimated’ probability that an agent thinks ‘+’ at time 𝑡 , the
probability to think ‘−’ at step 𝑡 must be given by 𝑃−(𝑡) = 1 − 𝑃+(𝑡). Hence, based on the above
description, Galam in [1] estimates the probability 𝑃+(𝑡) using the recursive formula

𝑃+(𝑡 + 1) =
𝐿
∑
𝑘=1

𝑎𝑘
𝑘
∑

𝑗=⌊ 𝑘
2 +1⌋

𝐶𝑘
𝑗 𝑃+(𝑡)

𝑗{1 − 𝑃+(𝑡)}𝑘−𝑗 , (1)

where ⌊𝑧⌋ the largest integer less or equal to 𝑧, and 𝐶𝑘
𝑗 represents the binomial coefficient ( 𝑗𝑘). Setting

the initial condition 𝑃+(0) = 𝑁+(0)/𝑁 , where 𝑁+(0) is the number of agents thinking ‘+’ at 𝑡 = 0, for
any 𝑡 ≥ 1 the quantity 𝑃+(𝑡) may possibly differ from the ‘actual’ frequency of ‘+’, i.e. 𝑁+(𝑡)/𝑁 (see
[10]). Note that for any choice of 𝑎1, … , 𝑎𝐿 we have 0 ≤ 𝑃+(𝑡 + 1) ≤ 1, being

𝑘
∑

𝑗=⌊ 𝑘
2 +1⌋

𝐶𝑘
𝑗 𝑃+(𝑡)

𝑗{1 − 𝑃+(𝑡)}𝑘−𝑗 <
𝑘
∑
𝑗=0

𝐶𝑘
𝑗 𝑃+(𝑡)

𝑗{1 − 𝑃+(𝑡)}𝑘−𝑗 = [𝑃+(𝑡) + (1 − 𝑃+(𝑡))]𝑘 = 1𝑘 = 1.

Finally (see [1]), we define the killing point as the threshold value 𝑃̂+ satisfying

when 𝑃+(0) > 𝑃̂+ then lim
𝑡→∞

𝑃+(𝑡) = 1,

when 𝑃+(0) < 𝑃̂+ then lim
𝑡→∞

𝑃+(𝑡) = 0,

when 𝑃+(0) = 𝑃̂+ then 𝑃+(𝑡) = 𝑃+(0), ∀ 𝑡 > 0.

According with the last definition, the killing point is a threshold value such that when 𝑁+(0)/𝑁 lies
above 𝑃̂+, then all agents will eventually have opinion ‘+’. Conversely, when 𝑡 → ∞ all the agents
will definitely think ‘−’ if 𝑁+(0)/𝑁 < 𝑃̂+.



3. A Possible Generalization of Galam’s Model

According to model (1), a strict majority of the members in a subgroup with positive opinion is the
necessary and sufficient condition to have opinion ‘+’ for all the members of the subgroup. This
simple rule may unlikely be representative of a real behaviour in many opinion dynamics applications.
Indeed, the final decision in a group is often the result of a discussion, rather than a mere count of
the two opposite opinions in the group.

Consider for example the process of market penetration of a product. Social media meetings, word-
of-mouth, influentials and rumours drive people’s opinion [11]. Similarly, (1) is likely reliable in
political contexts, where decisions are taken on the base of polling, i.e. by simply counting voters in
a group, but the diffusion of information relies on the sensitivity of the members in a group, as well
as on outstanding credibility of some of them. This suggests that a reliable model should encompass
exogenous parameters that influence its performance, depending on the particular situation at hand.
Acting on those parameters could allow to increase the reliability of the model.

On the other hand, communication often requires to reach a sufficient level of penetration of the
message in a group of people: consider for example the marketing requirement to reach an appreciable
penetration of a product in the market [12], a critical mass of consumers, etc. The related literature
suggests that, by creating a strong influence on the consumer in the early life of a product, we may
determine the success of sales. The latter result can be predicted by possibly modifying the models in
(1) and in [10], so that consumers are forced to:

1. recognize the product and become more akin on consumption,
2. trust the product,
3. improve and advertise its diffusion.

We propose to generalize Galam’s model (1) considering a smoother dynamics, i.e., without consid-
ering strict majority as a necessary and sufficient condition to move the whole subgroup to the same
opinion. We assume that after discussions, all agents in a subgroup will assume opinion ‘+’ with a
probability 𝛼𝑘

𝑗 , being 0 < 𝛼𝑘
𝑗 < 1, which depends on the size 𝑘 of the group, as well as on the number

𝑗 of agents having opinion ‘+’ before discussion. To model this new dynamics we may consider to
replace (1) by

𝑃+(𝑡 + 1) =
𝐿
∑
𝑘=1

𝑎𝑘
𝑘
∑
𝑗=0

𝛼𝑘
𝑗 𝐶

𝑘
𝑗 𝑃+(𝑡)

𝑗{1 − 𝑃+(𝑡)}𝑘−𝑗 , (2)

where 𝛼𝑘
𝑗 , 𝑘 = 1, … , 𝐿, 𝑗 = 0, … , 𝑘, represent probabilities. To understand the idea behind model (2),

let us first observe that choosing the coefficients 𝛼𝑘
𝑗 in the following way (see Figure 1)

𝛼𝑘
𝑗 =

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

0 𝑖𝑓 𝑗 < ⌊
𝑘
2
+ 1⌋

1 𝑖𝑓 𝑗 ≥ ⌊
𝑘
2
+ 1⌋

(3)

we have, once again, Galam’s model (1): therefore (2) generalizes Galam’s model. More in general,
probabilities 𝛼𝑘

𝑗 should likely be defined so as to be increasing with respect to 𝑗, while decreasing
with respect to 𝑘. In this regard it makes sense to set the probability 𝛼𝑘

𝑗 as equal to zero, when the
number 𝑗 of ‘+’ in a group is rather low (e.g., lower than strict majority). Conversely, it may approach
1 in case the number of ‘+’ becomes significantly high (higher than strict majority). On the contrary,
when the number of positive opinions in a subgroup has an intermediate value, the probability 𝛼𝑘

𝑗



Figure 1: For a given 1 ≤ 𝑘 ≤ 𝐿 the model (3) considers the above step-shaped choice for the coefficients {𝛼𝑘𝑗 }.

In particular, if 𝑗 < ⌊𝑘/2 + 1⌋ then 𝛼𝑘𝑗 = 0, otherwise 𝛼𝑘𝑗 = 1, so that this choice corresponds exactly to obtain
the original Galam’s model (1).

can be reasonably considered as a function increasing from zero to 1 as 𝑗 increases. If the increasing
function of 𝑗 is assumed to be linear, then we can define the coefficients (probabilities) 𝛼𝑘

𝑗 as

𝛼𝑘
𝑗 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, 𝑖𝑓 𝑗 ≤ ⌊
𝑘
2 + 1⌋ − 𝑧𝑘𝑗 ,

𝑗 − (⌊
𝑘
2 + 1⌋ − 𝑧𝑘𝑗 )
2ℎ

, 𝑖𝑓 ⌊
𝑘
2 + 1⌋ − 𝑧𝑘𝑗 < 𝑗 < ⌊

𝑘
2 + 1⌋ − 𝑧𝑘𝑗 + 2ℎ,

1, 𝑖𝑓 𝑗 ≥ ⌊
𝑘
2 + 1⌋ − 𝑧𝑘𝑗 + 2ℎ.

(4)

The probabilities defined in (4) generalize (3) (it suffices to set 𝑧𝑘𝑗 and ℎ equal to zero -see Figure
2). We remark that 𝑧𝑘𝑗 in (4) represents a shift (either positive or negative) with respect to the value
⌊ 𝑘2 + 1⌋, while 1/(2ℎ) is the slope of the ramp in Figure 2.

To understand the implications of the choice in (4), we consider a numerical example. Let us start
with the scenario reported in [1], where 𝐿 = 4, 𝑎1 = 0, 𝑎2 = 𝑎3 = 𝑎4 = 1/3 (and 𝑧𝑘𝑗 = 0 for all 𝑗 and 𝑘).
The killing point (𝐾𝑃 ) lies between 0.84 and 0.87. We first plotted 𝑃+(𝑡 + 1) vs. 𝑃+(𝑡) as in (1), choosing
both 𝑃+(1) = 0.84 (asterisks ‘∗’ in Figure 3) and 𝑃+(1) = 0.87 (circles ‘𝑜’ in Figure 3); the overall results
are depicted in Figure 3. Then, we also reported in Figure 3 the model (2) with the choice (4). As we can
easily deduce, the dynamics of Galam’s model in [1] is completely upset when the coefficients {𝛼𝑘

𝑗 } in
(3) are replaced by (4). This reveals that the existence of a killing point in a generalized Galam’s model
is not invariant under a modification of the coefficients in {𝛼𝑘

𝑗 }. The model performance seems to be
intrinsically affected by the underlying hypothesis on the coefficients {𝛼𝑘

𝑗 }, i.e., when the majority
rule is not satisfied then the dynamics of the model may strongly change.

Anyway, the generalized model (2) can be used to provide fruitful results, not only to study the
process of diffusion of information, but also to suggest ways to control it. For example, we can deter-
mine values of {𝛼𝑘

𝑗 } that, starting at time 𝑡 with 𝑃+(𝑡) = 𝑃̄+(𝑡), allow to maximize 𝑃+(𝑡 + 1). The values
of the coefficients {𝛼𝑘

𝑗 } can be considered as a cost (say an effort) to be faced when trying to foster
the diffusion of a positive opinion: high (expensive) values of probability convey a group to opinion



Figure 2: For a given 1 ≤ 𝑘 ≤ 𝐿 the model (4) considers the above piecewise-linear choice for the coefficients
{𝛼𝑘𝑗 }, where 𝑧𝑘𝑗 represents a shift with respect to the abscissa ⌊𝑘/2 + 1⌋, and 1/(2ℎ) is the slope of the ramp.
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Figure 3: Setting {𝛼𝑘𝑗 } as in (4), the resulting dynamics of 𝑃+(𝑡 +1) vs. 𝑃+(𝑡) is completely upset with respect to
the original Galam’s model (1). Here the parameters used in (1) and (2) are: 𝐿 = 4, 𝑎1 = 0, 𝑎𝑘 = 1/3, 𝑘 = 2, 3, 4,
so that 𝐾𝑃 ≈ 0.846. Moreover, we set 𝑧𝑘𝑗 = 0 and ℎ = 10−5 in (4).

‘+’. In other words, we wonder how to set the coefficients {𝛼𝑘
𝑗 } to pursue our maximization goal on

𝑃+(𝑡 + 1), starting from 𝑃̄+(𝑡), with the minimum effort.
In the context of production and Marketing, where the agents are replaced by consumers, the latter

conclusion might read as follows: an extra effort in terms of advertising campaign has to be carried
on, in order to promote a certain spread of the products. In particular, the coefficients {𝛼𝑘

𝑗 } summarise
the resulting effort and consequently represent unknowns to be determined.



4. A LP Model for a Single Period Analysis

On the guideline of the analysis in Section 3, we propose to embed the dynamics in (2) within the
following LP scheme:

max
𝛼

𝐿
∑
𝑘=1

𝑎𝑘
𝑘
∑
𝑗=0

𝛼𝑘
𝑗 𝐶

𝑘
𝑗 𝑃+(𝑡)

𝑗{1 − 𝑃+(𝑡)}𝑘−𝑗 , (5)

𝛼𝑘
𝑗 ≤ 𝛼𝑘

𝑗+1 𝑗 = 0, 1, … , 𝑘 − 1; 𝑘 = 1, … , 𝐿, (6)

𝛼𝑘
𝑗 ≥ 𝛼𝑘+1

𝑗 𝑗 = 0, 1, … , 𝑘; 𝑘 = 1, … , 𝐿 − 1, (7)

𝐿
∑
𝑘=1

𝛼𝑘
𝑗 ≤ 𝑏𝑗(𝑡) 𝑗 = 0, 1, … , 𝑘, (8)

0 ≤ 𝛼𝑘
𝑗 ≤ 1 𝑗 = 0, 1, … , 𝑘; 𝑘 = 1, … , 𝐿. (9)

Observe that by solving the above LP, with respect to the unknowns 𝛼𝑘
𝑗 , 𝑘 = 1, … , 𝐿, 𝑗 = 0, 1, … , 𝑘, we

aim to determine a set of decision variables in order to improve the diffusion of information, i.e. to
increase 𝑃+(𝑡 + 1) with respect to 𝑃+(𝑡). The constraints in (6)-(9) may be motivated as follows:

(6) implies that in two subgroups of cardinality 𝑘, the larger the number
of individuals thinking ‘+’, the larger the probability 𝛼𝑘

𝑗 ;
(7) implies that when two subgroups of agents include the same number of

individuals thinking ‘+’, then to the subgroup of smaller cardinality
it corresponds a larger value of 𝛼𝑘

𝑗 ;
(8) represent budget constraints, i.e. we allow that at the current time step

𝑡 , for any given value of 𝑗, not all the unknowns {𝛼𝑘
𝑗 } can be possibly

set to 1, so limiting the freedom when selecting the unknowns;
(9) specify that each unknown 𝛼𝑘

𝑗 represents a probability value.

A solution (not necessarily unique) of (5)-(9) can dramatically increase the probability 𝑃+(𝑡 + 1) of
information spreading with respect to 𝑃+(𝑡). We also remark that (5)-(9) is a concave problem, so
that its solutions are vertices of the feasible set (6)-(9). In addition, here local maxima are also global
maxima so that they can be detected by basic packages. We show now that to a large extent the model
(5)-(9) generalizes (1), in accordance with the next proposition.

Proposition 4.1. Consider the linear program (5)-(9). Let the following choice (1 ≤ 𝑘 ≤ 𝐿 and 0 ≤ 𝑗 ≤ 𝑘)

𝛼𝑘
𝑗 =

⎧⎪⎪
⎨⎪⎪⎩

0, 𝑓 𝑜𝑟 𝑎𝑛𝑦 𝑗 < ⌊ 𝑘2 + 1⌋ ,

1, 𝑓 𝑜𝑟 𝑎𝑛𝑦 𝑗 ≥ ⌊ 𝑘2 + 1⌋ ,
(10)

satisfy the budget constraints (8). Then (10) is a feasible point of (5)-(9) and the objective function in (5)
coincides with 𝑃+(𝑡 + 1) in (1).

Proof. By (9) the feasible set 𝔽 of problem (5)-(9) is compact, so that the continuity of the function in
(5) ensures the existence of a finite solution, provided that 𝔽 ≠ ∅. Now, observe that with the posi-
tions (10) the objective function (5) coincides with the model (1). Moreover, the choice in (10) surely



satisfies the constraints (6), since for a given value 1 ≤ 𝑘̄ ≤ 𝐿 relations (10) describe the monotone
nondecreasing sequence {𝛼 𝑘̄

𝑗 }. Similarly, for a given value 0 ≤ 𝚥 ≤ 𝑘, we see from (10) that

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

𝑖𝑓 𝛼𝑘
𝚥 = 0 𝑡ℎ𝑒𝑛 𝛼𝑘+1

𝚥 = 0

𝑖𝑓 𝛼𝑘
𝚥 = 1 𝑡ℎ𝑒𝑛 𝑒𝑖𝑡ℎ𝑒𝑟 𝛼𝑘+1

𝚥 = 0 𝑜𝑟 𝛼𝑘+1
𝚥 = 1,

which trivially ensures that also the constraints (7) are satisfied. Finally, the positions (10) immedi-
ately satisfy (9), which completes the proof. Q.E.D.

In order to make Proposition 4.1 useful in applications, it is therefore necessary to provide an
estimation for the values of the budget 𝑏𝑗(𝑡) in (8), so that the satisfaction of constraints (8) can be
guaranteed.

Proposition 4.2. Consider the linear program (5)-(9) and let 𝛼𝑘
𝑗 be assigned as in (10), with 1 ≤ 𝑘 ≤ 𝐿

and 0 ≤ 𝑗 ≤ 𝑘. Then

𝐿
∑
𝑘=1

𝑘
∑
𝑗=0

𝛼𝑘
𝑗 =

⎧⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎩

(
𝐿
2)

2

+
𝐿
2
, 𝑤ℎ𝑒𝑛 𝐿 𝑖𝑠 𝑒𝑣𝑒𝑛,

(
𝐿 − 1
2 )

2

+ 𝐿, 𝑤ℎ𝑒𝑛 𝐿 𝑖𝑠 𝑜𝑑𝑑.

(11)

Proof. Since ⌊ 𝑘2 + 1⌋ = ⌊ 𝑘2 ⌋ + 1, by (10) we have

𝐿
∑
𝑘=1

𝑘
∑
𝑗=0

𝛼𝑘
𝑗 =

𝐿
∑
𝑘=1

𝑘
∑

𝑗=⌊ 𝑘2 ⌋+1

1.

Thus, for 𝐿 even and setting 𝑝 = ⌊ 𝑘2 ⌋ we have

𝐿
∑
𝑘=1

𝑘
∑

𝑗=⌊ 𝑘2 ⌋+1

1 =
1
∑
𝑗=1

1 +
𝐿/2
∑
𝑝=1 [

2𝑝

∑
𝑗=𝑝+1

1 +
2𝑝+1

∑
𝑗=𝑝+1

1
]
−

𝐿+1
∑

𝑗=⌊ 𝐿2 ⌋+1

1.

Now, since

𝐿/2
∑
𝑝=1 [

2𝑝

∑
𝑗=𝑝+1

1 +
2𝑝+1

∑
𝑗=𝑝+1

1
]

=
𝐿/2
∑
𝑝=1

[(2𝑝 − (𝑝 + 1) + 1) + (2𝑝 + 1 − (𝑝 + 1) + 1)]

=
𝐿/2
∑
𝑝=1

[𝑝 + (𝑝 + 1)] = 2
𝐿/2
∑
𝑝=1

𝑝 + (
𝐿
2
− 1 + 1)

= 2 ⋅
𝐿
2 (

𝐿
2 + 1)
2

+
𝐿
2

=
𝐿
2 (

𝐿
2
+ 2) ,

when 𝐿 is even we finally obtain

𝐿
∑
𝑘=1

𝑘
∑

𝑗=⌊ 𝑘2 ⌋+1

1 = 1 +
𝐿
2 (

𝐿
2
+ 2) −

𝐿+1
∑

𝑗=⌊ 𝐿2 ⌋+1

1



=
𝐿
2 (

𝐿
2
+ 2) −

𝐿
2

= (
𝐿
2)

2

+
𝐿
2
. (12)

On the other hand, when 𝐿 is odd we have

𝐿
∑
𝑘=1

𝑘
∑

𝑗=⌊ 𝑘2 ⌋+1

1 =
1
∑
𝑗=1

1 +
(𝐿−1)/2

∑
𝑝=1 [

2𝑝

∑
𝑗=𝑝+1

1 +
2𝑝+1

∑
𝑗=𝑝+1

1
]
,

and since

(𝐿−1)/2

∑
𝑝=1 [

2𝑝

∑
𝑗=𝑝+1

1 +
2𝑝+1

∑
𝑗=𝑝+1

1
]

=
(𝐿−1)/2

∑
𝑝=1

[2𝑝 + 1] = 2
(𝐿−1)/2

∑
𝑝=1

𝑝 +
(𝐿−1)/2

∑
𝑝=1

1

= 2
𝐿 − 1
2 (

𝐿 − 1
2

+ 1)
1
2
+
𝐿 − 1
2

=
𝐿 − 1
2 (

𝐿 − 1
2

+ 2) ,

we finally have for 𝐿 odd

𝐿
∑
𝑘=1

𝑘
∑

𝑗=⌊ 𝑘2 ⌋+1

1 = 1 +
𝐿 − 1
2 (

𝐿 − 1
2

+ 2) = (
𝐿 − 1
2 )

2

+ 𝐿. (13)

Relations (12) and (13) yield (11). Q.E.D.

Proposition 4.2 allows both the easy assessment of reliable values for the parameters {𝑏𝑗(𝑡)}, and a
possible generalization of constraints (8). Indeed, replacing the 𝑘 + 1 constraints in (8) by the unique
constraint

𝐿
∑
𝑘=1

𝑘
∑
𝑗=0

𝛼𝑘
𝑗 ≤

𝑘
∑
𝑗=0

𝑏𝑗(𝑡) = 𝑏(𝑡),

the last proposition suggests to set

0 < 𝑏(𝑡) ≤

⎧⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎩

(
𝐿
2)

2

+
𝐿
2
, 𝑤ℎ𝑒𝑛 𝐿 𝑖𝑠 𝑒𝑣𝑒𝑛,

(
𝐿 − 1
2 )

2

+ 𝐿, 𝑤ℎ𝑒𝑛 𝐿 𝑖𝑠 𝑜𝑑𝑑,

in order to generalize the idea behind (1).

4.1. A Numerical Example

To avoid reporting a lengthy numerical experience, which is out of the scopes of the current paper,
we first experienced the LP program (5)-(9) over the following small-scale setting of parameters

⎧⎪⎪
⎨⎪⎪⎩

𝐿 = 7
𝑎 = (0.1 0.2 0.3 0.0 0.0 0.4 0.0)𝑇
𝑃+(𝑡) = 0.65.



This choice of the parameters corresponds to the case in which the population meets in subgroups of
dimension 1, 2, 3 and 6, with probabilities 0.1, 0.2, 0.3 and 0.4 respectively, with an initial 65% of the
population thinking ‘+’.

In addition, we replaced the constraints (8) by the unique constraint

𝐿
∑
𝑘=1

𝑘
∑
𝑗=0

𝛼𝑘
𝑗 ≤ 𝑏(𝑡)

and chose the value of the budget parameter 𝑏(𝑡) = 10.1 (see also Proposition 4.2), in order to allow a
nonempty feasible set. The resulting LP yielded the solution (we used the solver MINOS [13])

[𝛼𝑘
𝑗 ] =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑘 = 1 𝑘 = 2 𝑘 = 3 𝑘 = 4 𝑘 = 5 𝑘 = 6 𝑘 = 7
𝑗 = 0 0 0 0 0 0 0 0
𝑗 = 1 1 1 1 0 0 0 0
𝑗 = 2 ∗ 1 1 0 0 0 0
𝑗 = 3 ∗ ∗ 1 0 0 0 0
𝑗 = 4 ∗ ∗ ∗ 0.683̄ 0.683̄ 0.683̄ 0
𝑗 = 5 ∗ ∗ ∗ ∗ 0.683̄ 0.683̄ 0
𝑗 = 6 ∗ ∗ ∗ ∗ ∗ 0.683̄ 0
𝑗 = 7 ∗ ∗ ∗ ∗ ∗ ∗ 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and the corresponding final value of the objective function 𝑃+(𝑡 + 1) ≈ 0.7045, showing an increase
with respect to the initial value 𝑃+(𝑡) = 0.65. Moreover, as expected the value 0.7045 is larger than the
value

𝑃+(𝑡 + 1) =
7
∑
𝑘=1

𝑎𝑘
𝑘
∑

𝑗=⌊ 𝑘2 +1⌋

𝐶𝑘
𝑗 0.65

𝑗(1 − 0.65)𝑘−𝑗 ≈ 0.2620

predicted by Galam’s model. The above example suggests that we identified the best way to distribute
the budget 𝑏(𝑡) in order to increase the spreading of opinion ‘+’.

As a further experiment, now we consider the numerical example proposed in [1], where 𝐿 = 4,
𝑎1 = 0, 𝑎𝑘 = 1/3, 𝑘 = 2, 3, 4. The killing point 𝐾𝑃 corresponding to the latter parameters satisfies
0.84 < 𝐾𝑃 < 0.87. In particular, we analyzed two scenarios for the LP (5)-(9), by respectively setting

Scenario I Scenario II

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

𝐿 = 4
𝑎 = (0.0 1/3 1/3 1/3)𝑇
𝑃+(𝑡) = 0.8
𝑏(𝑡) = 5.5

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

𝐿 = 4
𝑎 = (0.0 1/3 1/3 1/3)𝑇
𝑃+(𝑡) = 0.9
𝑏(𝑡) = 5.5

According with the setting of Scenario I, considering that 𝑃+(𝑡) = 0.8 (i.e. 𝑃+(𝑡) is below the 𝐾𝑃 ), we
want to verify, allowing the budget 𝑏(𝑡) = 5.5, the maximum value for 𝑃+(𝑡 + 1) by solving (5)-(9). We
obtain in particular 𝑃+(𝑡 + 1) ≈ 0.81173 > 𝐾𝑃 , corresponding to the set of unknowns

[𝛼𝑘
𝑗 ] =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑘 = 1 𝑘 = 2 𝑘 = 3 𝑘 = 4
𝑗 = 0 0 0 0 0
𝑗 = 1 0.25 0.25 0 0
𝑗 = 2 ∗ 1 1 0
𝑗 = 3 ∗ ∗ 1 1
𝑗 = 4 ∗ ∗ ∗ 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (14)



Also observe that simply setting for instance 𝑏(𝑡) = 2.5 (i.e. insufficient budget) in Scenario I, in place
of 𝑏(𝑡) = 5.5, we obtain 𝑃+(𝑡 + 1) ≈ 0.45226 < 𝐾𝑃 , corresponding to the new set of unknowns

[𝛼𝑘
𝑗 ] =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑘 = 1 𝑘 = 2 𝑘 = 3 𝑘 = 4
𝑗 = 0 0 0 0 0
𝑗 = 1 0 0 0 0
𝑗 = 2 ∗ 1 0 0
𝑗 = 3 ∗ ∗ 1 0
𝑗 = 4 ∗ ∗ ∗ 0.5

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (15)

The above experiment proves that the choice of the budget 𝑏(𝑡) might have a dramatic effect in order
to increase the value of probability, from 𝑃+(𝑡) to 𝑃+(𝑡 + 1). Indeed, starting from 𝑃+(𝑡), suitably tuning
of quantities [𝛼𝑘

𝑗 ] can yield a value for the probability 𝑃+(𝑡 + 1) either below or above the 𝐾𝑃 , simply
depending on 𝑏(𝑡). In this regard the value of 𝑃+(𝑡), though important, seems to be less relevant, and
is often exogenously set by the application in hand.

Similarly, considering the Scenario II, observing that now 𝑃+(𝑡) = 0.9 (i.e. 𝑃+(𝑡) is above the 𝐾𝑃 ),
again we want to verify, allowing the budget 𝑏(𝑡) = 5.5, the maximum value for 𝑃+(𝑡 +1) solving (5)-(9).
We obtain in particular 𝑃+(𝑡 + 1) ≈ 0.9249 > 𝐾𝑃 , corresponding to the same set of unknowns in (14).
On the other hand, simply setting again 𝑏(𝑡) = 2.5 (i.e. budget insufficient) in Scenario II, in place of
𝑏(𝑡) = 5.5, we obtain 𝑃+(𝑡 + 1) ≈ 0.62235 < 𝐾𝑃 , corresponding to the set of unknowns in (15). Again,
the latter numerical results prove that the choice of the quantity 𝑏(𝑡) has a dramatic effect in order to
increase the value of probability, from 𝑃+(𝑡) to 𝑃+(𝑡 + 1). Moreover, a suitable choice of the quantities
can move the value 𝑃+(𝑡 + 1) above 𝐾𝑃 , even though the value 𝑃+(𝑡 + 1) predicted by the model (1)
possibly does not exceed 𝐾𝑃 .
On the overall, the above results indicate that our LP-based approach is definitely more general than
the approach described in [1], since it gives explicit indications on the effort necessary to influence
opinions in those subgroups of cardinality 𝑘.

5. Conclusions

We studied the problem of possibly enhancing the sociophysics model (1), using a mathematical pro-
gramming perspective. We combined the model in (1) with a LP scheme, in order to possibly control
the spreading of information through the assessment of the unknowns 𝛼𝑘

𝑗 in (2). The value of these
variables indicates the effort which is necessary in order to convince people in subgroups of cardi-
nality 𝑘, with the aim of maximizing 𝑃+(𝑡 + 1) from a given 𝑃+(𝑡). As a next step of research, we are
going to generalize the single-period formulation (5)-(9) to a multi-period scheme, with the final goal
to maximize 𝑃+(𝑇 ), being 𝑡 = 1, … , 𝑇 the time periods.

Acknowledgments

G. Fasano thanks GNCS group of IN𝛿AM (Istituto Nazionale di Alta Matematica, Italy) for the support
he received.



References

[1] S. Galam, Modelling rumors: the no plane pentagon french hoax case, Physica A: Statis-
tical Mechanics and its Applications 320 (2003) 571–580. doi:https://doi.org/10.1016/
S0378-4371(02)01582-0.

[2] S. Galam, Sociophysics: a review of Galam models, International Journal of Modern Physics C
19 (2008) 509–440. doi:https://doi.org/10.1142/S0129183108012297.

[3] F. M. Bass, A new product growth for model consumer durables, Management Science 50 (2004)
1833–1840. doi:https://10.1287/mnsc.1040.0264.

[4] G. A. Moore, Crossing the chasm, Harper Collins, New York, NY, 1991.
[5] E. M. Rogers, Diffusion of Innovations, 5th edn ed., The Free Press, New York, NY, 2003.
[6] T. C. Schelling, Dynamic models of segregation, The Journal of Mathematical Sociology 1 (1971)

143–186. doi:https://10.1080/0022250X.1971.9989794.
[7] A. Ellero, G. Fasano, A. Sorato, Stochastic model for agents interaction with opinion-leaders,

Physical Review E 87 (2013). doi:https://doi.org/10.1103/PhysRevE.87.042806.
[8] E. Katz, P. F. Lazarsfeld, Personal influence - The part played by people in the flow of mass

communication, The Free Press, Glencoe, IL, 1955.
[9] J. Goldenberg, S. Han, D. R. Lehmann, J. W. Hong, The role of hubs in the adoption processes,

Journal of Marketing 73 (2009) 1–13. doi:https://doi.org/10.1509/jmkg.73.2.1.
[10] A. Ellero, G. Fasano, A. Sorato, A modified Galam’s model for word-of-mouth information ex-

change, Physica A: Statistical Mechanics and its Applications 388 (2009) 3901–3910. doi:https:
//doi.org/10.1016/j.physa.2009.06.002.

[11] C. V. den Bulte, Y. V. Joshi, New product diffusion with influentials and imitators, Marketing
Science 26 (2007) 400–421. doi:https://10.1287/mksc.1060.0224.

[12] A. J. Glass, Product cycle and market penetration, International Economic Review 38 (1997)
865–891. doi:https://doi.org/10.2307/2527220.

[13] NEOS solvers, 2020. Https://neos-server.org/neos/solvers/nco:MINOS/AMPL.html.

http://dx.doi.org/https://doi.org/10.1016/S0378-4371(02)01582-0
http://dx.doi.org/https://doi.org/10.1016/S0378-4371(02)01582-0
http://dx.doi.org/https://doi.org/10.1142/S0129183108012297
http://dx.doi.org/https://10.1287/mnsc.1040.0264
http://dx.doi.org/https://10.1080/0022250X.1971.9989794
http://dx.doi.org/https://doi.org/10.1103/PhysRevE.87.042806
http://dx.doi.org/https://doi.org/10.1509/jmkg.73.2.1
http://dx.doi.org/https://doi.org/10.1016/j.physa.2009.06.002
http://dx.doi.org/https://doi.org/10.1016/j.physa.2009.06.002
http://dx.doi.org/https://10.1287/mksc.1060.0224
http://dx.doi.org/https://doi.org/10.2307/2527220

	1 Introduction
	2 Basics on Galam's Model
	3 A Possible Generalization of Galam's Model
	4 A LP Model for a Single Period Analysis
	4.1 A Numerical Example

	5 Conclusions

