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Abstract Computer experiments are becoming increas-
ingly important in scientific investigations. In the pres-
ence of uncertainty, analysts employ probabilistic sen-
sitivity methods to identify the key-drivers of change
in the quantities of interest. Simulation complexity,
large dimensionality and long running times may force
analysts to make statistical inference at small sample
sizes. Methods designed to estimate probabilistic sen-
sitivity measures at relatively low computational costs
are attracting increasing interest. We first, propose new
estimators based on a one-sample design and build-
ing on the idea of placing piecewise constant Bayesian
priors on the conditional distributions of the output
given each input, after partitioning the input space. We
then present two alternatives, based on Bayesian non-
parametric density estimation, which bypass the need
for predefined partitions. Quantification of uncertainty
in the estimation process through is possible without re-
quiring additional simulator evaluations via Bootstrap
in the simplest proposal, or from the posterior distri-
bution over the sensitivity measures, when the entire
inferential procedure is Bayesian. The performance of
the proposed methods is compared to that of traditional
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point estimators in a series of numerical experiments
comprising synthetic but challenging simulators, as well
as a realistic application.
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1 Introduction

The use of computer simulations is becoming increas-
ingly important in broad areas of science (Lin et al.
2010; Wong et al. 2017). High-fidelity mathematical
models allow analysts to perform virtual (or in silico)
experiments on complex natural or societal phenom-
ena of interest (see Smith et al. 2009, among others).
However, the level of sophistication of the models is of-
ten too high for analytical solutions to be available and
the input-output mapping remains a black-box to the
analyst. It then becomes important to carefully design
and execute the computer experiment. The design and
analysis of computer experiments (DACE) has entered
the statistical literature with the seminal work of Sacks
et al. (1989) (see also the monographs of Santner et al.
(2003); Kleijnen (2008)). Since then, researchers have
studied the creation of space-filling designs (Pronzato
and Müller 2012; He 2017), the calibration of computer
codes with real data (Tuo and Wu 2015), their emu-
lation (Marrel et al. 2012; Le Gratiet et al. 2014), the
quantification of uncertainty in their output (Oakley
and O’Hagan 2002; Ghanem et al. 2016) and their sen-
sitivity analysis (Oakley and O’Hagan 2004; Borgonovo
et al. 2014). These areas are intertwined. A given design
may allow, for instance, not only an uncertainty quan-
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tification, but also the creation of an emulator and the
analysis of sensitivity.

Probabilistic (or global) sensitivity measures are an
indispensable component of uncertainty quantification,
as they highlight which areas should be given prior-
ity when planning data collection or further modelling
efforts. International agencies such as the U.S. Environ-
mental Protection Agency (U.S. Environmental Protec-
tion Agency 2009) or the European Commission (2009)
have issued guidelines recommending them as the gold
standard for ensuring reliability and transparency when
using the output of a computer code for decision-making
under uncertainty. Over the years, several probabilis-
tic sensitivity measures have been proposed. Alterna-
tive measures possess different properties making them
preferable in alternative contexts and for different pur-
poses. We recall regression-based (Helton and Sallaberry
2009), variance-based (Saltelli and Tarantola 2002; Jiménez
Rugama and Gilquin 2018) and moment-independent
measures (Borgonovo et al. 2014; Borgonovo and Iooss
2017), all of which offer alternative ways to quantify the
degree of statistical dependence between the simulator
inputs and the output. A transversal issue in realis-
tic applications is that analytical expressions of these
measures are unavailable and analysts must resort to
estimation.

Recent works (e.g. Strong et al. 2012; Plischke et al.
2013; Borgonovo et al. 2016) evidence the one-sample
(or given-data) approach as an attractive design for es-
timating global sensitivity measures from a single prob-
abilistic sensitivity analysis sample, but leave some re-
search questions open. One-sample estimation proce-
dures are closely related to scatter-plot smoothing, where
partitioning of the covariate space plays a central role
(Hastie and Tibshirani 1990). Strong and Oakley (2013,
Fig. 1, p. 759) show that the choice of partition size
affects estimation, especially when the sample size is
small. Some heuristics for determining a partition se-
lection strategy which is optimal in some sense have
been proposed, but finding a universally valid heuris-
tic seems out of reach (see Appendix A.2 for numerical
experiments illustrating this issue). Moreover, because
most one-sample estimators are consistent (in the fre-
quentist sense), an accurate estimation of the error is
often overlooked. However, especially at small sample
sizes, it is essential for transparency that uncertainty in
the estimates is part of result communication (see Le
Gratiet et al. (2014); Janon et al. (2014b); Le Gratiet
et al. (2014) among others).

This work proposes to enrich the one-sample de-
sign through the use of Bayesian non-parametric (BNP)
methods, aiming to reduce and even eliminate the parti-
tion selection problem, while making uncertainty in the

estimates a natural ingredient. We proceed as follows.
We first study a direct extension of currently employed
one-sample estimators using non-parametric models to
augment the output sample within each partition set.
The non-parametric models allow one to adequately
generate additional synthetic data according to two al-
ternative schemes. The intuition supporting these de-
signs can be interpreted as setting a prior on the con-
ditional distribution of the output, given that the in-
put realization falls within a given set of the parti-
tion. We build estimators based on this intuition for
variance-based, density (pdf)-based and cumulative dis-
tribution function (cdf)-based global sensitivity mea-
sures. Although not fully Bayesian, this approach pro-
vides a way to quantify estimation uncertainty. We
compare the results with given-data estimators cur-
rently in use at low sample sizes, through numerical
experiments. The results show that, while the proposed
estimators recover the correct ordinal ranking of the in-
puts, the estimates are strongly influenced by the parti-
tion choice, leading to biased estimates, if the partition
is not optimal. However, as we show in Appendix A.2,
there is no universal rule to determine such optimal par-
tition. Therefore, we investigate two additional classes
of estimators based on Bayesian non-parametric joint
and conditional density estimation methods. These es-
timators eliminate the partition selection problem and,
at the same time, enable error quantification. We il-
lustrate the use of these methods for the estimation
of some variance-based, density-based and distribution-
based sensitivity measures. Numerical experiments are
carried out first for a 21-input simulator with correlated
normal inputs and for a 2-input non-normal example
with independent inputs. An application to the global
sensitivity analysis of the benchmark computer code
known as LevelE (Saltelli and Tarantola 2002), follows.
Results show that the estimators correctly identify the
most important inputs, with respect to each sensitivity
measure considered. Additionally, the analyst obtains
a quantification of the uncertainty in the estimates in
the form of a posterior distribution, which can be used
to assess the reliability of the ranking of inputs given
the available input-output sample.

The remainder of the paper is organized as follows.
Section 2 introduces the framework of global sensitivity
analysis and the one-sample estimation approach. Sec-
tion 3 combines non-parametric methods and the one-
sample approach to create two new partition-dependent
estimators. Section 4 derives two classes of Bayesian
partition-free estimators by adopting a non-parametric
density estimation approach. Section 5 presents numer-
ical results for the LevelE code. Section 6 offers dis-
cussion and conclusions. The appendices illustrate the
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algorithms of the proposed estimators and discuss ad-
ditional implementation details.

2 Probabilistic sensitivity measures and their
one-sample estimation

Formally, the sensitivity analysis framework considers
a multivariate mapping g : X → Y where X ⊆ Rk

and Y ⊆ Rd. In the DACE set-up, g represents the
set of operations performed by a computer code on
a vector of inputs x to produce a vector of outputs
y = g(x) of interest. If the response of the simulator
is stochastic, an error term appears in the model re-
sponse (y = g(x) + ϵ(x) and the output space is possi-
bly affected). For simplicity, we focus on deterministic
univariate responses, with d = 1. When information is
not sufficient to fix the values of the inputs, it is com-
mon to “assume to have information about the factors’
probability distribution ”(Saltelli and Tarantola 2002,
p. 704). The input and output probability spaces are de-
noted (X ,B(X ),PX), and (Y,B(Y),PY ), respectively,
where B denotes the Borel sigma-algebra and PY is the
probability measure induced by X through g.

It has been recently shown that several probabilistic
sensitivity measures can be expressed as expectations
of measures of discrepancy between PY and PY |Xi . In
particular, this work focuses on probabilistic sensitivity
measures of the form:

ξi := E[ζ(PY ,PY |Xi)], (1)

where the expectation is calculated with respect to the
marginal distribution of Xi and ζ is a pre-metric on the
set of probability measures over Y. The quantity ξi is
called the probabilistic sensitivity measure of Xi with
inner operator ζ (Borgonovo et al. 2014).

Table 1 reports three probabilistic sensitivity mea-
sures encompassed by this construction, namely, the
variance-based sensitivity measure ηi (Iman and Hora
1990; Sobol’ 1993), the density-based importance mea-
sure δi and the cdf-based importance measure βi (Pear-
son 1905; Oakley and O’Hagan 2004; Borgonovo 2007;
Baucells and Borgonovo 2013). Over the years, variance-
based sensitivity measures have become the reference
measures for global sensitivity analysis. A reason for
this is that, when the simulator inputs are indepen-
dent, the variance of the model output can be orthogo-
nally decomposed into additive components which con-
tain information about the expected percentage of out-
put variance reduction associated with a given model
input or model input group. Thus, ηi represents the
expected fractional reduction in the simulator output

variance attained by fixing input Xi. Originally intro-
duced by Pearson (1905) with the name of correlation
ratio, under independence, ηi coincides with the Sobol’
first order sensitivity index (Homma and Saltelli 1996).
Under dependence, the notion of expected variance re-
duction and Sobol’ indices become distinct (see Mara
and Tarantola 2012; Chastaing et al. 2012; Li and Rab-
itz 2012, for further details). In several applications,
global sensitivity measures are used to quantify the
degree of statistical dependence between Y on Xi. In
this respect, the nullity-implies-independence property
of Rényi’s’s postulate D for measures of statistical de-
pendence (Rényi 1959) becomes relevant. In fact, it is
reassuring for the analyst that a zero value of a sen-
sitivity measures implies that Y is independent of Xi.
A class of sensitivity measures that satisfy such pos-
tulate are distribution-based (or moment-independent)
measures (see e.g. Gamboa et al. 2018; Da Veiga 2015;
Rahman 2016). As representatives, we select the sen-
sitivity measures δi and βi (Table 1), which quantify
the expected separation between PY and PY |Xi through
the L1-norm between densities and the Kolmogorov-
Smirnov distance between cumulative distribution func-
tions, respectively. We select these sensitivity measures
because their estimation is generally considered a chal-
lenging task (for further details see e.g. Borgonovo et al.
2014).

A brute force strategy for the estimation of the sen-
sitivity measures in the form of Eq. (1) requires a num-
ber of model evaluations equal to C = kn2, where n
denotes the sample size required for a Monte Carlo un-
certainty quantification. This becomes rapidly infeasi-
ble when either the simulator dimension or the sample
size increase. However, notable advances in the liter-
ature have contributed in abating the computational
burden of estimating sensitivity measures. For instance,
pick-and-freeze designs produce first and total order
sensitivity indices at a cost proportional to n(k + 1)

model runs (Saltelli 2002). Designs based on replicates
(e.g. Mara and Joseph 2008; Tissot and Prieur 2015)
further diminish this cost. Specifically, the design of
Tissot and Prieur (2015) lowers the cost to 2n model
evaluations for the calculation of first order variance-
based sensitivity indices. The works of Röhlig et al.
(2009); Strong et al. (2012); Plischke et al. (2013) and
Borgonovo et al. (2016) show that sensitivity measures
in the form of Eq. (1) can be estimated from a single
Monte Carlo sample, {(xj , yj) : j = 1, . . . n}, thus low-
ering the computational cost to C = n simulator runs.
These approaches receive the common name of one-
sample or given-data estimation methods. Once such a
sample is available, an alternative two-stage estimation
strategy is possible involving the use of emulators. In



4 I. Antoniano-Villalobos, E. Borgonovo, X. Lu

Table 1 Some probabilistic sensitivity measures

Measure ζ(PY ,PY |Xi) ξi

ηi (E[Y |Xi]− E[Y ])2/V[Y ] V[E(Y |Xi)]/V[Y ]

δi
1

2

∫
Y |fY |Xi(y|Xi)− fY (y)|dy 1

2
E
[∫

Y |fY |Xi(y|Xi)− fY (y)|dy
]

βi supy∈Y
∣∣FY |Xi(y|Xi)− FY (y)

∣∣ E
[
supy∈Y

∣∣FY |Xi(y|Xi)− FY (y)
∣∣]

this case, the fitting of the emulator is performed at
a first step. Because the emulator is fast to execute,
at a second step sensitivity measures can then be es-
timated with a potentially unlimited number of simu-
lated observations with emulated output. Several types
of emulators have been developed, based on smooth-
ing methods (Da Veiga et al. 2009; Storlie and Helton
2008), polynomial chaos expansion (Blatman and Su-
dret 2010), Gaussian process regression or kriging (Oak-
ley and O’Hagan 2004; Marrell et al. 2009; Le Gratiet
et al. 2014) to name a few. We refer to the handbook
chapter of Le Gratiet et al. (2017) and the recent mono-
graph of Santner et al. (2018) for further details.

In this work, we focus on one-sample methods which
do not rely on an emulator. One-sample methods can
be seen as generalizations of the intuition developed by
Pearson (1905) for estimating the correlation ratio. If
Xi has a finite support then an input-output sample of
(sufficiently large) size n contains repeated observations
of Y = g(xi, X−i), for each fixed value Xi = xi, while
the other factors,X−i = (X1, . . . , Xi−1, Xi+1, . . . , Xk),
remain random. This allows the estimation of ζ(PY ,PY |Xi=xi)

directly from the given sample. For a continuous Xi, a
similar result may be achieved by partitioning the sup-
port X i of Xi into M bins {X i

m}Mm=1. The point con-
dition (Xi = xi) is then replaced by the bin condition
(Xi ∈ X i

m). Then, for any sensitivity measure encom-
passed by Eq. (1), a one-sample estimator is given by:

ξ̂i =

M∑
m=1

PXi(X i
m) ζ̂im, (2)

where ζ̂im may be any estimator of ζ(PY ,PY |Xi∈X i
m
).

Note that by using equiprobable partition sets, PXi(X i
m)

reduces to 1/M asymptotically. In practice, this parti-
tion probability is estimated by the sample proportion,
nim/n, where nim denotes the number of realizations for
which the i-th input falls within the m-th partition set
of its support. Borgonovo et al. (2016, Theorem 2) show
that, under mild conditions on the inner operator ζ, a
consistent version of the estimator in Eq. (2) can be
obtained, if the size M of the partition is chosen as a
monotonically increasing function of the sample size n,
such that lim

n→∞
n

M(n) = ∞.

Appendix A.1 details the one-sample estimators of
the sensitivity measures in Table 1 that will be used
for comparison in the remainder. These, as most of
the one-sample estimators found in the literature, are
constructed either as deterministic approximations or
as (frequentist) point estimators. In general, finding
asymptotic distributions of the estimators of global sen-
sitivity measures to quantify estimation uncertainty, is
not straight forward. Variance-based sensitivity mea-
sures, which have have received the most attention in
recent years, are a notable exception. Gamboa et al.
(2016); Janon et al. (2014a) and Tissot and Prieur (2015),
for example, propose pick-and-freeze and replicated Latin
hypercube design-based estimators which are asymp-
totically normal. Error bounds for Sobol’ indices were
also recently derived by Jiménez Rugama and Gilquin
(2018), using pick-and-freeze or replicates, and by Le
Gratiet et al. (2014), building on the work of Oakley
and O’Hagan (2004), which we discuss below. How-
ever, similar results are not available for other sensi-
tivity measures. An alternative solution is the use of
bootstrap (see e.g. Archer et al. (1997); Storlie et al.
(2009) for variance-based, and Plischke et al. (2013)
for moment-independent sensitivity measures, respec-
tively).

A second issue of partition-based one-sample meth-
ods is the sample size bias induced by the partition.
Quantities related to the marginal distribution of Y are
estimated using the full sample size n, but those related
to the within bin distribution of Y |Xi ∈ X i

m are esti-
mated using a smaller sample size nim ≈ n/M . While
a sample size correction is implicit in the estimation of
variances, the same is not true for the pdf and cdf esti-
mates (see Eqs. (17)–(19) in Appendix). In other words,
there is a different granularity when estimating the con-
ditional and the unconditional distributions. In Section
3, we propose two partition-dependent estimators which
mitigate the sample size bias, while providing a natural
way to quantify the estimation error, allowing interval
estimation.

Within the Bayesian paradigm, unknown objects
are treated as random, and assigned a prior proba-
bility measure which reflects the analyst’s uncertainty
about their values. In this context, Oakley and O’Hagan
(2004) treat the input-output mapping g as unknown
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(at least before evaluation). Thus, they define a semi-
parametric regression model with a Gaussian process
prior, which allows posterior inference on variance-based
sensitivity measures for uncorrelated input simulators.
In fact, it is possible to calculate posterior means for the
conditional and unconditional variance of Y and Y |Xi

respectively, either analytically or via numerical inte-
gration. The approach eliminates the need for a parti-
tion of the covariate space, thus solving the second issue
mentioned above. However, the posterior distributions
of the variance-based measures (e.g. ηi) are not avail-
able analytically, and quantification of the estimation
error is not treated. Le Gratiet et al. (2014) extend the
approach and propose a multifidelity co-kriging emula-
tor. The Bayesian estimation of the emulator parame-
ters makes it possible to find interval estimates for first
order sensitivity measures. This has been applied to the
estimation of sensitivity measures based on derivatives
and Shapley values by De Lozzo and Marrel (2016) and
Benoumechiara and Elie-Dit-Cosaque (2018), respec-
tively. Both Le Gratiet et al. (2014) and Oakley and
O’Hagan (2004) define a Gaussian process prior on the
ensemble of possible simulator input-output mappings
g(X). The proposed estimates are based on the output
of the fitted Gaussian emulator, assuming independent
model inputs.

In the following sections, we present alternative schemes
that allow interval estimation for sensitivity measures,
and that are applicable, in principle, to any sensitivity
measure. The proposed estimators do not require the
fitting of an emulator, nor do they rely on an assump-
tion of independence of the simulator inputs. Opposite
to Le Gratiet et al. (2014) and Oakley and O’Hagan
(2004) the prior is not set on the unknown g, but on
appropriately chosen conditional or joint distribution of
the output X and single input Xi. For illustrative pur-
poses, we focus on the estimation of the three sensitivity
measures present in Table 1.

3 Non-parametric partition-dependent
estimation

Our first proposal can be interpreted as a refinement
of the estimators introduced in the previous section
and discussed in Appendix A.1, which rely on a par-
titioning of the input space. In practice, this is tan-
tamount to assuming that the conditional distribution
PY |Xi=xi

can be well approximated, within each par-
tition, i.e. for every xi ∈ X i

m, by a single distribu-
tion Pi

m. Inspired by the Bayesian paradigm, uncer-
tainty about the collection {Pi

m}Mm=1 can be expressed
through a prior (see e.g. Hjort et al. 2010, for an ex-
tensive discussion about flexible priors on families of

distributions, their properties and their use). Notice
that, since PXi is assumed known, the marginal dis-
tribution of Y , PY (y) =

∫
X i PY |Xi=xi(y|xi)dPXi(xi), is

fully determined by PY |Xi , so no additional uncertainty
remains.

For simplicity, we assume that such distributions
are independent and identically distributed (i.i.d.), so
the problem becomes that of finding a prior which as-
signs probability 1 to a large enough set of probability
distributions supported on Y. We focus our attention
on the Dirichlet Process (DP), first introduced by Fer-
guson (1973) and widely studied in the BNP literature
(see e.g. Hjort et al. 2010, Chapter 2, for a discussion on
its properties). We therefore define, for each i = 1, . . . k

the following Bayesian non-parametric model:

Y |(Pi
m, X

i ∈ X i
m) ∼ Pi

m; Pi
m

iid∼ DP(αG), (3)

where DP(αG) denotes a Dirichlet process with base
measure G and concentration parameter α. The Dirich-
let process could be replaced by a more general stick-
breaking process, achieving greater flexibility at a sim-
ilar computational cost (see e.g. Ishwaran and James
2001; Pitman and Yor 1997; Lijoi et al. 2007). In this
case, the algorithms and proposed estimators would
maintain a similar structure so we focus on the Dirichlet
process, without loss of generality, in order to use a no-
tation more familiar to a wider audience. With regards
to the hypothesis of independence between the Pi

m, it
could be removed through the application of recent de-
velopments in BNP methods (see Wood et al. (2011);
Teh et al. (2006); Teh and Jordan (2010); Camerlenghi
et al. (2017) and Camerlenghi et al. (2019)). This, how-
ever, would lead to a complication of the estimation
algorithms which goes beyond the scope of this paper.

The posterior for this model, given the simulator
input-output realizations,Data = {(x1, y1), . . . , (xn, yn)},
can be written as follows:

Y |(Xi ∈ X i
m,Pi

m) ∼ Pi
m;

Pi
m|Data ind∼ DP

(
(α+ nim)G̃i

m

)
, (4)

where

G̃i
m = E[Pi

m|Data]

=
α

α+ nim
G+

nim
α+ nim

∑
y∈yi

m

1

nim
δDirac(y). (5)

The sensitivity measures we aim to estimate are
functionals of the conditional and marginal distribu-
tions. Close form expressions for the posterior distri-
butions of such functionals are not available, making a
full Bayesian analysis infeasible. One may alternatively,
consider an estimator of ξi based on the posterior means
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in Eqs. (5) and (24), respectively, taking the form:

ξ̃i =

M∑
m=1

nim
n
ζ(G̃, G̃i

m).

Unfortunately, the direct calculation of ξ̃i is impracti-
cal. Moreover, our purpose is to provide interval esti-
mation, so as to quantify the uncertainty associated to
point estimates. A way out is to sample observations
(i.e., predicted realizations of the output) from G̃ and
G̃i

m, in order to enrich the sample. More specifically, we
have a vector y of n observations from the original sim-
ulator used to estimate PY , but only nim of these belong
to yi

m and are therefore used to estimate Pi
m. Because

nim < n, a sample bias emerges affects the empirical es-
timation of ξi (details in Appendix A.2). By re-sampling
from G̃ and G̃i

m we can enlarge both vectors, making
them of the same size and, potentially, arbitrarily large.
Our proposal here is simply to sample n − nim obser-
vations from G̃i

m, thus obtaining two vectors of size n.
This procedure is known in the literature as the non-
parametric Bayesian bootstrap (Bb) (Hjort 1985, 1991).
In our case, for each m a sample ỹi

m = {ỹini
m+1, . . . , ỹ

i
n}

of size n−nim is obtained from G̃i
m. A value of ξ̂Bb,s

i in
Eq. (2) can be calculated through any of the methods
discussed in Section 2, using y to estimate all quan-
tities related to the marginal distribution of Y and
the extended vector yBb,i,s

m = (yi
m, ỹ

i,s
m ) to estimate

all quantities related to the conditional distribution of
Y |Xi ∈ X i

m. Informally, the weighted average over m
can be seen as approximately simulated from the pos-
terior distribution of ξi. By repeating this procedure S
times, we obtain a Bb sample {ξ̂Bb,s

i : s = 1, 2, ..., S}.
We propose the Monte Carlo average:

ξ̂Bb
i =

1

S

S∑
s=1

ξ̂Bb,s
i ,

as a point estimator of ξi. The empirical quantiles can
provide error bands, to quantify the estimation error.
Note that, because each ỹij is simulated from a single
distribution, G̃i

m, the sampling process can be done in
parallel and the method is computationally fast. How-
ever, the uncertainty is underestimated because the ad-
ditional variability captured by the posterior distribu-
tion of Eq. (4) is ignored.

A more accurate alternative is to sample ỹi
m jointly

from the Dirichlet process posterior distribution (4), in-
stead of sampling each ỹij from the posterior mean. This
can be done via the Pólya Urn scheme (Pu) of Blackwell
and MacQueen (1973). Specifically, ỹi

m is generated as
a realization of the Pólya sequence:

Ỹ i
j+1|

(
ỹini

m+1:j , D
i
)
∼ α

α+ j
G+

j

α+ j
P̂j ∀ j ≥ nim.

(6)

Once again, the extended samples yPu,i,s
m = (yi

m, ỹ
i,s
m )

can be used to obtain a value ξ̂Pu,s
i by any available

method to calculate the expression in Eq. (2). We use
ξ̂Pu
i to denote the Monte Carlo average of a sample of

size S generated in this way. Note that ξ̂Pu
i has the same

expectation as ξ̂Bb
i . However, a greater variability which

accounts for the uncertainty on Pi
m a posteriori, results

in wider credibility intervals. The sampling procedure is
now sequential for s = 1, . . . , S, so the price for greater
accuracy in uncertainty estimation is a slightly higher
computational time. Additional technical details for Bb
and Pu estimators are presented in Appendix A.3.

We illustrate the performance of these estimators
via a toy simulator with correlated inputs for which
the sensitivity measures can be calculated analytically
(see Table 2). This 21-input simulator is given by

Y =
21∑
i=1

aiX
i, (7)

where Xi ∼ Normal(1, 1), with a1 = · · · = a7 = −4,
a8 = · · · = a14 = 2, and a15 = · · · = a21 = 1. The 21

inputs are correlated with ρi,j = 0.5. Therefore, Model
inputs with indices in 1, 2, ..., 7 are the most important,
followed by inputs with indices in 15, 16, ..., 21, followed
by inputs with indices in 8, 9, ..., 14. Table 2 displays the
analytical values of the sensitivity measures.

We then study the results of numerical experiments
carried out to test the performance of the frequentist
estimators and the non-parametric estimators discussed
above. Details regarding hyperparameter choices are
provided in Appendix A.3 and results are reported in
Fig. 1. The graphs in the first, second and third rows
display estimates of ηi, δi and βi, respectively, at sam-
ples of sizes n = {300, 600, 900}. Each graph is divided
into three blocks displaying estimates obtained with al-
ternative choices of M . For instance, for n = 300, we
discuss M = 3, 7, 9, for n = 900M = 4, 10, 29. The dot-
ted lines display the analytical values. For clarity, in-
stead of reporting seven sensitivity measures per group,
we show numerical values for a representative of each
input group, namely X3, X10 and X18.

Fig. 1 shows that estimates tend to be downward
biased at small partition sizes, and upward biased as

Table 2 Analytical values of ηi, δi and βi for the two test
simulators used in this section

21-input 2-input
Measure X1 −X7 X8 −X14 X15 −X21 X1 X2

ηi 0.309 0.064 0.092 0.496 0.496
δi 0.212 0.084 0.102 0.315 0.315
βi 0.205 0.083 0.101 0.289 0.289
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Fig. 1 Results for the correlated 21−input simulator in Eq. (7): Comparison of sensitivity measures estimates using frequentist
pdf/cdf-based estimators and partition-dependent non-parametric estimators. The Bb and Pu estimates are displayed together
with the 95% error bands corresponding to empirical quantiles.

the partition size is increased. Also, the change M is
higher at small sample sizes and at n = 300 we register
the highest sensibility of the estimates to the partition
size. However, the bias is systematic, that is, it affects
all estimates similarly. Consider that in realistic appli-
cations, an analyst might not know the true values of
the sensitivity measures, and the main interest would
be on the ordinal ranking of the inputs. In this respect,
for variance-based sensitivity measures (Fig. 1(a) ) for
all n and M considered, η̂⋆i , η̂⋄i , η̂Bb

i and η̂Pu
i are able

to correctly identify X3 as the most relevant variable.
Regarding δi and βi (Fig. 1(b) and Fig. 1(c), respec-
tively), one identifies X3 as the most important input
in almost all combinations of sample sizes and partition
selections. The ranking becomes unclear for n = 300

and M = 21. However, this choice would leave about
9 realizations per partition, a number too small to be
reasonably chosen by the analyst. For the remaining
group of inputs, the overlapping error bands for the Bb
and Pu estimates would not allow us to deem X10 more
relevant than X18, with either ηi,δi or βi. Thus higher
sample sizes would be needed for neatly ranking the
second and third most important groups of simulator

inputs.
Overall, Fig. 1 suggests that the results display a strong
dependence on the partition size M . While i) as ob-
served in Strong and Oakley (2013) (see their Fig. 1,
at p. 759), the importance of selecting an optimal par-
tition size diminishes as the sample size increases and
ii) a suboptimal partition selection has in most cases
an identical impact on the sensitivity measures (i.e.,
the sensitivity measures of all inputs are simultane-
ously upward or downward biased), the analyst is still
left with the question of what is the optimal partition
size for a given sample. Unfortunately, there seems to
be no universally optimal selection rule (see Appendix
A.2). Clearly, the problem would be solved if partition-
independent estimators were available. In the next sec-
tion, we study two proposals of Bayesian estimators
that avoid the partition choice problem.
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4 Bayesian non-parametric partition-free
estimation

In this section, we propose two classes of Bayesian partition-
free estimators. The first is based on the use of an in-
finite mixture model to estimate the joint density of Y
and Xi. The second, uses a Bayesian non-parametric
regression model to estimate the conditional density of
Y given Xi.

4.1 Joint density-based estimation

The intuition is that all sensitivity measures under con-
sideration can be recovered from the joint distribution
of Y and Xi. Therefore, in order to do Bayesian in-
ference on ξi it suffices to place a prior on the joint
density fXi,Y . We propose to do so by means of a non-
parametric mixture model (see, e.g. Ferguson (1983);
Lo (1984)). In other words, we consider fXi,Y to be
defined as a mixture:

fXi,Y (·, ·)|P =

∫
K(·, ·|θ)dP (θ), (8)

where K is a parametric bivariate density and the mix-
ing measure P is a probability distribution over an ap-
propriate space of parameters. The model is completed
by assigning a non-parametric prior, Π, on P . Most
common choices of Π assign probability one to discrete
distributions of the form

P =

∞∑
ℓ=1

wℓ δ
Dirac
θℓ

, (9)

placing mass wℓ on locations (θℓ). In the literature, par-
ticular attention has been paid to nonparametric priors
admitting a stick-breaking construction (Pitman 1996;
Sethuraman 1994) where the weights w = (w1, w2, ...)

are defined as realization of random variables satisfying

W1 = V1, Wℓ = Vℓ

ℓ−1∏
ℓ′=1

(1− Vℓ′) (10)

and independent of θ = (θ1, θ2, ...)
iid∼ G. Rich fami-

lies of stick-breaking priors can be defined via different
distributional assignments for the sequence (V1, V2, . . .)

(Favaro et al. 2012; Ishwaran and James 2001, see, e.g.,).
The main advantage over other types of construction is
that the stick-breaking representation of the random
weights allows for efficient simulation algorithms, spe-
cially in the context of nonparametric mixture mod-
els (Ishwaran and James 2001; Papaspiliopoulos and
Roberts 2008; Kalli et al. 2011; Yau et al. 2011). How-
ever, the most popular stickbreaking prior remains the

Dirichlet process, well known even outside the special-
ized community of Bayesian nonparametrics. For this
reason, we will focus our analysis on DP mixtures, thus
letting P ∼ Π = DP(αG). Additionally, for simplic-
ity, we choose K to be a bivariate normal density, fol-
lowing the density estimation scheme of Escobar and
West (1995). In this case, θℓ = (µℓ, Σℓ) and, to sim-
plify calculations, we select G as a conjugate Normal
inverse-Wishart distribution. Thus, the integral in Eq.
(8) reduces to a sum and the joint density can be writ-
ten as:

fXi,Y (·, ·)|P =

∞∑
ℓ=1

wℓ · N (·, ·|µℓ, Σℓ), (11)

where the weights follow Eq. (10), with Vi
iid∼ Beta(1, α).

Inference on this model is usually achieved via an
MCMC scheme resulting in a sample from the poste-
rior distribution of fXi,Y given the data (D). In the
case of the DP-mixture, the function DPdensity from
the R package DPpackage provides an off-the-rack solu-
tion. In practice, the MCMC scheme generates, at each
iteration s = 1, . . . , S, values (ws, µs, Σs) which, sub-
stituted in expression (11), produce a density function,
fBNJ,s
Xi,Y . Analytical expressions for the marginal and

conditional densities, fBNJ,s
Y and fBNJ,s

Y |Xi as mixtures
of normal distributions are made easily available by the
choice of the Gaussian kernel. Clearly, it is also possible
to evaluate the corresponding cumulative distribution
functions. Thus, it is possible compute the global sensi-
tivity measures of interest, ηBNJ,s

i , δBNJ,s
i , βBNJ,s

i from
their definitions (Table 1), obtaining a posterior sample
of each. We denote the sample means by η̂BNJ

i , δ̂BNJ
i

and β̂BNJ
i , respectively. Approximate credibility inter-

vals can be obtained from the empirical quantiles of the
samples. The procedure is summarized Appendix A.3,
to which we refer for further details.

It is important to observe that the known marginal
distribution for X does not, in general, coincide with
the marginal distribution forX derived from each fBNJ,s

Xi,Y .
Thus, by using only the joint density fXi,Y to estimate
the sensitivity measures, important information, stan-
dard in global sensitivity analysis is wasted. In fact,
inference for conditional densities based in the joint
model is known to be approximate (see e.g. Müller and
Quintana 2004). In the next section, we present an al-
ternative estimation method which avoids this problem
through a recent Bayesian approach to conditional den-
sity estimation.
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4.2 Conditional density-based estimation

We now propose to use a Bayesian non-parametric re-
gression model to do inference directly on the condi-
tional density of Y |Xi, thus using all of the informa-
tion contained in the data to estimate the relationship
between the variables and exploiting the knowledge of
the marginal distribution of X to obtain the marginal
distribution of Y . The idea is to transform the non-
parametric mixture of Eq. (11) into a mixture of con-
ditional densities:

fY |X(y|x) =
∫

K(y|x, θ)dPx(θ), (12)

This time a non-parametric prior, Π, is placed on the
family, {Px}x∈X of mixing distributions indexed by x.
Analogous to the DP mixture model of the previous sec-
tion, a dependent DP mixture model or DDP mixture
(MacEachern 1999, 2000) is obtained when Px follows
a DP prior, marginally for every x, so that:

Px(θ) =

∞∑
ℓ=1

wℓ(x)δθℓ(x). (13)

The random covariate-dependent weights Wℓ(x) follow
the stick-breaking construction of Eq. (10), for i.i.d.
random processes {Vℓ(x) : x ∈ X}. In other words,
V(x) ∼ DP for every x. It has been proved sufficient
flexibility is achieved through models in which only the
particles θℓ or the weights wℓ depend on the covari-
ate x (Barrientos et al. 2012), the second option being
favoured due to better predictive capabilities. Several
proposals have been studied in the literature, focus-
ing on alternative definitions of the random functional
weights wℓ(x) (e.g. Dunson and Park 2008; Griffin and
Steel 2006; Dunson and Rodriguez 2011).

The stick-breaking structure of the weights, which
imposes a geometric decay, may be bypassed through
an alternative construction allowing further flexibility:

wℓ(x) =
ωℓK(x|ψℓ)∑∞

ℓ′=1 ωℓ′K(x|ψℓ′)
. (14)

The denominator of this expression is, again, an infinite
mixture of parametric kernels, K, this time with sup-
port X . Each ωℓ can be interpreted as the probability
that a realization of Y comes from the ℓ-th regression
component regardless of the value of X, just as ωℓ is the
conditional probability given X = x. Such density re-
gression model, where the weights wℓ in Eq. (14) follow
the stick-breaking representation of Eq. (10) and the
extended parameters (θℓ, ψℓ) are i.i.d. from some ad-
equate base measure, G, was proposed by Antoniano-
Villalobos et al. (2014), to which we refer the reader

for additional details on the role and choice of hyper
parameters, as well as the algorithm used for inference.

We adopt this construction to estimate the condi-
tional density fY |Xi(y|xi) as a mixture of linear regres-
sion models:

fY |Xi(y|xi) =
∞∑
ℓ=1

wℓ(x
i)N (y|aℓ + bℓx

i, σℓ), (15)

where wℓ(xi) is given by Eq. (14), with a DP prior. Once
again, a MCMC approach is used to generate a sample,
this time from the posterior distribution of fY |Xi . Each
fBNC,s
Y |Xi (y|xi), s = 1, . . . , S, together with the known

marginal for Xi can be used to calculate (e.g. by nu-
merical integration) a corresponding marginal for Y .
As discussed in Section 4.1, this is all that is needed
to compute the global sensitivity measures of interest,
ηBNC,s
i , δBNC,s

i and βBNC,s
i . These, again allow point

estimation, e.g. via the Monte Carlo averages, which
we denote by η̂BNC

i , δ̂BNC
i and β̂BNC

i , and interval es-
timation, via empirical quantiles. Section Appendix A.3
summarizes the procedure and offers additional techni-
cal details.

4.3 Simulation study

We examine the performance of the classes of partition-
independent estimators proposed in Sections 4.1 and
4.2, first via the 21-input simulators with correlated in-
puts introduced in Section 3. We use the DPdensity
function from the R package DPpackage to generate an
MCMC posterior sample for BNJ estimators, and the
MATLAB© subroutine provided by Antoniano-Villalobos
et al. (2014) for BNC estimators. For both joint and
conditional density-based estimation, we set a burn-in
period as 10n and the stored MCMC samples size S =

1000. Results are illustrated in Fig. 2(i). The Bayesian
non-parametric joint estimators η̂BNJ

i , δ̂BNJ
i and β̂BNJ

i

correctly recover the true values of the parameters and,
as the sample size increases from n = 300 to n = 600,
the credibility intervals become narrower. At n = 900,
there is no more overlap among the three groups of
sensitivity measures, allowing the analyst to rank the
inputs neatly. Regarding the Bayesian non-parametric
conditional estimates, we observe that X3 is correctly
identified as the most relevant input at all sample sizes.
The values ηBNC

10 , δBNC
10 , βBNC

10 as well ηBNC
18 , δBNC

18 ,
βBNC
18 are overestimated by the BNC estimators at
n = 300. However, the bias is reduced as n increases
and at n = 900 the credibility intervals appear centred
around the analytical values of the sensitivity measures.
We also observe that for both classes of estimates the
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analytical value of the sensitivity measures falls within
the 95% credible intervals.

For this example joint Bayesian estimators seem to
outperform their conditional counterpart. This is to be
expected, because the joint Gaussian structure of the
data is more easily recovered by the joint model in this
case, so the loss due to ignoring the true distribution
of Xi has a lesser effect on the results. However, we
can appreciate a reassuring improvement of the BNC
estimates as the sample size increases. One may argue
that, in a situation in which the true conditional distri-
bution of Y given Xi is unknown and may be complex,
estimation based on the conditional density model may
be preferred, as more robust; the price to pay is that
a larger sample size may be required, specially in high-
dimensional situations. We then challenge these results
for an analytical test case in which the distributions are
not normal.

Let us consider the following 2−input simulator:

Y =
X1

X1 +X2
, (16)

with X1,X2 iid∼ Gamma(3, 1), so that the output Y fol-
lows a Beta distribution.

Assume for the moment that the analyst does not
know the true value of the sensitivity measures. In terms
of ordinal ranking, Fig. 2(ii) suggests that the two sim-
ulator inputs are equally important. The credibility in-
tervals of X1 and X2 obtained with both the BNJ and
BNC estimators are overlapping at the all sample sizes
and for all sensitivity measures, so that the analyst can-
not deem one of them more important than the other.
The performance of the two estimators is similar. How-
ever, note that the credible intervals of the joint model
(BNJ) are wider than those for the conditional model
especially for variance-based sensitivity measures. As
expected, for a non-normal distribution, the joint model
presents from the wrongful introduction of the marginal
distribution for Xi. We analyze this behavior further in
addressing results for the LevelE case study.

5 Case study: LevelE simulator

In this section, we assess the performance of the pro-
posed estimators through the benchmark simulator of
sensitivity analysis, LevelE. The setup is that the an-
alyst is studying an available and given sample from
this simulator. We recall that the LevelE code sim-
ulates the release of radiological dose from a nuclear
waste disposal site to humans over geological eras. The
code has been developed in an international exercise
launched by the Nuclear Energy Agency (NEA) in the

mid 1980’s Nuclear Energy Agency (1989). Goal of the
exercise was the realization of a reference simulator for
the prediction of flow and transport of radionuclides
in actual geologic formations against which to compare
other simulators developed internationally. Since then,
LevelE has become a benchmark simulator of sensitiv-
ity analysis (Saltelli et al. 2000; Saltelli and Tarantola
2002). During the international exercise, distributions
for the uncertain simulator inputs were assessed (Ta-
ble 3), and have become the reference for analysis on
this code. From a technical viewpoint, the LevelE code
solves a set of nested partial differential equations that
compute the released radiological dose in Sievert/year
over a time range of t = 10, 000 to 2 × 109 years. The
detailed equations of the code are reported in Saltelli
and Tarantola (2002).

Previous works have discussed the sensitivity anal-
ysis of this simulator using alternative sampling meth-
ods and sizes. For instance, Saltelli et al. (2000) employ
3, 084 simulator evaluations to obtain point estimates
of the first and total order variance-based sensitivity
indices. Saltelli and Tarantola (2002) employ 10, 000

simulator runs for the point estimation of first-order
variance-based sensitivity indices, a second experiment
with 16, 384 runs for the point of the first and total or-
der sensitivity indices according to the design in Saltelli
(2002) (no uncertainty in the estimates is provided). In
Ratto et al. (2007), stable patterns for the estimation
of variance-based sensitivity measures are obtained at
a cost of about 1, 024, after the input-output dataset
has been used to train an emulator. In Castaings et al.
(2012), design based on substituted columns sampling
and permuted columns sampling are used, with con-
vergence at about 104 runs. Wei et al. (2014) propose
a copula-based estimation methods that reduces the
cost to about 1, 000 runs for point estimates, with 20

replicates for obtaining confidence intervals. Plischke
and Borgonovo (2017) apply a given-data design for
the point estimators η̂⋄i , δ̂⋄i and β̂⋄

i using a sample up
to size n = 5, 000, with estimates becoming stable for
n > 1, 000 runs. Thus, a sample of size n = 1, 000 can
be considered state of art for the identification of the
key-uncertainty drivers of LevelE. We consider that the
analyst has available a sample of size n = 900, and
studies estimates also at a smaller sample size, namely
n = 600. Figures 3 and 4 display the results.

The graphs in Fig. 3 report the Bayesian bootstrap
and Pólya urn estimators, vis-á-vis the point estima-
tors for variance-based (graphs in row a), density-based
(row b) and cdf-based (row c) sensitivity measures. The
results show that already at n = 600 the two most im-
portant simulator inputs are correctly identified. How-
ever, the estimates are sensitive to the partition size.



12 I. Antoniano-Villalobos, E. Borgonovo, X. Lu
(a

)
V

a
ri

a
n

c
e

-b
a

s
e

d
η
1
,.
..
,η

1
2

(b
)

D
e

n
s
it
y
-b

a
s
e

d
δ 1
,.
..
,δ

1
2

(c
)

C
D

F
-b

a
s
e

d
β
1
,.
..
,β

1
2

0
.2

0
.2

5

0
.3

0
.3

5

0
.4

M
 =

 3
M

 =
 7

M
 =

 2
1

N
 =

 3
0

0

η̂
⋆
,
δ̂
⋆

0
.2

0
.2

5

0
.3

0
.3

5

0
.4

M
 =

 3
M

 =
 7

M
 =

 2
1

N
 =

 3
0

0

η̂
⋄
,
δ̂
⋄
,
β̂
⋄

0
.2

0
.2

5

0
.3

0
.3

5

0
.4

M
 =

 3
M

 =
 7

M
 =

 2
1

N
 =

 3
0

0

η̂
B
b
,
δ̂
B
b
,
β̂
B
b

0
.2

0
.2

5

0
.3

0
.3

5

0
.4

M
 =

 3
M

 =
 7

M
 =

 2
1

N
 =

 3
0

0

η̂
P
u
,
δ̂
P
u
,
β̂
P
u

F
ig

.3
R

es
ul

ts
fo

r
th

e
Le

ve
lE

co
de

:C
om

pa
ris

on
of

se
ns

iti
vi

ty
m

ea
su

re
s

es
tim

at
es

us
in

g
fr

eq
ui

nt
ist

pd
f/

cd
f-b

as
ed

es
tim

at
or

s
an

d
Pa

rt
iti

on
-d

ep
en

de
nt

B
ay

es
ia

n
no

n-
pa

ra
m

et
ric

es
tim

at
or

s.
B

ay
es

ia
n

es
tim

at
es

in
cl

ud
e

95
%

cr
ed

ib
ili

ty
in

te
rv

al
s.



Nonparametric Sensitivity Estimation 13

Table 3 Simulator inputs for the LevelE code. U(·, ·) and LU(·, ·) stand for the uniform and log-uniform distributions respectively

Input Meaning Distribution

X1 Containment time U(100,1000)
X2 Iodine Leach rate LU(10−3, 10−2)
X3 Neptunium chain Leach rate LU(10−6, 10−5)
X4 Iodine retention factor (1st layer) LU(10−3, 10−1)
X5 Geosphere water velocity 1st layer U(100,500)
X6 Geosphere Length 1st layer U(1,5)
X7 Factor to compute Neptunium retention coefficients Layer 1 U(3,30)
X8 water velocity in geosphere’s 2nd layer LU(10−2, 10−1)
X9 Length of geosphere’s 2nd layer U(50,200)
X10 Retention factor for I (2nd layer) U(1,5)
X11 Factor to compute Neptunium retention coefficients Layer 2 U(3,30)
X12 Stream flow rate LU(105, 107)

Consider the right-hand side of row (a). The credibil-
ity intervals of the variance-based Pólya urn estimators
with M = 26 are completely overlapping. This signals
that, had the analyst chosen such partition size, the
estimates would not be meaningful. The separation be-
comes, instead, clearer at smaller partition sizes with
M = 9 being possibly the optimal choice. Note that the
estimates tend to be upward biased as the partition size
increases, in agreement with our previous experiments
and also with previous literature findings.

We then come to the joint and conditional partition-
independent Bayesian density estimators (Fig. 4). The
two graphs in row (a) display the estimates and cred-
ibility intervals for variance-based sensitivity measures
(η̂BNJ

i ,η̂BNC
i ), the two graphs in row (b) for density-

based sensitivity measures (δ̂BNJ
i , δ̂BNC

i ) and the two
graphs in row (c) for cdf-based (β̂BNJ

i , β̂BNC
i ) sen-

sitivity measures. Figure 4 shows that the two key-
uncertainty drivers are correctly identified already at
n = 600, by η̂BNC

i , δ̂BNC
i and β̂BNC

i , as the credibility
intervals of the associated sensitivity measures separate
from the credibility intervals of the remaining simulator
inputs. The δ̂BNJ

i and β̂BNJ
i correctly identify the two

most influential simulator inputs. However, η̂BNJ
i fails

to produce meaningful results for variance-based sen-
sitivity measures at either sample sizes. This confirms
the results of Section 4.3. The deviation from normal-
ity strongly affects the ability of BNJ to capture the
conditional density of Y given Xi, since much of the
information contained in the data goes into the estima-
tion of unnecessary components of the density mixture
of the marginal distribution of Xi. This reduces the
estimation precision, leading to the wider confidence
intervals.

Let us consider the perspective of an analyst inter-
preting the results overall. From the available data, the
analyst is able to obtain alternative estimators for rep-
resentatives of three categories of sensitivity measures,

with display of credibility intervals. With the exception
of η̂BNJ

i , the estimators communicate that uncertainty
in the simulator response is mostly driven by two sim-
ulator inputs, with the remaining ones being of lower
significance. Thus, the analyst is allowed to confidently
report the key-uncertainty drivers to the decision-maker
even if the sample size is limited. At the same time,
Fig.s 3 and 4 communicate that the sample is not suffi-
cient to rank the medium and low-important simulator
inputs with confidence. If the decision-maker (modeler)
wished sharper estimates of the sensitivity measures of
these inputs, the analyst would need a larger sample
size.

6 Discussion and Conclusions

This work has presented new alternative approaches
to the estimation of probabilistic sensitivity measures
from a single sample produced for uncertainty quan-
tification. We have studied four classes of estimators.
The first two are akin to frequentist partition-based
methods currently in use. The estimators are compu-
tationally simple to calculate, but they leave the ana-
lyst with the problem of choosing the optimal partition.
We then introduced two classes of Bayesian estimation
procedures based on Bayesian nonparametric density
estimation (BNJ and BNC, for short). Their numeri-
cal implementation requires a combination of numer-
ical integration and MCMC. However, they eliminate
the partition selection problem and provide a way to
quantify the estimation uncertainty. Numerical results
have shown that the BNJ estimator displays a very
good performance when the model input and output
distributions are normal or close to normal, while BNC
estimators are less sensitive to a normality assumption.

The approaches are based on the intuition of using
the available dataset of input-output realizations to ob-
tain a posterior quantification of the uncertainty in the
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Fig. 4 Results for the LevelE code: Comparison of sensitivity measures estimates with 95% credibility intervals using Bayesian
non-parametric partition-free joint/conditional estimators.

estimates of global sensitivity measures. The intervals
around the estimates can be used to obtain guidance
on whether the sample size is sufficient to infer the
simulator input rankings or if additional model runs
are needed. One criterion is, for instance, the separa-
tion between the error bands or credible intervals of
the sensitivity measures for different inputs. If the in-
tervals show a partial or complete overlapping, then the
sample size is not sufficient to confidently rank the in-
puts and a larger sample is needed. Conversely, if some
of the inputs stand out, then further runs would not
change their ranking but would yield sharper intervals.
If the goal of the analysis is to identify the minimum
sample size at which inputs can be confidently ranked,
one can think of a sequential version of the approach,
as a first line of future research following the present
work.

The estimators proposed here augment the palette
of existing estimators, because they do not require a
particular design or additional model runs with respect
to several currently available approaches. Thus, an an-
alyst can use them in conjunction with other estima-

tors available in the literature. In particular, estima-
tors for variance-based sensitivity measures have been
intensively studied in the literature. We expect that
specialized estimation approaches proposed for the case
of independent inputs (e.g Le Gratiet et al. 2014, 2017),
may outperform the ones proposed here. Indeed, such
comparison with two-stage approaches in which an em-
ulator is first fit to the available dataset seems an inter-
esting a second line of future research. However, we em-
phasized that the estimation methods proposed in this
work do not require the independence assumption and
allow the calculation of density- and cdf-based sensi-
tivity measures, whose quantification is usually consid-
ered challenging. While we have focused on estimators
for three well-known global sensitivity measures, the
paradigm presented here can be applied to the estima-
tion of any global sensitivity measure, including, among
others, value of information, and sensitivity measures
based on other discrepancies between densities or cu-
mulative distribution functions.

From a more general perspective, the work shows
that combining recent advances in Bayesian non-parametric
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density estimation with probabilistic sensitivity analy-
sis in DACE may lead to improvements in the estima-
tion of global sensitivity measures. Research in Bayesian
non-parametric density estimation is active in Statistics
and Machine Learning, but the advances in this disci-
pline are not directly known to the DACE community.
This work represents a first systematic bridge between
these two closely related areas of Statistics, and we hope
it could favour further research for transferring find-
ings in Bayesian-non parametric estimation to the field
of computer experiments. At the same time, exposing
Bayesian estimation to the demands coming from prob-
abilistic sensitivity analysis of realistic simulators may
challenge state of the art and stimulate further research
in Bayesian-non parametric estimation.

Acknowledgements We thank the Associate Editor and two
anonymous reviewers for their valuable contributions.

Note The code can be downloaded from: https://github.
com/LuXuefei/Nonparametric-estimation-of-probabilistic-
sensitivity-measures, along with the simulated data to re-
produce results.

A Appendix

A.1 Given Data Estimators for the sensitivity
measures in Table 1

The one-sample estimator of ηi used here relies on a plug-in es-
timator of the inner statistic, based on the output sample mean
and variance, ȳ and s2y respectively, to estimate the marginal
mean and variance of Y . The within cluster sample mean ȳim =
1

ni
m

∑
y∈yi

m
y with yi

m = {yj : xij ∈ X i
m, j = 1, 2, ..., n} is

used to estimate the conditional mean of Y |Xi ∈ X i
m. The

final expression (see e.g. Strong et al. 2012) takes the form of
Eq. (2) with:

η̂⋆i =

M∑
m=1

ni
m

n

(ȳim − ȳ)2

s2y
. (17)

The one-sample estimator for the δ−importance introduced by
Plischke et al. (2013) can be written as:

δ̂⋆i =

M∑
m=1

ni
m

n

∫
Y
|f̂⋆

Y (y)− f̂i
m(y)|dy, (18)

where f̂⋆
Y and f̂i

m denote kernel-smoothed histograms of the
full output vector y = (y1, . . . yn) and the within cluster out-
put vector yi

m, respectively. The authors propose a quadrature
method for the numerical integration required by the L1-norm
in the inner operator, but other solutions could be used, pro-
ducing similar estimators. Because estimates of this type rely
on the approximation or estimation of probability density func-
tions, we refer to them as pdf-based estimators.

Plischke and Borgonovo (2017) observe that the kernel-
smoothing methods commonly involved in the calculation of

pdf-based estimators may induce bias, even at high sample
sizes, for simulators with a sparse output. Therefore, they in-
troduce alternative cdf-based estimators which rely on the prop-
erties of empirical cumulative distribution functions. Scheffé’s
theorem allows one to write the L1-distance between two prob-
ability density functions in terms of the associated probability
functions, as

∫
Y |f1(y) − f2(y)|dy = 2(P1(Y ∈ B) − P2(Y ∈

B)), where B is the set of values for which f1(y) > f2(y). Since
B can be written as a union of intervals (a(t), b(t))Tt=1, these
probabilities can be calculated from the corresponding cumu-
lative distribution functions. Thus, a cdf-based estimator of δi
can be obtained as:

δ̂⋄i =

M∑
m=1

ni
m

n

T i
m∑

t=1

(
F̂ i
m(b̂im(t))− F̂ i

m(âim(t))
)
−
(
F̂Y (b̂im(t))− F̂Y (âim(t))

)
.

(19)

For further details on the estimation of the intervals (âim(t), b̂im(t)),
we refer to Plischke and Borgonovo (2017).

Since βi is itself a cdf-based sensitivity measure, the defi-
nition of a one-sample cdf-based estimator is straightforward:

β̂⋄
i =

M∑
m=1

ni
m

n
max

j∈{1,...,n}

∣∣∣F̂Y (yj)− F̂ i
m(yj)

∣∣∣ , (20)

where F̂Y , and F̂ i
m are the empirical cdf’s of y and yi

m, respec-
tively, i.e.:

F̂Y (y) =
1

n

n∑
j=1

1(−∞,yj ](y);

F̂ i
m(y) =

1

ni
m

∑
yj∈yi

m

1(−∞,yj ](y), (21)

and 1A(y) denotes the indicator function, taking the value 1 if
y ∈ A and 0 otherwise.

Recalling that the expected value of a random variable
Y can be calculated as the integral of its survival function,
E[Y ] =

∫
Y(1− FY (y))dy, a cdf-based one-sample estimator of

the variance-based sensitivity measure, ηi is given by:

η̂♢i =

M∑
m=1

ni
m

n

(∫
Y F̂

i
m(y)− F̂Y (y)dy

)2
σ̂2
Y

. (22)

Notice that, since the empirical distribution functions are piece-
wise constant, the integral in the above expression reduces to
a sum. Plischke and Borgonovo (2017) propose an efficient way
to calculate this integral.

A.2 Numerical experiments for the partition selection
problem

The authors performed several thought experiments on test
cases. The results show the difficulty, maybe impossibility, of
finding a universally valid rule for linking the partition size M
to the sample size n. We report some experiments results.

Assume the analyst wants to find an “optimal ”(in some
sense) partition refining strategy, i.e., a relationship that pro-
duces the partition size M that minimizes the estimation error
at sample size n for the pdf-based point estimators η̂⋆i , δ̂⋆i and

https://github.com/LuXuefei/Nonparametric-estimation-of-probabilistic-sensitivity-measures
https://github.com/LuXuefei/Nonparametric-estimation-of-probabilistic-sensitivity-measures
https://github.com/LuXuefei/Nonparametric-estimation-of-probabilistic-sensitivity-measures
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Fig. 5 RMSE of sensitivity measures estimates for X1 of the 2-input simulator in Eq. (16). Magenta lines correspond to M =
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Fig. 6 RMSE of sensitivity measures estimates for X3 of the 21-input simulator in Eq. (7). Magenta lines correspond to M =
2.5 3
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cdf-based point estimator β̂⋄
i [Eqs. (17), (18) and (20)]. We fo-

cus on one estimator type for simplicity and also because Bor-
gonovo et al. (2016) propose an heuristic inspired by the rule
of histogram partitioning of Freedman-Diaconis (Freedman and
Diaconis 1981), in which M ∼ 3

√
n.

To evaluate the estimators’ performance at fixed values of
M and n, we use the Root Mean Square Error (RMSE):

RMSEi(n) ≈

√√√√∑S
s=1

(
ξ̂is(n)− ξi

)2
S

where S is the number of bootstrap replicates. ξ̂i,l is the l-th
bootstrap replicates of ξi.

We estimate the sensitivity measures with sample sizes vary-
ing from 300 to 900, and partition sizes covering the natural
numbers between 5 and 35. Then we calculate the RMSEs with
S = 100 bootstrap replicates. Figures 5 and 6 present the heat-
plot of RMSEs in percentage (RMSEi/ξi · 100%). The hori-
zontal axis indicates the sample size, and the vertical axis the
partition size. The darker the color of a region in the plot,
the lower the estimation error. For example, in Fig. 5(a), dark
(blue) refers to low RMSE (less than 10 percent), and light (red)
to relative high RMSE (higher than 14 percent). The magenta
line maps n into M using the previously mentioned heuristic
function. Fig. 5 shows that the proposed heuristic works well on
the 2-input simulator (Eq. (16)), with the magenta line falling
mainly into dark coloured regions. However, for the 21-input
simulator (Eq. (7)) we would incur in high errors at small sam-
ple sizes. For instance consider graph a) in Fig. 6. The graph
reports the error in the estimates of δ3 for the second model.
The heuristic would propose values of M at about 20 for all
values of n as optimal partition sizes. However, the partition
size that minimizes the error is at about M = 10 or lower. The
different behavior here could also be related to the differences
in structure and dimensionality of the models. However, even
for the same model, the heatplots differ significantly across the

sensitivity measures. For the first simulator (Eq. (16)), the ideal
partition size for the variance-based estimator is between 10 to
15 (Fig. 5 (b)), while for mutual information, if falls between
20 to 25 (Fig. 5 (c)).
These results show that aiming at postulating a universally
valid heuristic might be a cumbersome task.

A.3 Details on the non-parametric estimators

We present further details regarding the implementation of the
Bayesian non-parametric estimation methods in Sections 3 and
4. Inference on the three selected sensitivity measures ηi, βi and
δi is performed independently for each i = 1, . . . , k. Therefore,
in order to simplify the notation, we will leave out the index i
throughout this appendix, considering its value fixed. Through-
out this section, all the integrals are approximated numerically
using trapezoidal rule, and all the supremes are approximated
by the maximum on a predetermined grid over Y.

Partition-dependent Bu and Pu estimation. Note that
model 3 is coherent, in the sense that it induces a unique prior
over the unconditional distribution of Y , whenever the parti-
tions are equiprobable, that is when P(Xi ∈ X i

m) = 1
M

for all
i = 1, 2, ..., k and m = 1, 2, ...,M . In fact,

PY (·|Pi
1:M ) =

M∑
m=1

Pi
m(·)P(Xi ∈ X i

m) =
1

M

M∑
m=1

Pi
m(·).

Then, by marginalizing, we obtain

PY (·|αG) =
1

M

M∑
m=1

∫
Pi
m(·)dDP(Pi

m|αG) =

∫
P(·)dDP(P|αG),

because
∫
Pi
m(·)dDP(Pi

m|αG) does not depend on i or m. In
other words, a priori, PY ∼ DP(αG), so that the prior for
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the marginal simulator distribution is also a Dirichlet process.
This statement alone, however, provides no information on the
probabilistic dependence of Y onXi. Thus, it is not meaningful,
by itself, for a sensitivity analysis.

The posterior of the marginal for Y can be obtained as:

PY (·|αG,Di) =
1

M

M∑
m=1

∫
Pi
m(·)dDP(Pi

m|(α+ ni
m)G̃i

m),

(23)

which may depend both on i and m. However, the marginal
coherence of the model still holds, at least asymptotically. In-
formally, for an equiprobable partition, P(Xi ∈ X i

m) = 1/M ,
ni
m ≃ n/M when the sample size n is sufficiently large, so
α/(α+ni

m) ≃Mα/(Mα+n) and ni
m/(α+n

i
m) ≃ n/(Mα+n).

Furthermore,
∑

m(1/ni
m)δDirac

y ≃
∑

m(M/n)δDirac
y . Thus,

asymptotically, PY (·|αG,Di) does not depend on m or i and
PY (·|αG,Di) ∼ DP((α+ n)G̃), where

G̃ =
α

α+ n
G+

n

α+ n
P̂n, (24)

and P̂n denotes the empirical distribution of Y based on the
full set of observations, (y1, . . . , yn). Note that this is the usual
posterior corresponding to the DP prior on PY .

For the numerical experiments in Sections 3 and 4.3, the
input data, x, are obtained by transforming a 21-dimensional
standard Gaussian sample generated via a Halton Quasi ran-
dom sequence via the Cholesky decomposition of the covariance
matrix. Specifically, MATLAB© functions haltonset and chol
are used. The mass parameter, α, for the DP prior is set equal to
0.1n/M throughout. The base measure, G, is a Normal distri-
bution with hyper-parameters fixed via an empirical approach,
based on the available sample y. yi

m. Overall, these choices
centre the prior distribution for Y |Xi ∈ X i

m roughly around
the marginal distribution of Y , thus favouring, a priori, inde-
pendence between the Y and Xi, with a precision proportional
to the number of observations in each partition set. In prac-
tical applications, prior information elicited from experts may
be expressed through different choices of α and G. Algorithm 1
details the inferential procedure. Note that the calculations of
ηC,s, δC,s and βC,s are equivalent to the pdf-based estimators
in Eqs. (17), (18), (20) but with the enriched samples. Alterna-
tively, the cdf-based estimators in Eqs. (22) and (19) could be
used for ηC,s and δC,s.

Algorithm 1: Partition-dependent Bb and Pu
estimation

Input: C ∈ {Bb, Pu}, {(xj , yj)}nj=1, α,prior
distribution G, number of partition sets M ,
bootstrap size S

Output: η̂C , δ̂C , β̂C , ηC,s, δC,s, βC,s, s = 1, .., S
1 Obtain the partition {Xm}Mm=1 of X according to the

sample proportion and corresponding {ym}.
2 for s ∈ {1, . . . , S} do
3 for m ∈ {1, . . . ,M} do
4 if C = Bb then
5 Generate n− nm new points ỹs

m from the
posterior mean distribution in Eq. (5).

6 if C = Pu then
7 Generate n− nm new points ỹs

m through
Pólya urn scheme in Eq. (6).

8 Obtain the extended vector yC,s
m = (ym, ỹs

m).
9 Calculate

ηC,s =

M∑
m=1

nm

N

(
ȳC,s
m − ȳ

)2
s2y

,

where ȳC,s
m is the sample mean of yC,s

m ; ȳ and s2y
are the sample mean and variance of y.

10 Calculate

δC,s =

M∑
m=1

nm

N

∫
Y
|f̂⋆

Y (y)− f̂C,s
m (y)|dy,

βC,s =

M∑
m=1

nm

N
sup

y∈yC,s
m

∣∣∣F̂Y (y)− F̂C,s
m (y)

∣∣∣ ,
where f̂⋆

Y and f̂C,s
m are kernel smoothing

functions of y and yC,s
m , respectively; F̂Y , and

F̂C,s
m are the empirical cdf’s of y and yC,s

m ,
respectively.

11 Calculate the partition-depended estimator of η, δ and
β using

η̂C =
1

S

S∑
s=1

ηC,s, δ̂C =
1

S

S∑
s=1

δC,s, β̂C =
1

S

S∑
s=1

βC,s.
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Partition-free BNJ estimation. Following the proposal in
Jara et al. (2011), we choose G to be a Normal-Inverse Wishart
distribution

(µℓ, Σℓ)|(m1, γ, ψ1)
iid∼ N (µℓ|m1,

1

γ
Σ)IW (Σℓ|4, ψ1), ℓ = 1, 2, . . .

where N (·|m,A) denotes a bivariate normal distribution with
mean m and covariance matrix A, and IW (·|4, ψ) denotes an
Inverse-Wishart distribution with mean ψ−1. A hyper-prior is
assigned to the parameters of the base measure, with hyperpa-
rameters determined empirically:

γ ∼ Gamma (·|0.5, 0.5) , m1|(m2, s2) ∼ N (·|m2, s2),

ψ1|(s2) ∼ IW (·|4, s−1
2 ),

where Gamma(·|a1, a2) denotes the Gamma distribution with
mean a1/a2. Inference is achieved through the function DPdensity
from the DPpackage in R. The output is a MCMC posterior sam-
ple θs = (ws, µs, Σs), s = 1, . . . , S. In practice, the number
Js of components with non-zero weights is finite, thus we have

ws = (ws
1, . . . , w

s
Js
),

µs = (µs
1, . . . , µ

s
Js
), Σs = (Σs

1 , . . . , Σ
s
Js
),

with µs
ℓ =

[
µs
1,ℓ

µs
2,ℓ

]
, Σs

ℓ =

[
σs
1,ℓ σ

s
3,ℓ

σs
3,ℓ σ

s
2,ℓ

]
. (25)

Given the posterior realizations, the corresponding joint
density can be obtained:

fBNJ,s
X,Y (x, y|θs) =

Js∑
ℓ=1

ws
ℓ · N (x, y|µs

ℓ , Σ
s
ℓ ). (26)

By the properties of the bivariate Normal distribution, the
marginal and conditional distributions, fBNJ,s

Y and fBNJ,s
Y |Xi

recpectively, are also mixtures of Normal distributions:

fBNJ,s
Y (y|θs) =

Js∑
ℓ=1

ws
ℓ · N (y|µs

2,ℓ, σ
s
2,ℓ),

fBNJ,s
Y |x (y|x, θs) =

Js∑
ℓ=1

ws
ℓ · N

(
·|νs2,ℓ, τs2,ℓ

)
(27)

where νs2,ℓ = µs
2,ℓ + σs

3,ℓ(x − µs
1,ℓ)/σ

s
1,ℓ and τs2,ℓ = σs

2,ℓ −
(σs

3,ℓ)
2/σs

1,ℓ. Clearly, the corresponding cdfs, FBNJ,s
Y and FBNJ,s

Y |X ,
as well as the marginal mean and variance can be calculated
trivially. In particular,

µs
Y := E[Y |θs] =

Js∑
ℓ=1

ws
ℓµ

s
2,ℓ,

V s
Y := V[Y |θs] =

Js∑
ℓ=1

ws
ℓ

(
σs
2,ℓ +

(
µs
Y − µs

2,ℓ

)2)
. (28)

For the numerical experiments in Sections 3 and 4.3, the
mass parameter is fixed to α = 1, and the remaining hyperpa-
rameters are set to m2 = (µX , ȳ) and s2 = diag(σ2

X , s
2
y). The

Pseudo-code of BNJ estimation for η, δ and β is illustrated in
Algorithm 2.

Algorithm 2: Partition-free joint density-
based estimation

Input: {(xj , yj)}nj=1, the input distribution fX ,
MCMC posterior sample size S

Output: η̂BNJ , δ̂BNJ , β̂BNJ , ηBNJ,s, δBNJ,s, βBNJ,s,
s = 1, .., S

1 Generate an MCMC posterior sample
θs = (ws, µs, Σs), s = 1, . . . , S of DP mixture in Eq.
(11) through the function DPdensity from the R
package DPpackage, where the number Js of
components with non-zero weights is finite, and

ws = (ws
1, . . . , w

s
Js
),

µs = (µs
1, . . . , µ

s
Js
), Σs = (Σs

1 , . . . , Σ
s
Js
),

with µs
ℓ =

[
µs
1,ℓ

µs
2,ℓ

]
, Σs

ℓ =

[
σs
1,ℓ σ

s
3,ℓ

σs
3,ℓ σ

s
2,ℓ

]
.

2 Calculate posterior densities fBNJ,s
X,Y ,the

corresponding marginal and conditional distributions
fBNJ,s
Y , fBNJ,s

Y |X using the following equations:

fBNJ,s
X,Y (x, y|θs) =

Js∑
ℓ=1

ws
ℓ · N (x, y|µs

ℓ , Σ
s
ℓ ),

fBNJ,s
Y (y|θs) =

Js∑
ℓ=1

ws
ℓ · N (y|µs

2,ℓ, σ
s
2,ℓ),

fBNJ,s
Y |x (y|x, θs) =

Js∑
ℓ=1

ws
ℓ · N

(
·|νs2,ℓ, τs2,ℓ

)
.

The corresponding marginal and conditional cdfs
FBNJ,s
Y and FBNJ,s

Y |X can be obtained trivially.
3 The MCMC samples of η, δ and β can be obtained as

follows:

ηBNJ,s ≈
V s

V s
Y

;

δBNJ,s ≈
1

2

∫
X

∫
Y

∣∣∣fBNJ,s
X,Y − fX · fBNJ,s

Y

∣∣∣ dydx;

βBNJ,s ≈
∫
X

sup
Y

∣∣∣FBNJ,s
Y − FBNJ,s

Y |X

∣∣∣ fXdx, s = 1 . . . S

where

V s =

∫
X

(
Js∑
ℓ=1

ws
ℓ

σs
3,ℓ

σs
1,ℓ

(
x− µs

1,ℓ

))2

fXdx,

V s
Y =

Js∑
ℓ=1

ws
ℓ

(
σs
2,ℓ +

(
µs
Y − µs

2,ℓ

)2)
.

4 Point estimates of η, δ and β are obtained as MC
averages:

η̂BNJ =
1

S

S∑
s=1

ηBNJ,s, δ̂BNJ =
1

S

S∑
s=1

δBNJ,s,

β̂BNJ =
1

S

S∑
s=1

βBNJ,s.
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Partition-free BNC estimation. Following the proposal of
Antoniano-Villalobos et al. (2014), we fix α = 1 and choose
K(x|ψℓ) to be a Normal kernel, with ψℓ = (µℓ, τ). The base
measure G is given by:

(bℓ, σℓ, µℓ)
iid∼

N
(
bℓ | b0, σℓC

−1
)

Gamma(σ−1
ℓ | 1, 1)N

(
µℓ | µ0, (τ/10)

−1
)
,

where bℓ = (aℓ, bℓ) and τ ∼ Gamma(· | 1, 1).The hyperparam-
eters are chosen empirically. As an illustration, consider the 21-
input simulator. Fig. 7 shows the scatter-plot of (x3,y) and the
corresponding convex hull, i.e. the smallest convex set contain-
ing all points. In this case, we fix b0 = (−1.5,−5.5) and C−1 =
diag(432, 112), in order to allow each local linear component to
lie between the blue and red lines in the figure, which represent
the main behaviour of the data. We use the MATLAB© subrou-
tine provided by Antoniano-Villalobos et al. (2014) to generate
an MCMC posterior sample (θs, ψs) = (as, bs, σs, ωs, µs, τs),
s = 1 . . . S, where
as = (as1, . . . , a

s
Js
), bs = (bs1, . . . , b

s
Js
), σs = (σs

1, . . . , σ
s
Js
),

ωs = (ωs
1, . . . , ω

s
Js
), µs = (µs

1, . . . , µ
s
Js
). (29)

Given the a posterior realization (θs, ψs)), a conditional density
can be obtained from Eqs. (14) and (15):

fBNC,s
Y |X (y|x, θs, ψs) =

Js∑
ℓ=1

ws
ℓ (x)N (y|asℓ + bsℓx, σ

s
ℓ ) . (30)

The corresponding marginal pdf fBNC,s
Y of Y is obtained by

integrating with respect to the true fX :

fBNC,s
Y (y|θs) ≈

∫
X
fBNC,s
Y |X fXdx. (31)

Clearly, the corresponding marginal and conditional cdfs, FBNC,s
Y |X

and FBNC,s
Y , respectively can be obtained trivially. In partic-

ular, posterior realizations of the marginal mean and variance
of Y are given by

µs
Y := E[Y |θs, ψs] ≈

∫
Y
yfBNC,s

Y dy,

V s
Y := V[Y |θs, ψs] ≈

∫
Y
(y − µs

Y )2 fBNC,s
Y dy

The Pseudo-code of BNC estimation for η, δ and β is illus-
trated in Algorithm 3.
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Fig. 7 Scatter plot of Y and X3 for the 21-input simulator.
Red lines constitute the convex hull of {(x31, y1), . . . , (x3n, yn)}.
The bold blue and red lines are used for prior specification.

Algorithm 3: Partition-free conditional
density-based estimation

Input: {(xj , yj)}nj=1, the input distribution fX ,
MCMC posterior sample size S

Output: η̂BNC , δ̂BNC , β̂BNC , ηBNC,s, δBNC,s, βBNC,s,
s = 1, .., S

1 Generate an MCMC posterior sample
(θs, ψs) = (as, bs, σs, ωs, µs, τs), s = 1 . . . S using
the MATLAB© subroutine provided by
Antoniano-Villalobos et al. (2014), where

as = (as1, . . . , a
s
Js
), bs = (bs1, . . . , b

s
Js
), σs = (σs

1, . . . , σ
s
Js
),

ωs = (ωs
1, . . . , ω

s
Js
), µs = (µs

1, . . . , µ
s
Js
).

2 Calculate the conditional densities fBNC,s
Y |X , the

corresponding marginal pdfs fBNC,s
Y using the

following equations:

fBNC,s
Y |X (y|x, θs, ψs) =

Js∑
ℓ=1

ws
ℓ (x)N (y|asℓ + bsℓx, σ

s
ℓ ) ,

fBNC,s
Y (y|θs) ≈

∫
X
fBNC,s
Y |X fXdx.

The corresponding conditional cdfs FBNC,s
Y |X and

FBNC,s
Y can be obtained trivially.

3 The MCMC samples of the sensitivity measures of
interest can be obtained as follows:

ηBNC,s ≈
V s

V s
Y

;

δBNC,s ≈
1

2

∫
X

∫
Y

∣∣∣; fBNC,s
Y − fBNC,s

Y |X

∣∣∣ dyfXdx;

βBNC,s ≈
∫
X

sup
Y

∣∣∣FBNC,s
Y − FBNC,s

Y |X

∣∣∣ fXdx, s = 1 . . . S

where

µs
Y (x) := E[Y |x, θs, ψs] =

Js∑
ℓ=1

ωs
ℓ (x) (aℓ + bℓx) ,

µ̃s
Y := E[µs

Y (X)] ≈
∫
X
µs
Y (x)fXdx,

V s = V[µs
Y (X)] ≈

∫
X

(µs
Y (x)− µ̃s

Y )2 fXdx.

4 The point estimators of interest are obtained as MC
averages:

η̂BNC =
1

S

S∑
s=1

ηBNC,s, δ̂BNC =
1

S

S∑
s=1

δBNC,s,

β̂BNC =
1

S

S∑
s=1

βBNC,s.
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