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Abstract The use of historical data can significantly

reduce the uncertainty around estimates of the magnitude

of rare events obtained with extreme value statistical

models. For historical data to be included in the statistical

analysis a number of their properties, e.g. their number and

magnitude, need to be known with a reasonable level of

confidence. Another key aspect of the historical data which

needs to be known is the coverage period of the historical

information, i.e. the period of time over which it is

assumed that all large events above a certain threshold are

known. It might be the case though, that it is not possible to

easily retrieve with sufficient confidence information on

the coverage period, which therefore needs to be estimated.

In this paper methods to perform such estimation are

introduced and evaluated. The statistical definition of the

problem corresponds to estimating the size of a population

for which only few data points are available. This problem

is generally refereed to as the German tanks problem,

which arose during the second world war, when statistical

estimates of the number of tanks available to the German

army were obtained. Different estimators can be derived

using different statistical estimation approaches, with the

maximum spacing estimator being the minimum-variance

unbiased estimator. The properties of three estimators are

investigated by means of a simulation study, both for the

simple estimation of the historical coverage and for the

estimation of the extreme value statistical model. The

maximum spacing estimator is confirmed to be a good

approach to the estimation of the historical period coverage

for practical use and its application for a case study in

Britain is presented.

Keywords Historical events � Natural hazards � Flood risk

estimation � Extreme value methods

1 Introduction

Natural hazards like floods, sea surges or earthquakes are

some of the most dangerous threats both to human lives

and infrastructures. Throughout history, strategies to

manage the risks connected to natural hazards have been

devised, and still at present these risks cannot be elimi-

nated, but must be managed and planned for. A key step in

the management of risks is the estimation of the frequency

of events of large magnitude, which is needed to assess the

likelihood of severe damages happening in specific areas.

However by definition, very large events happen rarely and

there are consequently few records available to perform

such estimation. This is particularly true when the esti-

mation is based on systematic measures of the process of

interest, which might cover a period of time much shorter

than the time scale at which one would imagine to actually

record very rare events, such as events happening less

frequently than once every 100 years. The statistical

models typically used to estimate the frequencies of rare

events are based on extreme value theory, which provides

some general asymptotic results on the behaviour of events

of great magnitude. Moreover the methods generally used

in the estimation procedure make an attempt to use as

much data as is available. For example regional methods,

which pool together the information of a large number of

stations are used to estimate the frequency of large storm

surges (Bernardara et al. 2011) and floods (Hosking and
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Wallis 1997). Alternatively, it would be possible to aug-

ment the data available at the time of analysis by including

not only the systemically measured data, but also addi-

tional data from past events on which some information is

still available from historical records or evidence in the

landscape. This approach has been shown to greatly reduce

the uncertainty of estimates at sites of interest for different

natural hazards like coastal water levels (e.g. Bulteau et al.

2015), volcanic eruptions (e.g. Coles and Sparks 2006) and

peak river flow (e.g. Macdonald et al. 2014). This study

gives some results on the estimation of a specific quantity

needed when fitting statistical models on data series of

historical and systematic records, namely the time of

coverage of the historical record. Although this quantity

can often be retrieved in the investigation which leads to

the construction of the historical record, it is in some cases

unknown, so that an estimated value needs to be used

instead. In the remainder of this paper the focus will be the

use of historical records in flood frequency estimation

applications, but the results could be useful in any situation

in which historical data would be used to improve an

estimate of the frequency of rare events and no clear

information can be retrieved on the actual historical period

covered by the non-systematic data. Statistical models for

inference are presented in Sect. 2, with extreme value

modeling briefly discussed in Sect. 2.2. Section 3 intro-

duces the model used to include historical data in extreme

value frequency estimation, while the different estimators

for the coverage of the historical record are presented in

Sect. 4. The performance of these estimators is investi-

gated by means of a simulation study in Sect. 5 while

Sect. 6 shows an application for the assessment of the

rarity of large floods for a gauging station in the UK which

recently experienced a record breaking event. Finally,

Sect. 7 gives a brief summary and discussion of the results.

2 Statistical models

Broadly speaking, statistical inference aims at character-

ising the behaviour of a process of interest using some

relevant sample of data. It is typically assumed that the

available sample is representative of the process of interest

(e.g. large floods) so that it can be used to infer properties

of the stochastic distribution of the process. It is generally

assumed that the process under study follows a certain

known distribution f, parametrised by some parameters h ¼
ðh1; . . .; hdÞ whose values are unknown. Finding estimates

of the distribution parameters h gives a full description of

the behaviour of the process under study.

In the simplest case it is assumed that each element xi in

the sample x ¼ ðx1; . . .; xnÞ is a realisation of independent

and identically distributed (i.i.d.) random variables Xi,

whose probability distribution function is a certain f ðxi; hÞ.
In the following subsection some methods commonly used

to estimate the parameter vector h are discussed. These

methods have long been established and are discussed in

most introductory book to statistical inference (e.g. Rice

2006); only some basic details are provided here as a

reference.

2.1 Statistical parameter estimation approaches

2.1.1 Maximum likelihood

A very common method used to estimate h is maximum

likelihood, which, under some conditions, provide asymp-

totically unbiased and efficient estimators. Maximum

likelihood estimates are obtained as the h values which

maximise the likelihood function Lðh; xÞ, defined as

Lðh; xÞ ¼
Yn

i¼1

f ðh; xiÞ:

The ML estimate ĥML can be thought of as the value of h

which make the data more likely to have happened under

the assumed distribution. In some cases the h which max-

imise the likelihood function can be found analytically, but

in many applications numerical methods are used to max-

imise Lðh; xÞ and find the estimated values ĥML.

2.1.2 Method of moments

Another very intuitive and commonly used approach for

the estimation of h, is the method of moments, in which the

parameters are first expressed as functions of the distribu-

tion moments (e.g. l1 ¼ E½X�, l2 ¼ E½X2�, and so forth)

and then directly estimated by plugging in the sample

estimates of the moments (e.g. l̂1 ¼
Pn

i¼1 xi,

l̂2 ¼
Pn

i¼1 x
2
i , and so forth). For example, the mean and

variance of a normal distribution X�Nðl; rÞ, can be

expressed as l ¼ E½X� and r2 ¼ Var½X� ¼ E½X2� � ðE½X�Þ2.
Method of moment estimates are then obtained as l̂Mom ¼
l̂1 ¼

Pn
i¼1 xi and r̂Mom ¼ ½l̂2 � ðl̂1Þ2�1=2 ¼

Pn
i¼1 x

2
i�

�
Pn

i¼1 xi
� �2�1=2. Method of moments estimates ĥMom do not

enjoy the optimal asymptotic properties of ML estimates,

but can be shown to be consistent and are computationally

easy to derive.

2.1.3 Maximum spacing method

A less widespread, but also useful, inference approach is

the maximum spacing method introduced simultaneously

with a different naming and a different reasoning by Cheng

and Amin (1983) and Ranneby (1984). Defining the
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ordered sample ðxð1Þ; . . .; xðnÞÞ such that xð1Þ\xð2Þ\. . .

\xðn�1Þ\xðnÞ, the spacing between the cumulative distri-

bution functions of successive points is taken to be

DiðhÞ ¼ Fðh; xðiÞÞ � Fðh; xði�1ÞÞ; i ¼ 1; . . .; ðnþ 1Þ

taking, for convenience, xð0Þ ¼ �1 and xðnþ1Þ ¼ 1. The

maximum spacing estimator is defined as the value ĥMSP

which maximises

SðhÞ ¼ 1

nþ 1

Xnþ1

i¼1

ln DiðhÞ ¼
1

nþ 1

Xnþ1

i¼1

ln Fðh; xiÞð

�F h; xði�1Þ
� �

Þ:

The estimate ĥMSP can be thought of as the value of h

which makes the distribution of the estimated cumulative

distribution function (cdf) as close as possible to the Uni-

form (0,1) distribution, which is how the cdf of a i.i.d.

sample is expected to behave. The maximum spacing

method can give valid results in cases for which the like-

lihood approach fails and is shown to be consistent.

All the above methods have been developed under the

general framework in which it is assumed that the available

sample is representative of an existing parent distribution

parametrised by some true parameters h whose values need

to be estimated. Another very popular approach to statis-

tical inference is the Bayesian approach in which it is

assumed that the distribution parameters are also random

variables, and that the aim of the inference is to charac-

terise the distribution of these random variables given the

available sample. The method is not discussed further in

the paper, but its use is widespread in statistical applica-

tions and should be mentioned, in particular given its wide

use for the estimation of extreme value models in presence

of historical data.

2.2 Statistical models for the frequency of extremes

events

Most statistical applications aim at describing the beha-

viour of the central part of the distribution of the process

under study. It is often the case though, that it is not the

typical behaviour of the process that is of interest, but its

tail behaviour, i.e. the rarely observed events. When the

interest of the estimation lies in the frequency of extreme

events it is common practice to use only a subset of the

available data which is actually informative of the beha-

viour of the tail of the distribution rather than its central

part. A frequently used approach is to only use the maxi-

mum value of the measured process in a block, for example

a year or another fixed period of time. The block maxima

are assumed to follow some appropriate long-tailed distri-

bution, with the Generalised Extreme Value (GEV)

distribution being motivated by the asymptotic behaviour

of maxima of stationary processes (see Coles 2001). The

GEV is often used in practice when investigating the fre-

quency of rare events, although other distributions have

been proposed in some cases as discussed in Salinas et al.

(2014). The Generalised Logistic (GLO) distribution, for

example, has been shown to provide a better goodness of fit

for samples of British peak flow annual maxima (Kjeldsen

and Prosdocimi 2015) and the Pearson-Type-III distribu-

tion is frequently used when modelling peak flow values of

basins in the USA (U.S. Interagency Advisory Committee

on Water Data 1982). Once a decision is made on the

appropriate form of f ðx; hÞ to represent the distribution of

the data, and the values of h are estimated, the magnitude

of the events which are expected to be exceeded with a

certain probability p can be derived via the quantile func-

tion qð1� p; ĥÞ. Conversely, it is possible to obtain an

estimate of the frequency at which an event of magnitude ~x

is expected to be exceeded via the cumulative distribution

function Fð~x; ĥÞ. In practice, since only a subset of a record

is used in the estimation of the frequencies of extreme

events, samples tend to be relatively small and long

observations are needed to obtain large samples of annual

maxima. For example, gauged flow records in the UK tend

to be less than 40-year long (see Kjeldsen and Prosdocimi

2016), which means that samples of less than 40 units

would be used in the estimation of the frequency of rare

events when annual maxima are analysed. The review

carried out in Hall et al. (2015) indicate that records

throughout Europe are of similar length. Given that typi-

cally the interest is in the estimation of events which are

expected to be exceeded at most every 100-year, there is a

large difference between the available information and the

target of the estimation. Several strategies, aiming at aug-

menting the available information, have been developed. A

popular approach is to somehow pool together information

across different series: this is referred to as the regional

approach and has been widely used in flood frequency

applications following, for example, in the work of Hosk-

ing and Wallis (1997). The justification for the regional

approach is that, given that series only cover a short period

of time, one can trade space for time and augment the

available information by combining different stations. The

idea of augmenting the information used in the inference

process pooling is also used in probabilistic regional

envelop curves, which pool together information on

extreme events and are used to estimate exceedance

probabilities for homogeneous regions (see for example

Lam et al. 2016). Finally methods which are less reliant on

the theoretical statistical properties of the peak flow pro-

cess, but make use of the understanding of hydrological

processes are often used. For example rainfall-runoff
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models use information on the catchment to provide esti-

mates of the entire hydrograph, for rainfall events of given

rarity. ReFEH (Kjeldsen 2007) is the model used in the UK

within the Flood Estimation Handbook, but several other

models are proposed in the literature. In general, when

estimating flood frequency curves, it would be ideal to use

as much knowledge as possible about the site for which the

estimation is carried out, combining both the hydrological

knowledge of the analysis and using all available data in

the best possible way. This is strongly advocated in a series

of companion papers by Merz and Blöschl (2008a, b) and

Viglione et al. (2013), which showcase the usefulness and

importance of combining different sources of information

to improve the accuracy of flood frequency estimation. A

similar message is also found in Environment Agency

(2017), which showcase how the use of catchment-specific

information can improve the quality of the estimation of

flood risk. The usage of information on past large event, for

example, is often suggested as a way to improve inference

about flood risk. Indeed, historical data can be used to

extend the length of time covered by the available series,

thus diminishing the discrepancy between the estimation

horizon and the amount of data used in the estimation.

These type of events would not have been gauged using the

modern-day technology, but would nevertheless be infor-

mative of the size of very large events which happened in

the past. The usefulness of including historical data in flood

frequency analysis has long been recognised (e.g. Hosking

and Wallis 1986; Stedinger and Cohn 1986). Different

methods to combine historical and systematic data have

been proposed (e.g. Cohn et al. 1997; Gaume et al. 2010),

historical flow series have been reconstructed for several

river basins (see among others Elleder 2015; Machado

et al. 2015; Macdonald and Sangster 2017, in a recent

HESS special issue) and several countries in Europe at

present recommend that evidence from past floods is

included when estimating the magnitude of rare flood

events (Kjeldsen et al. 2014). The case study in Sect. 6

gives some discussion of the possible difficulties and

advantages of using historical data in flood frequency

estimation for a specific location in the UK. The standard

framework to include historical data builds on the con-

struction of the likelihood outlined in Sect. 3.

3 The inclusion of historical data for frequency
estimation

Assume that a series of gauged annual maxima x ¼
ðxi; . . .; xnÞ is available and that additionally some infor-

mation on the magnitude of k historical events y ¼
ðy1; . . .; ykÞ pre-dating the systematically recorded obser-

vations is also available. It is assumed that all k events are

bigger than a certain value X0, which is referred to as

perception threshold, since it corresponds to a magnitude

above which events would have been large enough to leave

visible marks in the basin or be worthy of being recorded

for example in diaries, local newspapers or as epigraphic

marks in urban developments. Further, it is assumed that

the underlying process generating the extreme events in the

past and in the present day can be modelled using the same

distribution X with pdf fXðx; hÞ and cdf FXðx; hÞ. One

important assumption that is made is that all events above

X0 in the period of time covered by the historical infor-

mation, denoted by h, are available. The different quanti-

ties involved in the inclusion of historical data are

exemplified in Fig. 1 which shows the systematic and

selected historical data for the Sussex Ouse at Lewes case

study described in Macdonald et al. (2014). The number of

historical events k can then be thought of as a realisation of

a Binomial distribution K�Binðh; pÞ, with p ¼ PðX[X0Þ
¼ ½1� FXðX0Þ�. Finally, by taking f ðyÞ ¼ fXðyjy�X0Þ
Pðy�X0Þ þ fXðyjy[X0ÞPðy[X0Þ and reworking some

of the formulae (see Stedinger and Cohn 1986) the likeli-

hood for the combined sample of historical and gauged

records ðy1; . . .; yk; x1; . . .; xnÞ can be written as

Lðx; y; h; k; hÞ ¼
Yn

i¼1

fXðxi; hÞ
h

k

� �
FXðX0Þðh�kÞ Yk

j¼1

fXðyj; hÞ:

ð1Þ

Numerical methods are generally used to maximise the

above likelihood and the use of Bayesian methods has

extensively been advocated for this type of applications

(e.g. Parent and Bernier 2003; Reis and Stedinger 2005;

Neppel et al. 2010). As discussed in Stedinger and Cohn

(1986) the likelihood in Eq. (1) can be modified when only

the number of historical events and not their magnitude can

be ascertained with sufficient confidence, but this case is

not explored in the present work.

A number of features on the historical data are required

in Eq. (1), namely h, k and y, and these are assumed to be

correctly specified. In particular it is assumed that the

period of time covered by the historical information h is

correctly known: this paper discusses methods to estimate

h when it can not be accurately quantified from the his-

torical information. The impact of the value of h on the

final estimation outcome can be seen in Fig. 2 where the

different estimated flood frequency curves obtained using a

range of h values and the Sussex Ouse data shown in Fig. 1

are shown. Using different values of h can have a notice-

able effect of the estimated flood frequency curves, in

particular the magnitude of rare events would be estimated

very differently depending on which value of h is used.

Note that some of the values of h in Fig. 2 are of course not

possible given the historical record for the station: results
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for values of h smaller than 190 year are given as reference

and they correspond to the case in which the historical

events would have all happened in the years just before the

beginning of the systematic record. The importance of

correctly assessing the value of h is discussed in Hirsch

(1987) and Hirsch and Stedinger (1987), which indicate

that biases can be introduced in the assessment of the of

extreme events if the wrong value of h is used, and Bayliss

and Reed (2001) state that no guidelines appear to be

available on how to correctly asses a realistic period of

record to historical information. This is an indication that

the issue of the correct identification of h has been given

little attention in the large literature on the use of historical

data and in several studies which combine historical and

systematic data it is unclear whether a realistic value of

h could be determined in the retrieval of the historical

information and which value of h is effectively used in the

estimation. It is often the case that the value of h is taken to

be the time between the first historical record available and

the beginning of the systematic record. The drawbacks of

this approach are discussed later in the paper, and have

been already pointed out in Strupczewski et al. (2014),

which is to the author’s knowledge, the only effort to give

guidance on how to obtain reliable values of h since the

review by Bayliss and Reed (2001).

Finally some cautionary warnings on the routine inclu-

sion of historical data in flood frequency estimation should

be given. An important assumption that is made in the

estimation procedure is that all the information in the

sample, i.e. both the historical and the systematic peaks,

comes from the same underlying distribution. That is to say

that the process from which the high flows are extracted is
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stationary throughout time. In simpler words, it is assumed

that all peaks are somewhat representative of the flood risk

at the present time, and that flood risk is unchanged

throughout the record. Given the natural and anthropogenic

changes in climate and the potential impacts that changes

in the catchment would have on flood risk, this is indeed a

very strong requirement and assumption. The significance

of potential non-stationarities driven from climatic varia-

tions and man-made changes to the river basin can be

derived by means of statistical models, but to be reliable

and representative of large scale changes these would need

to be based on long records, whether from instrumental

measurements (Mudersbach et al. 2015), or from a mixture

of instrumental measurements and historical records as in

Machado et al. (2015). Again, combining all available

knowledge about the history and properties of the river

basin under study allows for a more precise characterisa-

tion of risk in the area of interest and how this changes in

relationship to anthropogenic changes and natural vari-

ability. See for example Silva et al. (2015, 2016) for an

analysis which combines different sources of information

to assess how flood risk change as a function of several

explanatory variables. Further, methods to include uncer-

tain values of for historical peak flows values have been

widely employed (see for example Viglione et al. 2013;

Gaume et al. 2010) and these can be used to acknowledge

that the value of the past peaks corresponds to a range of

possible values for the flow as it would have been recorded

in the present time.

4 The estimation of h

To estimate the parameter h it is assumed that some reli-

able information on the timing of the historical events y is

available. The differences between the time of occurrence

of the historical events and the start of the systematic

records are denoted as t ¼ ðt1; . . .; tkÞ: each value of ti
corresponds to the number of years between each historical

event yi and the onset of the systematic records. Since

annual maxima are assumed to be independent the excee-

dance of the high perception threshold can happen in any

year of the historical periods with equal probability. Each ti
can then be seen as a realisation of a uniform distribution

with lower limit equal to 1 and an unknown upper limit h:

T �Uð1; hÞ. Alternatively, one could see the sample t as a

random draw without replacement of k elements from the

population of past annual maxima which happened in the

years ð1; . . .; hÞ. The estimation of h would then correspond

to the estimation of the size of the population of annual

maxima from which the sample t is extracted. This problem

corresponds to the so called German tanks problem, which

arised during World War II when an estimate of the total

number of German tanks and warfare was obtained based

on the serial number of the captured items. As discussed in

Ruggles and Brodie (1947) the statistical estimates of the

number of weapons and components available to the Ger-

man army proved to be more accurate than the numbers

deducted by intelligence. Johnson (1994) presents a series

of possible estimators of h derived on the population size

characterisation of the problem, listing their expected val-

ues and variances. The same estimators, derived using the

Uniform distribution characterisation, are presented below

with an indication of their advantages and issues.

4.1 Maximum likelihood

Assuming that T �Uð1; hÞ, the likelihood function to be

maximised to estimate h corresponds to:

Lðt;hÞ¼
Yk

i¼1

f ðti;hÞ¼
ðh�1Þ�k

for 1\tð1Þ\. . .\tðkÞ\h

0 otherwise

(

so that the maximum likelihood estimator of h, ĥML, corre-

sponds to the largest value of the sample for which the

likelihood has a positive value: ĥML ¼ tðkÞ ¼ max

ðt1; . . .; tkÞ. In other words, the estimated time span for which

historical information is available is estimated to be starting

at the time at which the first historical event is recorded. The

ML estimate hML can be shown to be biased, as

E½ĥML� ¼ hk=ðk þ 1Þ þ k=ðk þ 1Þ.

4.2 Method of moments

The Method of moments estimator of the upper bound h of

a uniform distribution T �Uð1; hÞ can be derived knowing

that E½T � ¼ ðhþ 1Þ=2, so that h ¼ 2E½T � � 1. Taking

�t ¼
Pk

i¼1 ti, the average time before the start of the sys-

tematic record at which historical events happened, the

Method of Moments estimator can be written as

ĥMom ¼ 2�t � 1. The estimator hMom is unbiased since

E½ĥMom� ¼ h. Notice though that in practice the value of ĥ

might be a non-integer and might be smaller than the

maximum value observed, tðkÞ. The first issue is easily fixed

by rounding ĥMom to the nearest integer, and one could take

the estimate of h to be the maximum between ĥMom and tðkÞ,

but it is undesirable for an estimator to produce results that

are not possible for a given sample.

4.3 Maximum spacing method

The maximum spacing estimator of the upper bound h of a

uniform distribution T �Uð1; hÞ can be derived as the

value which maximises the function
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Sðh; tÞ ¼
(

ln ðtð1Þ � 1Þ � ln ðh� 1Þ þ
Xn

i¼2

ln ðtðiþ1Þ � tðiÞÞ

� ðn� 1Þ ln ðh� 1Þ þ ln ðh� tðnÞÞ � ln ðh� 1Þ
)
:

The estimator ĥMSP is then found to be

ĥMSP ¼ tðkÞðk þ 1Þ=k � 1 ¼ tðkÞ þ tðkÞ=k � 1. Note that this

corresponds to taking the maximum value of tðkÞ and add

the average gap between the observed timings. The

expected value of ĥMSP is E½ĥMSP� ¼ h. For the case at

hand, the MSP estimator can also be shown to have min-

imal variance (see Johnson 1994), and should therefore be

the preferred estimator. In the case in which only one

observation is available, k ¼ 1, the hMom and hMSP esti-

mator are identical and their form corresponds to the one

already presented in Strupczewski et al. (2014).

The different estimators of h correspond to different

approaches that hydrologists could use when including

historical data in flood frequency estimation: the three

approaches are listed in Sect. 4.4.3. of Bayliss and Reed

(2001) where they are presented using common sense

reasoning rather than a statistical framework. Using the

time of the first historical event as an indicator of the whole

period of coverage of the historical record corresponds to

using the maximum likelihood estimator of h: this is rela-

tively easy to apply, but it has been shown to give less

reliable results. Indeed if a large historical record was

recorded at a distant time tðkÞ, it would be unlikely that a

similarly large event would have happened the year before,

so it would be reasonable to shift the starting period of the

historical record to a earlier date. Taking the starting point

to be the point in time that precedes the first event by the

average time between the historical events corresponds to

the maximum spacing estimator. Finally it seems plausible

to think that the amount of time passed between the start of

the historical coverage and the first historical record should

be the same as the amount of time between the first his-

torical record and the starting of systematic record: when

k ¼ 1 this corresponds to the method of moments

estimator.

For the Sussex Ouse data presented in Fig. 1 the t

sample is found to be equal to t ¼ ð85; 95; 108; 159; 189Þ,
and the known value of h is 210. If h was unknown the

different estimates would correspond to: ĥML ¼ 189,

ĥMom ¼ 220:6 and ĥMSP ¼ 225:8. The impact of using the

different estimated values can be guessed by comparing the

flood frequency curves in Fig. 2.

The performance of the different estimation approaches

for the estimation of h in practice is investigated by means

of a simulation study in the next Section. The impact of the

different estimation approaches within the wider scope of

return curve estimation when combining historical and

systematic data is further investigated within the simulation

study.

5 Simulation study

A simulation study is performed to investigate the perfor-

mance of the different methods in estimating the value of

h and successively the impact of estimating h on the overall

performance of flood frequency estimation when aug-

menting systematic data with historical information. The

simulation study is designed to be representative of pos-

sible data availability situations in real applications and

realistic distributional assumptions based on observed

characteristics of British peak flow data are used. The

parent distribution for the synthetic data generated in the

simulation study is taken to be a GLO, which is the default

distribution for British peak flow data, with location, scale

and shape parameter taken to be, respectively, equal to 33,

6.5 and -0.3, approximately the median values of the at-

site estimates of the 960 stations included in the National

River Flow Archive (NRFA) peak flow dataset v3.3.4

(http://nrfa.ceh.ac.uk). Samples of systematic sample size

n equal to 20, 40 and 80 are generated sampling from the

known parent distribution. The true historical period cov-

ered by the historical information h is taken to vary among

the values of 200, 400 and 800 years. In the data generation

procedure for the simulation study, exactly h data points

using the same parent distribution of the systematic data,

are generated and the largest k points which are also larger

than the defined perception threshold are taken to constitute

the historical information used in the estimation procedure.

The values of k are taken to be 1, 3, 5 and 10. For each

combination of k and h values the perception threshold X0

is taken to be the ð1� k=hÞth quantile of the parent dis-

tribution, which is to the say the value above which one

would expect to observe k values over h years. A total of 36

combinations of parameters are included in the study, to

allow a full investigation of the impacts of different

properties on the final performance of the estimation pro-

cedures. For each of the total 36 combinations, 10,000

samples of historical and systematic data are generated and

analysed: different estimation procedures are applied to

estimate h and these estimates are then plugged in the

methods to estimate the distribution parameters discussed

in Sect. 3 which finally allows to estimate the magnitude of

rare events for each generated sample.

At first the ability of the different estimators presented

in Sect. 4 to estimate h is assessed. Figure 3 shows box-

plots of the estimated values of h using the maximum
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likelihood (ML) approach, the method of moments (Mom)

and the minimum spacing (MSP) approach for different

values of k (e.g. the number of historical events in the

sample) and h (the historical period cover which corre-

sponds to the quantity being estimated). Also shown in the

figure is the true value of h. It is clearly visible that for all

estimation procedure the variability of the estimators

decreases for increasing values of k: this is not surprising,

as a larger sample (i.e. more information) is used in the

estimation. Another remarkable feature is that the ML

estimates are indeed biased, while both the MSP approach

and the method of moments give unbiased estimates, with

the MSP approach estimator being less variable, as

expected from the theoretical result. The asymmetric shape

of the boxplots for the ML and MSP estimates is consistent

with the behaviour of the distribution of the maximum

shown in Johnson (1994), while the MOM estimates, which

are based on the average value of samples from a uniform

distribution, exhibit a more symmetric behaviour, which is

not surprising under the Central Limit Theorem. The

properties of the estimation procedures is not impacted by

the actual value of h, and the MSP approach consistently

gives unbiased estimated with smaller variability. When

h ¼ 1 the boxplots for the MSP approach the method of

moment are identical, since the two estimators have the

same form. It would then appear that in cases where no

reliable information can be retrieved on the real value of

h the MSP approach should be used to estimate the length

of time covered by the historical data.

Nevertheless, when including historical data in flood

frequency analysis, the aim is generally to estimate the

parameters of the flood distribution and to then obtain

estimates for its upper quantiles. The performance of this

inference when using the different estimators for h are

explored in Figs. 4 and 5. Figure 4 shows the RMSE values

of the log(Q100) for each combination of systematic record

length (n), number of historical record (k) and historical

period length (h). Each line shows the RMSE values

obtained using a different approach to estimate h, including

the solid line which corresponds to the case in which only
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systematic data are used and no estimation of h takes place

and the case in which the true value of h is used (dotted line

and triangle). The RMSE for any estimated quantity s,
either a parameter of a property of the distribution, is

defined as the square root of the expected value of the

squared difference between the estimated value ŝ and its

true value. In a simulation study with s synthetic data, the

RMSEðŝÞ can be determined taking:

RMSEðŝÞ ¼ 1

s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xs

i¼1

ðŝi � sÞ2
s

:

Low values of RMSE indicate that the estimated value do

not vary much around the true value of s, giving an indi-

cation of a good performance in estimation. Figure 4 shows

that more precise estimates can be obtained for high

quantiles when using historical data, compared to when

using systematic data only, even when there is some

uncertainty on the actual time covered by the historical

data. Further it would appear that when including historical

data, if the MSP approach or the method of moments are

used to estimate h the RMSE values for the Q100 are similar

to the one obtained when the true value of h is used even if

only k ¼ 3 historical events are available.

To investigate the impact of the different methods of

estimating h on the flood frequency model estimation the

RMSE for the shape parameter of the GLO distribution are

shown in Fig. 5. The shape parameter plays an important

role in extreme value modeling and its estimate are gen-

erally quite variable due to the limited sample sizes nor-

mally available for estimation. Figure 5 shows that, when

the parameter h is estimated, both the method of moments

and the MSP approach lead to similar reductions in RMSE.

The use of the ĥML estimator is heavily discouraged,

although when a large number of historical events are

available it appears to still give, on average, a good

improvement on the quality of the estimation. Interestingly,

from both Figs. 4 and 5 it can be concluded that it is not

necessary to have a very large amount of historical events

to obtain large improvements in the precision of flood

frequency analysis. Another interesting aspect to notice

from Fig. 4 is that, when knowing the real value of h, the

decrease in RMSE is already very large when including

just one historical event for an historical period of

h ¼ 200 year. There is also an improvement in the esti-

mation when longer historical periods are considered and

more historical events are included in the estimation, but
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the RMSE does not decrease very much. In Fig. 5 one can

notice that the RMSE of the shape parameter obtained

when using systematic data with a 80-year long record is

comparable to the one obtained using a 20-year systematic

record combined with k ¼ 3 historical events covering a

time span of h ¼ 200 year. Thus, for practical purposes it

might be very useful to retrieve even sparse knowledge on

the recent past to improve the overall estimation.

6 The Lune at Caton and the December 2015
floods: an historical perspective

In December 2015 several large flood events were recorded

in northern Britain as a result of extremely large storms

(Desmond, Frank and Eva) which occurred after a period of

substantial rain. The extent of the flooding was reported to

be unprecedented and several record-breaking events were

recorded (Met Office 2016; Parry et al. 2016). Information

on historical records of large floods in the proximity of

some of the gauging stations involved in the Winter 2015

floods is readily available and could be used to put the

recent floods into the historical context. A full appraisal of

the rarity of the events recorded in Winter 2015 is out of

the scope of this investigation, which aims at discussing

some practical aspects of the inclusion of historical data for

a specific location. Volume IV of the Flood Studies Report

(FSR, Natural Environment Research Council 1975) con-

tains a long list of gauging stations for which some form of

historical data is available, with historical series of extreme

flow values available for several stations. In particular, a

series of peak flow annual maxima between 1968 and 2013

is available for the site of the present day station measuring

the peak flow of the Lune at Caton (NRFA Station 72004).

The Lune at Caton peaked at about 1700m3=s on

December 5th 2015 (Parry et al. 2016): this peak corre-

sponds to the highest peak ever recorded at the gauging

station, exceeding the previous record of 1395:222m3=s of

January 1995, the highest peak registered in the 46 years of

available data since the station started operating in 1967.

Annual maxima in the UK are extracted as the highest peak

recorded in a Water Year, which runs from October to

September, thus the event of January 1995 would be listed

as the maximum of Water Year 1994. The gauged peak
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flow records for this station, and all other stations in the

UK, can be easily retrieved via the National River Flow

Archive (NRFA) website. Volume IV of the FSR lists eight

major annual maxima events recorded at the gauging sta-

tion location in the years before the station started its

regular recording in 1967 (see Table 1).

Beside the information on the peak flows, the following

note is given:

Chapman & Buchanan - Frequency of Floods of

normal maximum intensity in upland areas of Great

Britain. ICE Symposium, River Flood Hydrology,

1965. Listed and ranked are discharges estimate at

Caton Low mill, 2.5 miles upstream of Halton

gauging station. The figures ‘might be said to give a

complete record of the very highest floods for a

period of some 80 years...’ [...].

It is therefore likely then that the historical record give

information for the period starting in a year between 1875

and 1885. Note that the list of historical records was

compiled some years before the gauging station started its

operation, but it is very likely that no major event happened

in the catchment in the few years between the creation of

the list and 1967, otherwise this would have been noted in

the FSR. For this station the estimates of h using the

different methods can be derived from t ¼
ð13; 32; 40; 41; 44; 48; 65; 76Þ as: hML ¼ 76, hMom ¼ 91:75

and hMSP ¼ 85:625, which would lead to the historical

coverage to start, respectively, in 1892, 1876 and 1882.

To use the historical information to estimate the flood

frequency curve for the station a value for the perception

threshold X0 also needs to be identified. Nevertheless, from

the text reported above it is not evident what perception

threshold should be used in the estimation procedure. To

eliminate possible subjective choices on which perception

threshold to use, it was decided to take the lowest event in

the historical record, the February 1920 event, as

perception threshold and to only include the largest seven

events in the record in the analysis. Indeed, if we are

confident that the historical events capture accurately past

large events we should be quite certain that all the highest

seven events in the record are larger than the 1920 event.

When only the highest seven historical events are used the

estimated values of h correspond to hML ¼ 76, hMom ¼
90:86 and hMSP ¼ 87: the difference compared to when

using the full historical record is very small. The combined

historical and systematic records are displayed in the upper

panel of Fig. 6. The lower panel of Fig. 6 shows the flood

frequency curves obtained when using only the 46 years of

systematic data available for the gauging station and the

curve obtained when historical data are also included in the

analysis using the estimated hMSP ¼ 87 value. Also shown

in the figure is a line which indicates the magnitude of the

December 2015 flood (1700 m3/s): this event was not

included in the estimation procedures. For both curves the

GLO distribution was assumed to be the underlying dis-

tribution for the high flow process and 95% confidence

intervals are derived by means of the delta method as in

Macdonald et al. (2014). Comparing the two curves, it is

immediately noticeable that when including historical data

in the analysis the probability of high flows exceeding the

magnitude recorded in December 2015 is much smaller

than when systematic data only are used. In terms of return

period, these two probabilities correspond to 126 years

(annual exceedance probability equal to 0.0080) and

526 years (annual exceedance probability equal to 0.0019)

respectively. The at-site estimate gives results comparable

to the estimates obtained when using the regional analysis

approach described in Environment Agency (2008), which

gives an estimated return period for the December 2015

event of 132 years (annual exceedance probability equal to

0.0076).

To assess the difference that the different estimates of

h would have on the overall estimation, Fig. 7 show the

95% confidence intervals for the 100-year (annual excee-

dance probability equal to 0.01) and 1000-year event (an-

nual exceedance probability equal to 0.001) using different

values of h, either estimated using the different estimators

presented in Sect. 4 and some hypothetical high values of

h: these are included to showcase the potential benefit of

including records covering very long periods of time. It is

immediately obvious that using the historical information

in the estimation procedure gives much tighter confidence

intervals, but little difference can be seen in the estimate

and the variability obtained when using the three estimators

for h. This is not so surprising given the fact the the actual

estimated values of the h parameter are not so different for

the three estimation methods, but this might not always be

true for other case studies, especially if information is

Table 1 Historical peak flow values for the Lune at Caton listed in

Volume IV of the FSR

Date Water year Peak flow

02 Sep 1892 1891 977.000

26 Jan 1903 1902 1104.000

10 Feb 1920 1919 878.000

13 Nov 1923 1923 1119.000

21 Sep 1927 1926 906.000

03 Nov 1927 1927 1048.000

14 Feb 1936 1935 991.000

02 Dec 1954 1954 1161.000
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available only on few historical events. On the other hand,

if the seven historical events would have been recorded in a

much longer period of time than the one available for the

Lune, the reduction in the estimation variability would be

even more significant. This indicates how including

information on long records can be extremely beneficial in
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terms of uncertainty reduction. Viglione et al. (2013) had

already noted that very large increases in the historical

coverage would be needed for the variability in the esti-

mation to reduce significantly, and it is often the case that

decisions about the values of the perception threshold X0

and the number of historical events for which some

information on the flow values can be determined also play

a role in the assessment of the time coverage used in the

analysis. To give a more complete assessment of the sen-

sitivity of the estimation of flood risk for the Lune at Caton,

the 95% confidence intervals for the 100-year and

1000-year event using increasing subsets of the historical

records are shown in Fig. 8. For each value of k, the

number of historical events in the record, the perception

threshold is set to be the peak flow of the largest historical

event smaller than the largest k peaks. For example when

k ¼ 2, only the November 1923 and December 1954 events

are included in the analysis, and the perception threshold is

set to X0 ¼ 1104, the peak flow value of the January 1903

event, i.e. the third largest event in the historical record.

The case of k ¼ 7 corresponds to the curve shown in

Fig. 6. The historical record length is kept fixed at h ¼ 87.

It is quite striking how little is the effect of including a

smaller set of historical values and changing the perception

threshold for this case study. This might not be the case in

all situations, and it is sometimes the case the very different

flood frequency curves can be obtained depending on the

decision of which subset of the available historical data is

used in the estimation. Once again the most striking feature

in Fig. 8 is how including historical information results in

much tighter confidence intervals around much smaller

design event (i.e. the return period of large floods is esti-

mated to be higher when historical information is included

in the estimation).

The fact that tighter confidence bands are obtained when

using historical data indicates that a higher confidence is

attached to the estimated return curve. This is the natural

consequence of using more information in the estimation

procedure, although the estimated value is very different

from what would have been obtained when applying the

standard procedures used in the UK. This is mostly due to

the fact that there appear to be more extreme events in the

systematic record than in the historical period: there are a

total of 11 events above the perception threshold in the

46 years of the systematic record, against the seven events

in the 87 years of the historical record. Further, the 2015

event was indeed very large and well above any of the

systematic and historical events. Similar findings in terms

of how excessively high the Winter 2015 events in

Northern Britain were compared with a long historical

record, are also discussed in Parkes and Demeritt (2016),

which presents the history of flooding of the city of Carlisle

from the river Eden. As a reference for how influential the

most recent events might be for the estimation of flood risk

in the area it is here noted that the return period for the

value of 1700m3=s when including the peak flow value of

December 2015 in the sample would be approximately 60

years (annual exceedance probability equal to 0.0165)

when using systematic records only and 240 years (annual

exceedance probability equal to 0.0042) when historical

data are used in the estimation. These are spectacular

increases of the frequency at which very high events might

be expected to occur compared to the values one would

have obtained before the December 2015 events. This

questions the validity of the methods used to estimate the

frequency of flooding, which ultimately rely on the work-

ing assumptions that past events can be informative of the

present and future risk. An attribution of the drivers which
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caused a higher number of large flooding events in the

more recent years is beyond the scope of this investigation,

although climate change (Oldenborgh et al. 2015) and

large scale natural cycles (Macdonald and Sangster 2017)

have been connected with increased likelihood of extreme

events. It is finally worth to point out that the higher

confidence in statistical terms which is obtained when

using historical data can sometimes not coincide with a

higher confidence in the final estimate, given that very

different results are obtained when using the more recent

and systematically gauged record. The decision of which

frequency curve to use for design event estimation would

lead to very different results: Bayliss and Reed (2001)

discuss some practical ways in which decisions could be

made on whether to rely on the results which include his-

torical data or how to modify estimates obtained using the

standard methods based on the regional frequency analysis

approach. One of the possible and simplest ways to assess

how including historical data impacts the overall flood risk

estimation is to run some sensitivity analysis as those

presented above or in Viglione et al. (2013). See also

Environment Agency (2017) for a large simulation study

which investigates the impact on the overall estimation

under different scenarios of historical data availability. For

this specific case study it appears that simply including

even few historical records already gives large differences

in the final estimates and in the confidence intervals around

them, and this is partially due to the fact that the largest

events in the record have been recorded in the last decades

rather than in the historical period. Of course this is not

always the case, and sensitivity studies can be useful to

assess how different historical peak flows samples corre-

spond to different final estimates. There is often some

trade-off between the length of the historical period for

which information can be retrieved, and the level at which

the perception threshold can be reliably fixed, as infor-

mation on very large floods which happened in the far past

might be available, but it would then be unclear what

perception threshold could be used since it is assumed that

all historical events in the sample are higher than X0. A

possible approach to this would be to use varying percep-

tion threshold, as done for example in Naulet et al. (2005),

although this requires a very thorough study of the history

of the catchment. Further, as mentioned earlier in the

paper, considerations on the suitability of using informa-

tion from a time in which the catchment was likely very

different from its present form also need to be taken into

account. These consideration are made even more com-

plicated by all the possible sources of non-stationarity, as

statistical models which rely on the assumption of an

underlying stationary process might be not appropriate and

thus additional structures would need to be added in the

model to account for the impact of changes in the climate

and in the catchment (as in Machado et al. 2015).

7 Discussion

The use of historical data can help in reducing the uncer-

tainty around the estimation of the frequency of rare events

as testified by the widespread recommendation that they

should be used when available (Kjeldsen et al. 2014;

Environment Agency 2017). Caution should be taken in

ensuring that the historical records included in the esti-

mation procedure can indeed be deemed representative of

the present day risk, as the standard procedure assumes that

the data generating process for the whole sample (sys-

tematic and non-systematic data) is unchanged in time: this

might be a restrictive assumption and the statistical models

might need to be adjusted to account for possible non-

stationarities. Further, when historical records are used in

the estimation, it is generally assumed that the properties of

the historical events are correctly characterised and that all

information needed to compute the likelihood shown in

Eq. (1) is available. If the historical events are not properly

characterised, there is a risk of actually increasing the

uncertainty in the estimation procedure (Strupczewski

et al. 2014). The importance of using accurate historical

data can therefore not be stressed enough, and all efforts

should be made to collect as much information as possible

regarding past large events. It might nevertheless be the

case that the start date of the period of time covered by the

historical events can not be accurately retrieved in the

historical information. In such cases, rather than discarding

the historical information, an estimate for the coverage of

the historical record can be obtained and plugged in the

estimation procedure. Interestingly, the question of esti-

mating the length of time covered by the historical record

corresponds to the problem of estimating the size of a

population, a classic statistical problem which is often

referred to as the German tanks problem. Different esti-

mators of the total size of a population are available in the

literature: their theoretical derivation and properties have

been presented and their performance has been investigated

by means of a simulation study. The simulation study

confirmed that the preferred method to estimate h should be

the MSP estimator, which is unbiased and has minimal

variance. The MSP estimator gives the best results in terms

of the estimated value of h itself and in terms of the esti-

mation of the extreme value model, which is the ultimate

goal of the estimation in this application. The performance

of the estimation improves with increasing sample sizes, as

it would be expected. The use of historical data reduces the

uncertainty in the estimation of the extreme value
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modeling, even when the detail of the temporal coverage is

estimated and not known a-priori.
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Viglione A, Volpi E, Wilson D, Zaimi K, Blöschl G (2015) A
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