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Abstract

We consider sufficient conditions for Bayesian consistency of the transition density

of time homogeneous Markov processes. To date, this remains somewhat of an open

problem, due to the lack of suitable metrics with which to work. Standard metrics seem

inadequate, even for simple autoregressive models. Current results derive from general-

izations of the i.i.d. case and additionally require some non-trivial model assumptions.

We propose suitable neighborhoods with which to work and derive sufficient conditions

for posterior consistency which can be applied in general settings. We illustrate the

applicability of our result with some examples; in particular, we apply our result to a

general family of nonparametric time series models.
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1 Introduction

Consider an ergodic Markov process {Xn}n≥0, defined on some separable filtered space

(X ,G, {Gn}n≥0). Denote by P0 the true law of the process. Throughout this paper, all

probability statements will be made with respect to P0.

Assume the process is time homogeneous and let f0 be the transition density for {Xn}n≥0,

with respect to some reference measure ν. Let ν0 be the corresponding ergodic measure of

the process. That is, for every G ∈ G

P0[Xn+1 ∈ G|Xn] =

∫
G

f0(x|Xn)dν(x),

and for every h ∈ L1(ν0)

1

n

n∑
i=1

h(Xn)→
∫
h(x)dν0(x) a.s. when n→∞.

In particular, if the process has a stationary density g0, then the integral in the limit is equal

to
∫
h(x)g0(x)dν(x).

If f0 is fixed but unknown, Bayesian inference begins by constructing a prior distribution

Π over the class F of transition densities on (X ,G) with respect to ν. As in the case of i.i.d.

observations, this prior combines with the data to define the posterior distribution Πn. So,

if A is a set of transition densities, the posterior mass assigned to it is given by

Πn(A) =

∫
A
Rn(f)dΠ(f)∫
Rn(f)dΠ(f)

,
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where

Rn(f) =
n∏
i=1

f(Xi|Xi−1)

f0(Xi|Xi−1)

is the likelihood ratio. In order to simplify the notation, here and in the following, we assume

that X0 is either fixed or has a known initial distribution.

As is well known, the predictive density for Xn+1, given X0, . . . , Xn, is

fn(· | Xn) = E[f(· | Xn) | X0, . . . , Xn] =

∫
f(· | Xn)dΠn(f),

and hence the importance of accurate estimation of f and the study of posterior consistency.

The general Markov process model is said to be consistent if the posterior mass accu-

mulates around f0 as n increases. More formally, Πn is consistent at f0 if for every suitable

neighbourhood B of f0, we have Πn(Bc | X0, . . . , Xn) → 0 a.s. as n → ∞. The concept

depends on the definition of such neighbourhoods, so different types of consistency can be

considered.

Consistency results for transition densities of Markov processes extend the two main

approaches regarding consistency for i.i.d. observations. The first approach, due to Schwartz

[1965], Barron et al. [1999], and Ghosal et al. [1999], assumes the existence of an increasing

sequence of sets, a sieve {Fn} ⊂ F , with Π(F cn) exponentially small; a sequence of uniformly

consistent tests for testing f = f0 against f ∈ Bc ∩ Fn; and the Kullback-Leibler property

on the prior, which states that Π[f : K(f, f0) < ε] > 0 for every ε > 0, where K(f, f0) =∫
f0 log(f0/f) is the Kullback-Leibler divergence between the densities f and f0. In practice,

the sieve is constructed as a finite union of balls around functions {fj}, which then need to

be counted to ensure a linear constraint on the entropy of Fn.
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An alternative approach provided by Walker [2003, 2004] relies on a martingale sequence

to obtain sufficient conditions for consistency in the i.i.d. case. The construction turns out

to be equivalent to the use of a suitable sieve, based on Hellinger balls, and which depends

on the prior. Such a sieve satisfies the entropy condition automatically, simplifying the

verification of necessary conditions for consistency.

For i.i.d. observations, a distinction is made between weak and strong consistency, the

second of which is associated with the Hellinger distance on the space of densities, defined

as H
(
f1, f2

)
= 1

2
(
∫ (√

f1 −
√
f2

)2
)1/2. The Hellinger distance is topologically equivalent to

the L1 distance, but the definition of the former is useful in the study of consistency. The

literature concerning consistency for Markov processes is limited, due in great part to the

difficulty in finding adequate topologies and distances between transition densities. It is not

clear the Hellinger distance can be generalized for the space of transition densities and still

be convenient in the context of consistency. However, a straightforward generalization of

the Kullback-Leibler property for transition densities is possible due to the ergodic property

(see Section 3.3).

To highlight the problem of extending the Hellinger distance between densities to the

space of transition densities, consider the squared Hellinger distance between f1(·|y) and

f2(·|y), given by

H2
(
f1(·|y), f2(·|y)

)
=

1

2

∫ (√
f1(z|y)−

√
f2(z|y)

)2

dν(z)

= 1−
∫ √

f1(z|y)f2(z|y) dν(z).

(1)

Here, H can not be used to define a topology on F , as it depends on y. In order to adapt

this and other quantities commonly used for densities, to define neighbourhoods in a space

of transition densities, the dependence on y must somehow be eliminated.
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A similar problem appears in the study of posterior consistency for regression models,

where a distance between densities for the response variable z depends on the value of a

covariate y. In this context, Ghosal and Roy [2006] and Choi and Schervish [2007] define a

distance between two densities f1 and f2 as

h(f1, f2) =

∫
H
(
f1(·|y), f2(·|y)

)
dQ(y),

where Q is the distribution for the covariate. The definition of an adequate metric in terms

of the Hellinger distance is due to the availability of the measure Q when assuming the

covariates are generated stochastically and i.i.d. In the Markov process case, an adequate

choice of integrating measure is unclear, but the general idea can be applied for measures

with a large enough support.

Tang and Ghosal [2007] propose different ways of defining a topology on a transition

density space. The first is based on the notion of distances on the invariant measures

associated with each transition, and results in a weak topology. Alternative ideas arise

from using integrated and maximized distances between conditional densities respectively,

resulting in strong types of neighbourhoods in both cases. In the same paper (Sections 7 and

8, respectively), the authors prove strong consistency in this sense for a specific family of

transition densities based on Dirichlet mixtures, by generalizing the sieve and uniformly

consistent tests approach. Ghosal and Tang (2006, Theorem 2.3) extend this result to

a general family F of transitions, providing it is compact with respect to the supremum

Hellinger distance,

Hs

(
f1, f2

)
= sup

y
H
(
f1(·|y), f2(·|y)

)
. (2)

Compactness with respect to Hs is a rather strong condition, as a simple example may

show. Let F = {N(·|θy, 1) : θ ∈ Θ ⊂ R}. The Hellinger distance between transition densities
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in this case is given by

H2
(
fθ1(·|y), fθ2(·|y)

)
= 1− exp

{
−1

8
y2(θ1 − θ2)2

}
.

Therefore, Hs

(
fθ1 , fθ2

)
= 1 for every θ1 6= θ2, so the required compactness is achieved only

when Θ is finite.

Constructing an adequate sieve and proving the existence of a set of uniformly consis-

tent tests is difficult in general. Therefore, in order to remove the compactness assumption,

Ghosal and Tang [2006] generalize the martingale approach of Walker [2003, 2004]. By as-

suming only the separability of F with respect to Hs, they are then able to prove consistency

with respect to neighbourhoods of the type {f : d̃(f, f0) < ε}, where

d̃(f, f0) = inf
y
H2
(
f(·|y), f0(·|y)

)
. (3)

Some families of transition densities may be found for which this type of consistency can be

considered strong enough; however, in general, these neighbourhoods correspond to a weak

topology. Once more, we illustrate this through the example, F = {N(·|θy, 1) : θ ∈ R}.

When y = 0, for every f ∈ F we have f(·|0) = N(·|0, 1), yielding

inf
y
H2
(
f1(·|y), f2(·|y)

)
= 0 for any f1, f2 ∈ F .

Ghosal and Tang [2006] mention this problem, which extends to the nonlinear autoregressive

model f(y|x) = g(y−ψ(x)), whenever g is a location shift of g0. Throughout this paper, we

develop a more general result for consistency which does not require compactness of F with

respect to Hs, and applies to a wider family of processes.

Our main contribution is the definition of a neighbourhood around the true transition
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density, f0, using a natural adaptation of the Hellinger distance for bivariate densities. Each

transition density f ∈ F is extended to a family of bivariate densities. A distance like-

operator between f and f0 is defined as the smallest distance between sets of extended

bivariate densities (to be explained in section 2). This, as we shall see, guarantees the

definition of strong neighbourhoods around f0, for a relevant family of models.

We then find sufficient conditions for consistency by extending the martingale result

from Walker [2004], assuming only separability of F with respect to the supremum Hellinger

distance Hs.

The layout of the paper is as follows. In Section 2 we present the system of neighbour-

hoods which will provide the base for a strong form of consistency for the true transition

density f0. In Section 3, we present the basic notation and provide a set of sufficient condi-

tions for posterior consistency. In Section 4 we present some examples, the first one to illus-

trate the contribution of our result; the second, a family of nonparametric mixture Markov

models which has gained popularity in the literature over the last years; the third shows how

the result can be useful even when an analytic expression for the transition density is not

available.

2 A strong neighborhood around f0

In this section, we define a non negative binary operator d : F ×F → [0, 1], and discuss the

suitability of the neighbourhoods {f ∈ F : d(f, f0) < ε} in the study of posterior consistency

for Markov processes.

Consider the set F of bivariate densities on (X × X ,G ⊗ G). For every f̄1, f̄2 ∈ F , the
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squared Hellinger distance is given by

H2
(
f̄1, f̄2

)
=

1

2

∫ (√
f̄1 −

√
f̄2

)2

d(ν × ν) = 1−
∫ ∫ √

f̄1f̄2 d(ν × ν).

For each x ∈ X , and f ∈ F , a density in F is defined by

f̄(z, y|x) = f(z|y)f(y|x).

Therefore, for any f1, f2 ∈ F , we can define

d(f1, f2) = inf
x
dx(f1, f2), (4)

where dx(·, ·) denotes the Hellinger distance between the two corresponding bivariate densi-

ties in F . That is,

d2
x(f1, f2) = H2

(
f̄1(·, ·|x), f̄2(·, ·|x)

)
= 1−

∫ ∫ √
f1(z|y)f1(y|x)f2(z|y)f2(y|x) dν(z)dν(y).

In the context of strong consistency, we are interested in ensuring that the operator d

allows us to identify the true transition density f0 in a strong sense. Specifically, we want to

ensure that, for every f ∈ F ,

d(f, f0) = 0⇔
∫
X
P(·|x)dν(x) =

∫
X
P0(·|x)dν(x), (5)

thus allowing for the two conditional probability measures, associated to the densities, P(·|x)

and P0(·|x), to differ at most for values of x on a set of ν-measure 0. Clearly, in the above
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expression,

P(A|x) =

∫
A

f(y|x)dν(y) for every A ∈ G.

The implication to the left, in expression (5) is trivially satisfied, by the definition of d

in terms of a Hellinger distance. We are therefore required to find conditions which ensure

∫
X
P(·|x)dν(x) 6=

∫
X
P0(·|x)dν(x)⇒ d(f, f0) > 0.

Equivalently,

ν(S) > 0⇒ d(f, f0) > 0, for S = {x ∈ X : H
(
f(·|x), f0(·|x)

)
> 0}. (6)

Notice that for every x ∈ X and every f1, f2 ∈ F ,

d2
x(f1, f2) = H2

(
f1(·|x), f2(·|x)

)
+

∫
H2
(
f1(·|y), f2(·|y)

)√
f1(y|x)f2(y|x) dν(y),

= H2
(
f1(·|x), f2(·|x)

)
+ E0

[
H2
(
f1(·|y), f2(·|y)

)√f1(y|x)

f2(y|x)

∣∣∣∣∣x
]

so that, applying the Cauchy-Swartz inequality leads to

d2
x(f1, f2) ≤

√∫
S

f2(y|x)dν(y) :=
√

P2(S|x)

for every x ∈ S ′ = X \ S. And, by the symmetry of dx, the same is true for P1(S|x).

Therefore, applying this to f and f0, we have that a necessary condition to satisfy (6) is

inf
x∈S′

P(S|x) > 0 for every f ∈ F and S ∈ G such that ν(S) > 0. (7)

9



When the family F under consideration is large enough, as is often the case, particularly

in nonparametric settings, the sets S considered above can be arbitrarily small. In such

cases, the above condition is practically equivalent to the sufficient condition provided by

the following lemma.

Lemma 2.1. Assume that for every f ∈ F and every S ∈ G with ν(S) > 0,

inf
x∈X

P(S|x) > 0. (8)

Then, condition (6) is satisfied. In this case, d is a semimetric which induces a strong

topology on F .

Proof. Let f ∈ F and x ∈ X . We first observe that, for each y,

H2
(
f(·|y), f0(·|y)

)
= 1− E0

[√
f(z|y)

f0(z|y)

∣∣∣∣∣ y
]
,

where E0 denotes the expectation with respect to P0. We may also observe that for each x,

d2
x(f, f0) = 1− E0

[√
f(z|y)f(y|x)

f0(z|y)f0(y|x)

∣∣∣∣∣x
]
.

Now,

E0

[√
f(z|y)

f0(z|y)

√
f(y|x)

f0(y|x)

∣∣∣∣∣x
]

= E0

[
E0

[√
f(z|y)

f0(z|y)

∣∣∣∣∣ y
]√

f(y|x)

f0(y|x)

∣∣∣∣∣x
]

= E0

[(
1−H2

(
f(·|y), f0(·|y)

))√ f(y|x)

f0(y|x)

∣∣∣∣∣x
]
.

Therefore, since 0 ≤ 1 − H2
(
f(·|y), f0(·|y)

)
≤ 1, from the Cauchy-Schwartz inequality and
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E0 [f(y|x)/f0(y|x) |x] = 1, we have

E0

[√
f(z|y)f(y|x)

f0(z|y)f0(y|x)

∣∣∣∣∣x
]
≤
√

1− E0

[
H2
(
f(·|y), f0(·|y)

) ∣∣x]

and so

d2
x(f, f0) ≥ 1−

√
1− E0

[
H2
(
f(·|y), f0(·|y)

) ∣∣x] ≥ 0. (9)

For S defined as in (6),

E0

[
H2
(
f(·|y), f0(·|y)

) ∣∣x] =

∫
S

H2
(
f(·|y), f0(·|y)

)
f0(y|x)dν(y).

Thus, d(f, f0) = 0⇒ infx E0

[
H2
(
f(·|y), f0(·|y)

) ∣∣x] = 0 and condition (8) ensures this only

happens when ν(S) = 0. Since the operator d is symmetric and f0 does not play a particular

roll, the proof works for any two distinct densities in F and thus d defines a semimetric

which induces a strong topology.

For many Markov models found in the literature, rather than verifying condition (8)

directly, we may use a simplified condition, provided in the following corollary.

Corollary 2.1. Assume that for every transition density f ∈ F , f(·|x) is a continuous

function of x such that

inf
x
f(y|x) > βg(y) ∀ y ∈ X , (10)

for some density function g = g(f) with full support over (X ,G) and some constant β =

β(f) > 0. Then, condition (6) is satisfied and d is a semimetric which induces a strong

topology on F .

Proof. For every f in F and S ∈ G such that ν(S) > 0. It follows from the continuity of the
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transition densities, the full support of g and condition (10) that

inf
x
P(S|x) = inf

x

∫
S

f(y|x)dν(y) > β

∫
S

g(y)dν(y) = βPg(S) > 0,

where Pg denotes the probability measure associated to the density g. The result follows

from Lemma 2.1.

It is important to emphasize that the definition of d in (4) differs from the one given

by Ghosal and Tang [2006] (equation 3), in that the integral for the Hellinger distance in our

definition is taken with respect to the product measure ν × ν, and not with respect to ν. In

other words, it minimizes the Hellinger distance between bivariate, rather than univariate

conditional densities. The effect of this can be best understood by revisiting our example

involving the simple normal regression model. If fθ(·|y) = N(·|θy, 1) as before, the squared

Hellinger distance between the univariate functions fθ1(·|y) and fθ2(·|y) is given by

H2
(
fθ1(·|y), fθ2(·|y)

)
= 1− exp

{
−1

8
y2(θ1 − θ2)2

}
;

while the squared Hellinger distance between the bivariate functions f̄θ1 and f̄θ2 is

d2
x(fθ1 , fθ2) = 1− 2√

4 + (θ1 − θ2)2
exp

{
−x

2

2
(θ1 − θ2)2

[
1− 2(1− θ1θ2)

4 + (θ1 − θ2)2

]}
.

Notice that H2
(
fθ1(·|0), fθ2(·|0)

)
= 0 even if θ1 6= θ2; while infx d

2
x(fθ1 , fθ2) = d2

0(fθ1 , fθ2) =

1 − 2/
√

4 + (θ1 − θ2)2. This is actually a distance and therefore, we have d(fθ1 , fθ2) > 0

whenever |θ1 − θ2| > 0.

In fact, d defines a distance on the family F of transition densities of interest whenever the

infimum is reached at an internal point in X , i.e., if d(f1, f2) = d2
x∗(f1, f2) for some x∗ ∈ X .
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Although this is not true in general, we have shown that under adequate conditions, d defines

a semimetric on the space of conditional probabilities with densities in a general space F ,

thus inducing a strong topology on F . Furthermore, using similar arguments to those in the

proof of Lemma 2.1, we can see that d is bounded above by the supreme Hellinger distance.

Additionally, if condition (10) is satisfied, uniformly, i.e. g and β do not depend on f , then

it follows from (9) that d is bounded below by an integrated metric:

β

2

∫
H2(f1(·|y), f2(·|y)) g(y) dν(y) ≤ d2(f1, f2) ≤ d2

x(f1, f2) ≤ 2H2
s (f1, f2). (11)

This inequality will be useful for the consistency result in the next section.

3 Posterior Consistency

In this section we will establish the basic notation [following the setup of Walker, 2004,

Ghosal and Tang, 2006] and present the main theorem regarding consistency.

3.1 Preliminaries and notation

Let Xn = (X1, . . . , Xn) denote a sample of size n from P0 (formally, from the restriction of

P0 to Gn). The likelihood ratio for a transition density f ∈ F will be denoted by

Rn(f) =
n∏
i=1

f(Xi|Xi−1)

f0(Xi|Xi−1)
.

Let Π denote a prior on F and define the integrated likelihood ratio over a subset A ⊂ F as

Ln = LnA =

∫
A

Rn(f)dΠ(f).
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The posterior mass assigned to A is then given by

Πn(A) =
Ln
In
,

where In = LnF =
∫
Rn(f)dΠ(f).

Finally, we define the bivariate predictive density, with posterior restricted to the set A

as

fnA(z, y|Xn) =

∫
A

f(z|y)f(y|Xn)dΠn
A(f),

where

dΠn
A(f) =

1(f ∈ A)dΠn(f)∫
A

dΠn(f)
.

The key identity here is:

Ln+2

Ln
=

fnA(Xn+2, Xn+1|Xn)

f0(Xn+2|Xn+1)f0(Xn+1|Xn)
. (12)

Notice that in this case, the ratio is defined with a step of size 2, while in the i.i.d. case a size 1

step is sufficient. Now, E0[L2|G0] = L0 = Π(A) and E0[L2n+2|G2n] = L2nE0[L2n+2/L2n|G2n] =

L2n for every n ≥ 1, therefore {L2n} is a martingale with respect to {G2n}. Analogously,

{L2n+1} is a martingale with respect to {G2n+1}, since E0[L2n+3|G2n+1] = L2n+1 for every

n ≥ 0.

Recall that the posterior mass assigned to A ⊂ F , given a sample of size n, is given by

Πn(A) =
Ln
In
. (13)
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Different results regarding posterior consistency deal with the numerator and the denomi-

nator in this expression separately.

3.2 The numerator

The following lemma regards a general property, essential for the treatment of the numerator

in equation (13).

Lemma 3.1. For each n ≥ 1

E0

[√
Ln+2

∣∣Gn] ≤√Ln

[
1− d2

Xn
(fnA, f0)

]
.

Proof. Notice that Ln is [Gn]-measurable, so

E0

[√
Ln+2

∣∣Gn]√
Ln

= E0

[√
Ln+2

Ln

∣∣∣∣∣Gn
]
.

Applying the identity (12), and rearranging terms, we obtain

E0

[√
Ln+2

∣∣Gn] =
√
Ln E0

[√
fnA(Xn+2, Xn+1|Xn)

f0(Xn+2|Xn+1)f0(Xn+1|Xn)

∣∣∣∣∣Gn
]
.

By applying the definition of dXn ,

E0

[√
Ln+2

∣∣Gn] =
√
Ln
[
1− d2

Xn
(fnA, f0)

]
.

This completes the proof.

Consider a set A of transition densities. If we assume F is separable with respect to some

distance, d∗ then for every δ > 0, we can find a d∗-cover for A of size δ. That is, a collection
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{Aj}j≥1 such that

A ⊆
⋃
j

Aj

and for each j there exists fj ∈ A for which

Aj =
{
f : d∗(f, fj) < δ

}
.

Lemma 3.2. Let Aε ⊂ F be a set of transition densities d-bounded away from f0, i.e.

Aε =
{
f ∈ F : d(f, f0) > ε

}
.

Assume that a Hs-cover for Aε of size δ < ε√
2

can be found such that

∞∑
j=1

√
Π(Aj) <∞. (14)

Then, for some b > 0

∞∑
j=1

√
LnAj

< exp(−nb) a.s. ∀ large n.

Proof. Let {Aj}j≥1 be a cover satisfying assumption (14). Let γ = ε −
√

2δ > 0. For

simplicity, denote Lnj = LnAj
and fnj = fnAj

.

Observe that d(f, g) ≤ dx(f, g) ≤
√

2Hs

(
f, g
)
, for any two densities f, g ∈ F and x ∈ X ,

by the definition of d and inequality (11). Therefore, for each j,

dXn(fnj, f0) ≥ dXn(fj, f0)− dXn(fnj, fj) ≥ d(fj, f0)−
√

2Hs

(
fnj, fj

)
> γ.
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We know from expression (12) that

Ln+2j = Lnj
fnj(Xn+2, Xn+1|Xn)

f0(Xn+2|Xn+1)f0(Xn+1|Xn)
,

with L0j = Π(Aj) by definition. Taking conditional expectations and applying Lemma 3.1,

we get

E0

[√
Ln+2j

∣∣∣Gn] ≤√Lnj

{
1− d2

Xn
(fnj, f0)

}
<
√
Lnj (1− γ2).

Now, if we let k be the smallest integer larger than n/2, by iterating to remove the

conditionality with respect to Gn, we find

E0

[√
Ln+2j

]
<
√
L0j (1− γ2)k <

√
Π(Aj) (1− γ2)(n+2)/2.

Markov’s inequality implies that, for any b > 0,

P0

[ ∞∑
j=1

√
Lnj > exp(−nb)

]
< exp(nb) (1− γ2)n/2

∞∑
j=1

√
Π(Aj).

Finally, taking b < − log(1− γ2)/2, by condition (14), we arrive at

∞∑
j=1

√
Lnj < exp(−nb) a.s.

for all large n.

Observe that if F is separable with respect to Hs, then it is separable with respect to d.

This follows from the inequality (11). On the other hand, it is possible for F to be separable
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with respect to d even if it is not so with respect to Hs. In particular, as mentioned before

(Section 2), if d(f1, f2) = d2
x∗(f1, f2) for some x∗ ∈ X , then d satisfies the triangle inequality.

Therefore, Lemma 3.2 still holds when the Hs-cover is substituted by a d-cover, since the

critical inequality dXn(fnj, f0) > γ in the proof is satisfied. This is fundamental for the

verification of strong consistency in example 4.1.

3.3 The denominator

For every y ∈ X , the Kullback-Leibler divergence from f0(·|y) to f(·|y) is given by

K(f(·|y), f0(·|y)) =

∫
log

(
f0(z|y)

f(z|y)

)
f0(z|y)dν(z). (15)

When working with i.i.d. observations, an exponential bound can be found for the denom-

inator In of the posterior Πn(A), given a condition on the prior known as the Kullback-Leibler

property, which states that every Kullback-Leibler neighbourhood of the true density must

have a positive prior probability. As is the case with the Hellinger distance, an adequate gen-

eralization of the semimetric must be found, to remove the random element x from (15). This

time, it is convenient to define a semimetric on F by integration, exploiting the ergodicity

of the process.

The integrated Kullback-Leibler divergence between f0 and f is given by

K(f, f0) =

∫
K(f(·|y), f0(·|y))dν0(y).

In particular, if the stationary density g0 is well defined, then

K(f, f0) = E0 [K(f(·|y), f0(·|y))] =

∫
K(f(·|y), f0(·|y))g0(y)dν(y).
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Lemma 3.3. Assume the prior Π has the Kullback-Leibler property at f0, that is

Π
(
{f : K(f, f0) < ε}

)
> 0 for all ε > 0.

Then for every c > 0 and sufficiently large n

In > exp(−nc) a.s.

The proof follows from Fatou’s lemma and the law of large numbers for ergodic Markov

processes [see Ghosal and Tang, 2006, Tang and Ghosal, 2007].

3.4 Posterior consistency

We now have everything we need to present our main result.

Theorem 3.1. Let Aε be a set of transition densities d-bounded away from f0,

Aε =
{
f ∈ F : d(f, f0) > ε

}
with d defined by (4). Assume Π has the Kullback-Leibler property and

∞∑
j=1

√
Π(Aj) <∞, (16)

where or {Aj}j≥1 is a countable cover for Aε of Hs-size δ < ε/
√

2. Then

Πn(Aε)→ 0 a.s.
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Proof. Let {Aj} be the cover satisfying condition (16), and denote Lnj = LnAj
for simplicity.

Then

Πn(Aε) ≤
∞∑
j=1

Πn(Aj) ≤
∞∑
j=1

√
Πn(Aj)

=
∞∑
j=1

√
Lnj/In = I1/2

n

∞∑
j=1

√
Lnj.

Applying Lemmas 3.2 and 3.3, we have Πn(Aε) ≤ exp{−nb}/ exp{−nc} for every c > 0 and

b < − log(1 + (ε−
√

2δ)2)/2. Therefore, Πn(Aε)→ 0 as n→∞ exponentially fast a.s.

Notice that, if condition (10) holds, then the convergence in theorem 3.1 implies strong

consistency. Once again, if the infimum in the definition of d is reached at some x∗ ∈ X ,

the strong consistency follows from the Theorem, even in the absence of condition (10) by

substituting the Hs-cover with a d-cover.

4 Illustrations

Here we present some examples. The first one, concerning a simple model, illustrates the

features of our result. The second, includes a wide family of time series models found in

the literature. The third shows how, under some conditions, our consistency result can be

applied even when an analytic expression for the transition density is not available, as is

the case, for example, when dealing with some discretely observed diffusions [see e.g. Beskos

et al., 2006, 2009].
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4.1 Normal Autoregressive Model

We recall once more the simple parametric model discussed before, with transition density

given by fθ(Xn+1|Xn) = N(·|θXn, 1), corresponding to the normal autoregressive AR(1)

model,

Xn+1 = θXn + εn; εn
iid∼ N(·|0, 1),

which is known to be stationary only for |θ| ∈ (0, 1). This is one of the simplest and most

common time series models, yet there is no straightforward result in the Bayesian literature,

guaranteeing strong consistency for the transition densities that can be applied when the

stationarity assumption is not satisfied. In particular, Ghosal and van der Vaart [2007]

provide results for consistency only when the process is stationary, while Ghosal and Tang’s

2006 results guarantee strong consistency only when Θ is compact. Other ideas, based on

the construction of sieves and uniformly consistent tests for adequate metrics, would require

a careful study for each proposed prior.

On the other hand, the separability of R makes it straightforward to check if a prior Π on

Θ satisfies the conditions of Theorem 3.1 and, as mentioned before, the operator d defines a

metric on the space F of transition densities for this particular model, even if Θ = R.

Recall that

d(fθ1 , fθ2) = 1− 2√
4 + (θ1 − θ2)2

.

Therefore, for every 0 < δ < 1,

|θ1 − θ2| < δ̃ = 2
√

(1− δ2)−2 − 1 ⇒ d(fθ1 , fθ2) < δ,

so a countable d-cover of size δ for F can be defined in terms of a cover of size δ̃ for R in the
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following way:

Bj =
(
jδ̃, (j + 1)δ̃

)
⊂ R; Aj = {fθ : θ ∈ Bj}; j ∈ Z.

By symmetry, in order to prove

∞∑
j=−∞

√
Π(fθ ∈ Aj) =

∞∑
j=−∞

√
Π(θ ∈ Bj) <∞

it is enough to show
∞∑
j=0

√
Π(θ ∈ Bj) <∞,

which can be easily verified for any particular choice of Π.

In a more general setting, we could consider a transition density of the form

f(Xn+1|Xn) = N
(
Xn+1|θ(Xn), σ2

)
for some function θ : X → X . If we consider functions such that |θ| < M for some finite M ,

then there exist a density g and a constant β > 0 such that f(y|x) > βg(y) for all x ∈ X

and all f ∈ F . By Corollary 2.1, d defines a strong neighbourhood around f0 and Theorem

3.1 can be applied to verify strong consistency of the model, once the structure of the θ ∈ Θ

and the prior have been specified.

4.2 Nonparametric Mixture Model

Consider a time series model with transition densities given by

f(Xn+1|Xn) =

∫
Θ

K(Xn+1|Xn, θ)dPXn(θ),
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where K(·|x, θ) is a parametric density on X for every θ ∈ Θ, and x ∈ X ; and {Px}x∈X is

a family of mixing probability measures on Θ. In the most general case, the {Px} may be

non parametric and the prior Π placed over them is usually some dependent measure valued

process. Models of this type are becoming common in the literature; some of them can be

found in e.g. Mena and Walker [2005, 2007] and Mart́ınez-Ovando and Walker [2011]. The

family F of transition densities of interest in this type of models is defined by the support

of the prior, Π.

Assume a sequence of observations {Xn}n≥0 is generated from a time homogeneous

Markov process with transition density f0 ∈ F . In other words, there is some probabil-

ity measure P0 such that, for every n,

f0(Xn+1|Xn) =

∫
Θ

K(Xn+1|Xn, θ)dP0(θ|Xn).

Here are some noteworthy special cases:

(i) If, for example, f0 is a finite normal mixture such as

f0(y|x) =
M∑
j=1

wj(x)N(y|µj, σ2
j )

for some finite M , then the condition of Corollary 2.1 is easily satisfied.

A particular case is obtained when

wj(x) =
exp(βjx)∑M
j=1 exp(βjx)

.

By introducing adequate normalizing constants, we can consider truncated normal

kernels, to make X equal to some bounded interval. In this case d is bounded below
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by an integrated metric (see inequality 11). We can define the d-cover, i.e., the sets

(Ak) for which d(f, f ′) < δ for any f, f ′ ∈ Ak, by ensuring that

max
j=1,...,M

{|βj − β′j|, |µj − µ′j|, |1− σj/σ′j|}

is suitably small. It is now a standard exercise to verify that

∑
k

Π(Ak)
1/2 <∞,

by splitting the range of each parameter and ensuring that the prior condition holds for

each of them. For example, for µ1, we split (−∞,+∞) into a countable set of intervals

Ak(µ1) for which ∑
k

Π(Ak(µ1))
1/2 <∞.

(ii) Mena and Walker [2005] consider a transition density of the form

f0(y|x) =

∫
K(y|θ)dP (θ|x),

where K(·|θ) is some (non degenerate) parametric density. For this type of transition

density, Corollary 2.1 applies whenever K(y|θ) > βg(y) for some β > 0 and a density

function g with full support on X . For example, if K(y|θ) = θ e−yθ then we may obtain

K(y|θ) > β φ e−yφ by truncating βφ < θ < φ, and this is not overly restrictive since

we can take β arbitrarily close to 0 and φ arbitrarily large.

(iii) In the more general setting, if the kernels satisfy

inf
x
K(y|x, θ) > βg(y), ∀y ∈ X , θ ∈ Θ,
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then, for every y, x ∈ X ,

f(y|x) > β

∫
Θ

g(y)dP (θ|x) = βg(y).

If additionally, f(·|x) is continuous on x, then the conditions of Corollary 2.1 are once

again satisfied, and the operator d can be used to define strong neighborhoods around

f0.

In all of these cases, strong consistency follows for any prior Π for which the conditions of

Theorem 3.1 hold. The verification of consistency is therefore reduced to checking conditions

on the prior.

4.3 Compact Support Model

If the state space X is compact, then for every f there is some xf ∈ X which minimizes the

Hellinger distance between f̄ and f̄0. In this case,

d(f, f0) = dxf (f, f0)

defines a distance on F which induces a strong topology. Hence, strong consistency can be

verified through Theorem 3.1.

An interesting particular case occurs when X is finite with cardinality N . Then we

deal with a transition matrix with strictly positive entries, i.e. f0(y|x) is represented as

P0 = (pi.j)
N
i,j=1.
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5 Discussion

Our main result, stated in Theorem 3.1, gives sufficient conditions for posterior consistency

in the estimation of transition densities for ergodic (but not necessarily stationary) Markov

processes. The key for this result lies in the definition of the neighbourhood around f0. If

the Hellinger distance H2
(
f(·|y), f0(·|y)

)
is simply minimized over y, the resulting quantity

defines weak neighbourhoods. An integrated Hellinger distance is a reasonable alternative,

however it results in the additional condition of compactness of F in the supreme Hellinger

distance.

We solve the issue of finding an appropriate distance by noticing that for every transition

density f ∈ F , and each point x ∈ X , a bivariate density on X × X is uniquely defined

by f̄(z, y|x) = f(z|y)f(y|x). We define the quantity d by looking at the distance between

the bivariate densities they define, and subsequently minimizing over x. In this way d,

under suitable conditions, defines a semimetric on Fwhich can be used to define strong

neighbourhoods around the true transition f0.Thus, a sufficient condition for consistency is

found, involving the finiteness of sums of square roots of prior probabilities, which requires

only the separability of the space F with respect to the supreme Hellinger distance.

It is is an interesting observation that for some families of transition densities, d does

define a distance on the complete space F . In this case, separability with respect to Hs can

be substituted by separability with respect to d. This solves the problem of consistency for

the simple example fθ(·|y) = N(·|θy, 1) mentioned throughout the paper.

Future work should involve the study of posterior consistency for models with higher

order Markov dependency, by extending the definition of d to a space of transition densities

with an arbitrary number of dependent variables.

An important feature of our result is that it can be applied to some discretely observed
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continuous processes, for which the transition density often does not have an analytic form.

We believe this to be a relevant contribution, since consistency results had been found in

the Bayesian setting only for continuously observed diffusions [van der Meulen et al., 2006];

while results for discrete observations are only available for maximum likelihood estimators

[Beskos et al., 2009] or for approximate likelihood functions [Barndorff-Nielsen and Sorensen,

1994, Bibby and Sorensen, 1995, Kelly et al., 2004].

Acknowledgements

The authors would like to thank the Editor and a reviewer for their comments on a previous

version of the paper.

References

O. E. Barndorff-Nielsen and M. Sorensen. A review of some aspects of asymptotic likelihood

theory for stochastic processes. International Statistical Review, 62(1):133–165, 1994.

A. Barron, M. J. Schervish, and L. Wasserman. The consistency of posterior distributions

in nonparametric problems. The Annals of Statistics, 27(2):536–561, 1999.

A. Beskos, O. Papaspiliopoulos, G. O. Roberts, and P. Fearnhead. Exact and computation-

ally efficient likelihood-based estimation for discretely observed diffusion processes (with

discussion). Journal of the Royal Statistical Society, 68(3):333–382, June 2006.

A. Beskos, O. Papaspiliopoulos, and G. Roberts. Monte Carlo maximum likelihood estima-

tion for discretely observed diffusion processes. The Annals of Statistics, 37(1):223–245,

2009.

27



B. M. Bibby and M. Sorensen. Martingale estimation functions for discretely observed

diffusion processes. Bernoulli, 1(1/2):17–39, 1995.

T. Choi and M. J. Schervish. On posterior consistency in nonparametric regression problems.

Journal of Multivariate Analysis, 98:1969–1987, 2007.

S. Ghosal and A. Roy. Consistency of Gaussian process prior for nonparametric binary

regression. The Annals of Statistics, 34(5):2413–2429, 2006.

S. Ghosal and Y. Tang. Bayesian consistency for Markov processes. The Indian Journal of

Statistics, 68(2):227–239, May 2006.

S. Ghosal and A. van der Vaart. Convergence rates of posterior distributions for noniid

observations. The Annals of Statistics, 35(1):192–223, 2007.

S. Ghosal, J. K. Ghosh, and R. V. Ramamoorthi. Posterior consistency of Dirichlet mixtures

in density estimation. The Annals of Statistics, 27(1):143–158, 1999.

L. Kelly, E. Platen, and M. Sorensen. Estimation for discretely observed diffusions using

transform functions. Journal of Applied Probability, 41:99–118, 2004.

J. C. Mart́ınez-Ovando and S. G. Walker. Time-series modelling, stationarity and Bayesian

nonparametric methods. Technical report, Banco de México, 2011.
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