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Abstract

Several algorithms have been proposed in the last few years for mining different
mobility patterns from trajectories, such as flocks, chasing, meeting, and conver-
gence. An interesting behavior that has not been much explored in trajectory
pattern mining is avoidance. In this paper we define the avoidance behavior
between moving object trajectories, providing a set of theoretical definitions to
precisely describe various kinds of avoidance, and propose an effective algorithm
for detecting avoidances. The proposed method is quantitatively evaluated on
a real-world dataset, and correctly detects with high precision the quasi totality
of the trajectory pairs that exhibit avoidance behaviors (F-measure up to 95%).
The final authenticated version is available online at
http://dx.doi.org/10.1016/j.datak.2015.12.003

1. Introduction

Current advances in mobile technology such as GPS and smartphones have
increased the interest in mobility data analysis in several application domains
such as security, smart cities, transportation systems, urban planning, and bi-
ological studies. As a consequence, several algorithms have been proposed for
discovering various types of behaviors in trajectory data such as T-patterns [1],
flocks [2, 3], meet [4], periodic movements [5, 6], anomalous traffic patterns [7]
and chasing [8]. In [9] a taxonomy with different types of trajectory behaviors
is proposed, while a summary of the most well known trajectory behaviors (also
called patterns) is presented in [10].
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Figure 1 Different kinds of avoidance behaviors: avoidance with respect to a static object (a),
and avoidance between moving objects: individual (b), mutual (c), and individual induced
by a change in speed (d).

In this paper we focus on avoidance detection for trajectories, whose goal is
to detect situations in which a moving object avoids a static object (area), as
shown in Figure 1(a), or a moving object, as shown in Figure 1(b, ¢, and d).
Avoidance detection can be interesting for discovering suspicious behaviors such
as objects avoiding static objects, like surveillance cameras, police patrols, or
speed controllers, or moving entities like criminals or terrorists that avoid po-
licemen. In marine surveillance, ships with illicit products or illegal immigrants
may avoid Coast Guard boats. In computer games, pinpointing avoidance be-
haviors can be useful to detect, for instance, the avoided enemies, while in soccer
games it may be useful to analyze players avoiding markers. In zoological stud-
ies, avoidance detection may reveal how preys avoid predators (e.g., at which
distance, by changing direction or changing speed).

The problem of avoidance detection has not received much attention in the
literature. In [11] the authors introduce notions of attraction and avoidance
degree between trajectories. Roughly, the attraction degree between two trajec-
tories is higher when the corresponding objects meet (get close) more frequently
than they would by moving randomly along the same points. Avoidance degree
is defined as the dual relation. This approach thus takes a global view on
the trajectories, highlighting the frequent behaviors and hiding the occasional
episodes. For example, consider a boat that generally passes close to a Coast
Guard boat and changes just once its route for a specific part of its trip to avoid
the encounter. The approach in [11] would reveal a relevant degree of attraction
between the trajectories of the boat and the Coast Guard due to their most
frequent behavior, despite the occasional avoidance of the Coast Guard, which
is essentially ignored.

The technique we propose in this paper, instead, is aimed at detecting all spe-
cific instances of avoidance between trajectories, including occasional episodes
as those described above. A first treatment of this problem in [12] is limited to
the simpler case of avoidance of static objects. Here we aim at treating avoid-
ance in the general case in which both objects are moving. The discovery of
this type of avoidance is clearly challenging. Some natural new questions that



arise are: what are the main features that characterize an avoidance between
two trajectories? Who is avoiding who? At what distance two objects initiate
an avoidance?

As a first step we introduce a notion of avoidance behavior. An avoidance
between two trajectories occurs when both objects are moving towards the same
area at the same time, but either one or both change their behavior when they
come close enough to be aware of each other. Avoidance is thus characterized
in terms of a change of behavior which prevents the two objects to meet, i.e.,
a discordance between a forecast of the movement of the two objects and their
actual behavior. Figure 1 shows three examples of avoidance behavior of inter-
est: Figure 1(b) illustrates an example of trajectory avoidance where T} avoids
trajectory Ty by changing its direction. In Figure 1(c) both T} and T, avoid
each other by changing their direction whereas in Figure 1(d), although the tra-
jectories have a spatial intersection relationship, T» avoids 77 by slowing down
the speed in order to not spatio-temporally intersect 77 .

We also introduce a classification of avoidance based on the evidence of
changes in the behavior of the trajectories. Avoidance is called mutual when
both trajectories alter significantly their movement in order to cause a missed
meet, as shown in Figure 1(c). On the other hand, we classify an avoidance
as individual when only one trajectory presents a relevant change while the
other one behaves as expected. Figures 1(b) and (d) provide examples of this
kind of avoidance. Finally, in some cases an avoidance is determined by minor
changes in the movements of one or both trajectories: this is referred as a weak
avoidance.

In order to detect avoidances we propose an algorithm that returns, for each
pair of trajectories, all the occurrences of avoidance labeled by the corresponding
type. The algorithm requires some parameters, like the spatial threshold for
considering two trajectories in a meet relationship and the temporal look-ahead
used for forecasting the future behavior of trajectories, and is able to process
real-world trajectories collected at different sampling rates. The algorithm is
also used to define two different kinds of detectors: the single detector consists
of a single run of the algorithm with fixed input parameters, while the fused
detector considers multiple runs of the algorithm with different parameters,
lastly fusing the results in a unique output to improve the quality of results.

The proposed methods are evaluated under different points of view. First,
we quantitatively test the effectiveness of the methods by analyzing the ability
to correctly detect expected avoidance behaviors. To this end we use an ad-hoc
annotated dataset, our ground truth, created for the purposes of this work. Sec-
ond, we assess the ability of the algorithm to highlight interesting and previously
unknown patterns emerging from avoidance behaviors when using datasets for
which no prior knowledge related to avoidance behaviors is available.

In summary, we make the following contributions in this paper: (i) we pro-
pose a framework which defines the avoidance between pairs of trajectories con-
sidering changes of behavior and a criteria to classify any avoidance as weak,
mutual or individual; (i) we present an algorithm which is able to automatically
detect every avoidance between two trajectories; (iii) we define a detector for



analyzing the avoidance with different sets of parameters; finally, (iv) we show
the effectiveness of our methods when considering real-world datasets.

The rest of the paper is organized as follows: Section 2 presents the related
work. Section 3 introduces some basic definitions. Section 4 illustrates the new
definitions for avoidance detection while Section 5 proposes an algorithm to
detect avoidance behaviors. Section 6 describes experiments on real-world tra-
jectories, while Section 7 concludes the paper and suggests directions of future
research.

2. Related Work

The goal of avoidance detection is to determine those situations in which
objects avoid spatial regions or other moving objects. To the best of our knowl-
edge, there are basically two works on this topic. The first [12] concentrates
on moving objects that avoid static objects, and does not treat avoidances be-
tween trajectories of moving objects. The latter [11] introduces the notions of
attraction and avoidance relationship between trajectories, but this work has
different focus and objectives with respect to our approach. The goal of the
approach in [11], called APPROXCOUNT, is to check whether there is a statisti-
cal evidence that an object A is avoiding/attracting an object B. To this aim
the authors define attraction and avoidance significance values by performing a
permutation test over the known trajectory observations. They evaluate the ez-
pected number of meeting events of trajectory A with a random traversal of the
points belonging to trajectory B. Actual meeting frequency then is compared
to expected meeting frequency to compute an attraction/avoidance score in the
range [0, 1].

We note that this method focuses on the global behavior of a pair of trajecto-
ries, without identifying where avoidance episodes actually occur. On the other
hand, our work aims to determine each single occurrence of avoidance behavior
between moving objects. This difference of objectives has also consequences at
technical level. In [11] the authors only consider the object observations and
how close they are, without considering whether objects change their predicted
trajectories to avoid meeting other objects. Additionally, they suppose that tra-
jectory data are manipulated, so that tracking times of all the trajectories are
synchronized and each trajectory has the same number of points. Despite such
differences, we perform some experiments to compare the avoidance detection
capabilities between APPROXCOUNT and our approach; results are reported in
Section 6.2.

A topic which has some relations with avoidance detection is collision avoid-
ance, whose goal is to determine the actions needed to avoid collision between
objects. Collision avoidance deals with models, systems, and practices designed
to prevent vehicles such as cars, ships, and airplanes from colliding with other
vehicles. Consequently, the focus is on detecting a future collision and changing
(or suggesting a change of) the current route for one or more of the involved ve-
hicles to avoid a collision. All these operations must be carried on in real-time.



There is a vast literature on collision avoidance for various kinds of vehicles,
such as cars [13, 14, 15, 16], ships [17, 18], and aircrafts [19, 20, 21].

In [13] the proposal is to minimize the safety distance error and to regulate
the relative speed between two cars, so to avoid rear-end collision, using hier-
archical longitudinal control. In [14] the authors propose a real-time method
for computing a car trajectory towards a safe final state, as soon as an endan-
gering obstacle is detected by a sensor (e.g. radar or lidar). Two scenarios are
considered: a car which is overtaking another (slower) car in the same lane and
an overtaking car which faces another car coming from the opposite direction.
The solution is obtained from a simplified car model based on two control vari-
ables (steering velocity and braking force), state variables (speed, yaw angle,
yaw angle rate, the center of gravity and direction) and a state dynamics de-
fined by a system of differential equations. In [15] experimental results for an
active control intersection collision avoidance system are presented. The system
is implemented on modified Lexus test vehicles and it utilizes vehicle-to-vehicle
dedicated short-range communications to share safety critical state informa-
tion. Safety is achieved in potential collision scenarios by controlling the speeds
of both vehicles with automatic brake and throttle commands. Another ap-
proach for car collision avoidance considers pedestrians [16], where the use of
stereo cameras on board of vehicles supports the detection of pedestrians with
the aim of avoiding them. In the domain of ships, [17] proposes a fuzzy-neural
inference network that learns a set of examples from a set of rules defined by
the International Regulations for Preventing Collisions at Sea. Based on the
learned examples, the method suggests direction changes of the ship to avoid
a possible collision. The main input data are the ships’ direction and speed,
the distance between them, and the type of water area (sea, coast, limit water).
The model only considers cases where an encounter situation is already detected.
The output is the set of actions to avoid the collision. In the aircraft domain,
[20] considers a set of aircrafts where each one has a known destination and the
related trajectory is represented as a straight line going from its current location
to the destination or to the next waypoint. The speed of the aircrafts is known
and constant, and it is assumed that aircrafts fly in layers. The contribution of
the paper is a linear model to modify aircraft routes in order to avoid a collision
when two or more aircrafts become sufficiently close to each other. The model
considers real dynamics constraints to be more realistic.

Another domain in which collision avoidance is well studied is robotics. In
this domain, when a robot is planning its route (its possible trajectory) it should
consider known obstacles and avoid them. Some representative works are [22,
23, 24, 25]. For instance, in [24] a dynamical system-based approach is used
to deviate the robot from the obstacles. In [25] a behavior-based multi-robot
collision avoidance system is proposed to efficiently coordinate the simultaneous
navigation of large robot teams.

It is worth noticing that collision avoidance and avoidance detection are
remarkably different. Indeed, while in collision avoidance the main aim is to
change the route of a moving object considering some of its physical properties
(e.g. mass, center of gravity, steering angle), in avoidance detection the goal is



to detect situations in which objects alter their movements in presence of other
objects.

3. Preliminaries

Moving objects are entities having a time variant position, uniquely deter-
mined at each time instant. A trajectory is a continuous part of the movement
of an object [26]. For the sake of simplicity, in the following we will restrict to
the 2D Euclidean space, but note that the generalization to higher dimensional
spaces is straightforward. For the reader’s convenience, the main symbols used
throughout the paper are reported in Table A.3, Appendix A.

Definition 3.1 (Movement and trajectory). The movement of an object o
is a continuous function M, : R>o — R% from the real positive numbers,
representing time instants, to 2D space. Given an object o and a time interval
[tBegin,tEnd], a trajectory T is the restriction of the movement M, of the object
to the given time interval. The spatio-temporal position of the object at tBegin
(resp. tEnd) is called the Begin (resp. End) of the trajectory.

Commonly, in mobility applications, the continuous movement of an object is
not completely known. In fact, trajectories are often given by means of a finite
set of time-stamped positions, called trajectory points or samples.

Definition 3.2 (Trajectory point). A trajectory point, or trajectory sample,
of a trajectory T is a tuple (x,y,t), where T(t) = (x,y) is the object position at
time t (called the timestamp of the trajectory point).

The set of known positions of a moving object during the definition interval
of a trajectory is named trajectory track, or trajectory sampling.

Definition 3.3 (Trajectory track). Given a temporally ordered sequence
(t1,...,tn) of timestamps, the track of a trajectory T for the given times-
tamps is the temporally ordered sequence of trajectory points (p1,...,pn), where
pi = (%3, Y5, 1) and (w4, y;) = T(t;).

In many situations an (approximate) reconstruction of each trajectory from
its track is needed. To accomplish this task, different interpolation functions
can be used which describe, in an analytic and continuous way, the movement
of the object between pairs of consecutive trajectory points.

4. Avoidance

An avoidance between two moving objects occurs when both are moving
towards the same area at the same time, but either one or both change their
behavior when they come close enough to be aware of each other. In the follow-
ing, with a slight abuse of terms, we will indistinctly use the terms trajectory
and object when referring to the avoidance.
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Figure 2 A meets B (the distance in t’ is less than &) during [t1,¢2] but not during [t2,t3].

In order to define the avoidance concept, we first introduce the predicates
meet and will-meet. The first one expresses the fact that in a certain interval
two trajectories become sufficiently close to be considered in contact, whereas
the second one states that the forecast of these trajectories, determined by some
technique on the basis of some observed behavior, will lead to a contact.

Definition 4.1 (Meet). Given two trajectories T, and Ty, a time interval
[t1,t2] and a distance threshold &, we define the predicate meets as

meet5(Ta, Ty, [tl, tQ]) =dte [tl, tQ]. diSt(Ta(t), Tb(t)) <9
where dist(pa, py) is the Fuclidean distance of the points p, and py.

When the predicate is satisfied we also say that T, meets T}, during [¢;, t2] with
threshold . In case the threshold ¢ is evident from the context it will be omitted
in the predicate notation, writing meet instead of meets.

Figure 2 illustrates a pair of trajectories, A and B, during the time interval
[t1,t3]. The predicate meet is true for [t1,ts], since at time ¢’ the distance of
the two trajectories is less than 6. Note that for the interval [to,t3], even if the
two trajectories have a spatial intersection X the meet predicate is false since
the distance between the two moving objects at any instant ¢ € [to, t3] is always
greater than 6. In fact, A and B cross X at different time instants.

Having a way of predicting the movement of the trajectories on the basis
of what happened in the past, we can establish if two trajectories will meet
each other or not. We next introduce an abstract notion of movement predictor
clarifying which are the expected properties.

Definition 4.2 (Movement predictor). Given the temporal domain R>q and
a movement domain M = {M | M : R>q — R?}, consisting of all possible move-
ment functions, a movement predictor is a functional forecast : M x (R>o X
R>q) = M such that for all M, M’ € M

M |j0,01)= M’ lo,sy) = forecast(M, [t1,t2]) = forecast(M’, [t1,t2])

The functional forecast maps a movement function M to its forecast movement
into the interval [t1, t2] by exploiting only the behavior of M in the past interval
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Figure 3 Different kinds of predictors based on several interpolations and on movement con-
straints (road network).

[0,%1]. Tt can be defined in different ways depending on the contexts. Commonly,
it is based on the assumption that the behavior does not change with respect to
the recent past of the trajectory. For instance, in case of objects that move freely
in space, we can use the Taylor series in order to estimate the next positions
of the trajectory, and the more terms of these series we compute, the more
precise we obtain the approximation, e.g., the first term preserves the direction,
the second one the curvature. On the other hand, if the object movement is
constrained by a network, we can exploit the network to predict where the object
is going.

Figure 3 shows several different forecast functionals for the interval [tq, t].
The solid line represents the actual trajectory. The dashed, green line models a
linear prediction, preserving the direction at time ¢1; the dash-dot, red line shows
a forecast based on a higher order Taylor series, preserving several derivatives of
the trajectory; and the dotted, blue line in the right figure illustrates a prediction
based on the knowledge of the road network.

The linear predictor is based on the assumption that objects move, in general,
with constant speed and direction. Thus a turn is considered as a deviation from
the expected movement. In Figure 3 on the left, for example, according to the
prediction based on movement at time ¢; the object is expected to continue along
the dashed straight line and to be at some position at time ¢5. The predictor
based on higher order Taylor series assumes that the object moves smoothly, by
preserving the rate of turn (second order), the rate at which the rate of turn
changes (third order) or higher invariants. Those are captured by Taylor series
based on the derivatives (up to second, third, or higher order) of the trajectory
function at time ¢;. In this case the forecast might be not straight. In Figure 3,
on the left, the dash-dot red line shows a prediction based on the fact that the
object is involved in a sequence of curves. Thus the object acts unexpectedly
only when it stops curving. Finally, the road based predictor assumes that the
object follows a road network at constant speed, maintaining its direction at
crossings (staying on the current road) or taking the highest flow road when it
is not possible to continue in the current direction (dotted, blue line in Figure 3
on the right).

In the following examples, and in the experimental section, we will use a
linear movement predictor and we will employ the same notation as in Figure 3:
solid lines for actual trajectories and dashed lines for the linear forecast. We re-



will-meet(4,B,[t, , t, ] ) = True

Figure 4 According to the forecasts, A will meet B (the distance will be less than ) at some
time ¢’ in the time interval [t1, t2].

mark, however, that any predictor could be used without any significant change
to the proposal.

Definition 4.3 (Will-meet). Given two trajectories T, and Ty, a time in-
terval [t1,t2], a movement predictor forecast and a threshold §, we define the
predicate will-meets as

Will—meet5 (Ta, Tb, [tl, tg]) =
meets (forecast(Ty, [t1, t2]),forecast(Ty, [t1, ta]), [t1, t2])

When the predicate is satisfied we also say that T, is expected to meet T}, during
[t1,t2] with threshold §. In case the threshold 4 is evident from the context it will
be omitted in the predicate notation, writing will-meet instead of will-meets.

Figure 4 illustrates an example where the predicate will-meet holds: A and B
are supposed to meet at time ¢’, provided that they maintain the same speed and
direction they had at time ¢; (as already mentioned we use a linear movement
predictor).

With these definitions we define an avoidance between trajectories as an
event that happens in a time interval where the prediction is a meet between
two trajectories but this meet does not occur.

Definition 4.4 (Avoid). Given two trajectories T, and Ty, a time interval
[t1,t2], and a threshold &, we define the predicate avoids as

avoid(;(Ta, Ty, [tl, tg]) = Will—meetg(Ta, Ty, [tl, tg]) A ﬁmeetg(Ta, Ty, [tl, tg])

When the predicate is satisfied we say that T, and T}, avoid to meet, with
threshold ¢, during [¢1,t2]. In case the threshold § is evident from the context
it will be omitted in the predicate notation, writing avoid instead of avoids.

The duration of the time interval [tq,t5] is a measure of the future awareness
of the moving objects (e.g., a person or an animal), that is the amount of time
they are able to reliably forecast all of the involved trajectories to avoid collisions
or encounters.

It is worth mentioning that the avoidance cases shown in Figure 1(b, ¢, and
d), in which the avoidance is due to changes of speed and/or direction, are
covered by Definition 4.4.

Figure 5 shows two different cases of avoidance in which trajectory B exactly
fulfills the prediction (dashed green), whereas trajectory A behaves differently



will-meet(4,B,[t, , t, ] ) = True will-meet(A,B,[t, , t, ] ) = True
meet(4,B,[t,, t, ] ) = False meet(A4,B,[t , t, ] ) = False
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Figure 5 A avoids B during the time interval [t1, t2]: meet is expected according to the forecast
computed at time ¢; but no actual meet happened during the given time interval.

with respect to the forecast (dashed green): on the left, A changes direction
after time ¢1, and on the right it reduces its speed. As a result, the forecasts
of the two trajectories (A and B) are expected to meet at time t' € [t1, 1], but
the two trajectories do not actually meet since their distance is always larger
than § (omitted for simplicity in Figure 5) during [¢1,t2]. Thus, in both cases
the avoid predicate is true.

4.1. Avoidance Classification

The concept of avoidance is related to a change of behavior of one or both
the involved objects such that a predicted meet does not occur. Thus, it is
important to understand if the avoidance is caused by one of the objects, as
in Figure 1(b) and Figure 1(d), or by both as in Figure 1(c). To this end, we
need to formalize the concept of change of behavior in a way that covers any
alteration of the expected movement with respect to the forecast.

We define a new predicate, change-behavior, to better characterize different
kinds of avoidance. Informally, we regard the behavior of an object as changed
during a time interval when there is a difference between the actual trajectory
and its forecast that is sufficient to cause missed meets without any change in
the other trajectory. Intuitively such a difference should have at least the same
magnitude as the meet threshold §.

Definition 4.5 (Change-behavior). Given a trajectory T, a time interval
[t1,t2], and a meet distance threshold 6, we define the predicate change-behaviors

change-behaviors (T, [t1,t2]) = 3t € [t1,t2], dist(forecast(T, [t1,t2])(t), T(t)) > ¢

where forecast(T, [t1,t2])(t) and T'(t) are respectively the forecast and the actual
position for trajectory T at time t.

When the predicate is satisfied we say that T' changes its behavior, with thresh-
old §, during [t1,t2]. In case the threshold § is evident from the context it
will be omitted in the predicate notation, writing change-behavior instead of
change-behaviors.

10
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Figure 6 Trajectory A changes behavior: at some time ¢’ during [t1,t2] the distance of the
actual position from the forecast position is greater than §.

Figure 6 focuses on trajectory A of Figure 5, showing how it changes its
behavior. On the left it changes direction whereas on the right it reduces the
speed with respect to the forecast (green dashed line). In both cases the distance
at ¢’ between the forecast and the actual trajectory is greater than 0, hence the
predicate change-behavior holds.

Based on the above definition, we distinguish among weak, individual and
mutual avoidance.

Definition 4.6 (Avoidance classification). Given two trajectories T, and Ty,
and a time interval [t1,te] such that avoids(T,, Ty, [t1,1t2]) is true, we classify
that avoidance in the following way:

mutual if change-behaviors(T,, [t1,t2]) A
change-behaviorg(Tp, [t1, t2])
type_avoids(Ty, Ty, [t1,t2]) = § weak if —change-behaviory(T,, [t1,t2]) A
—change-behaviors (T, [t1, ta])
individual otherwise

In other words, we have a mutual avoidance when there is an evident change
of behavior for both trajectories, an individual avoidance when only one tra-
jectory significantly changes its behavior, and a weak avoidance when there is
an avoidance despite the fact that the behavior changes are minimal for both
trajectories.

Thus, in Figure 1(b) there is an individual avoidance since T2 exactly follows
the forecast, whereas T1 changes direction. In Figure 1(c), instead both T1
and T2 change direction, determining a mutual avoidance. Figure 7 shows,
with several temporal and spatial details, two examples of mutual and weak
avoidance, whereas avoidances in Figure 5 are both individual. We recall that
trajectories are represented in solid black, forecasts in dashed green, and their
specific positions at a given time are circled, respectively in solid gray and dashed
green. In Figure 7 (left), A changes its behavior by reducing its speed and this
is detected since there exists a time t’ € [t1,t2] such that the distance of the

11
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Figure 7 On the left, both A and B change behavior to avoid each other (mutual avoidance).
On the right, according to the forecast A and B should meet but this does not happen even
if both did not significantly change behavior (weak avoidance).

forecast position from the actual position is greater than §. The same happens
for B that changes its direction. Since both trajectories changed behavior during
interval [t1,t2], this is a mutual avoidance. In Figure 7 (right) at any time
in [t1,t2] for both trajectories the distance of the forecast position from the
actual position is less than ¢ (the height of the gray rectangle). Nevertheless,
trajectories were expected to meet but did not actually meet (their distance is
larger than ) and thus the avoid predicate is true. Since the change-behavior
predicate is false for both trajectories, this is a weak avoidance.

4.2. Problem Statement

In this paper we address two problems of increasing complexity regarding
the detection of avoidance behaviors between moving object trajectories: the
avoidance decision problem (i.e., decide whether a pair of trajectories in a given
temporal interval satisfies the predicate avoid) and the avoidance search problem
(for every possible pair of trajectories find those time intervals such that the
predicate avoid is true).

We define both problems on trajectory tracks since real trajectory datasets
usually consist of sets of samplings. To obtain the continuous representation of
a trajectory we use an interpolation function, namely interp, and we denote as
interp(T) the application of interp to the trajectory track 7.

We check avoidances in intervals starting at the samples of a trajectory and
the duration of the interval is based on a look-ahead time At, which can be in-
terpreted as a measure of the future awareness of moving objects. Consequently,
At must be chosen according to their characteristics. For instance, pedestrians
have a consistently smaller look-ahead time than big ships (e.g., cargos), since in
the latter case, due to the tonnage and the size of the objects, changes of head-
ing or speed are necessarily much slower. Also the choice of the meet threshold
0 is related to the characteristics of the moving objects. It varies for different
types of moving objects and for different conditions, as remarked in [11] too.

The first problem we address is the decision problem.

12



Definition 4.7 (Avoidance decision problem). Given two trajectory tracks
Ta,To, the set of their timestamps TS = {timestamp(p) | p € To Vp € Tv}, a
time instant t, such that t € T'S, a look-ahead interval At, and a meet threshold
0, the avoidance decision problem consists in determining whether

avoids (interp(T,), interp(Ty), [t, t + At]) holds.

The second problem we address is a search problem: for each pair of trajectories
we look for all the timestamps belonging to one of the two trajectory tracks
such that the predicate avoid holds and we determine the associated type of
avoidance. As a first step we formulate this problem for a pair of trajectories
in order to find the set of timestamps and the relative avoidance type where
an avoidance between such trajectories is detected. Then the notion will be
generalized to a set of trajectories.

Definition 4.8 (Avoidances set). Given two trajectory tracks T,, Ty, the set
of their timestamps TS = {timestamp(p) | p € Ta Vp € To}, a look-ahead time
At and a meet threshold &, we define

avoidancess(Tq, Ty) = {(t, type) |t € TS A
avoids(interp(Te), interp(Ty), [t, € + At]) A
type _avoids(interp(T,), interp(Ty), [t, t + At]) = type}

In words, a pair (¢, type) € avoidancess when t is a timestamp in one of the
trajectory tracks and the predicate avoid holds for the two trajectories in the
interval [t, ¢ + At]. type is the kind of the detected avoidance.

Definition 4.9 (Avoidance search problem). Given a set of trajectory
tracks D, a look-ahead time At, and a meet threshold §, the avoidance search
problem consists in finding the set of tuples

{(Tas To, (t,type)) | Ta € D ATy € D A (t, type) € avoidancess(Ta, To)}

each consisting of a pair of trajectory tracks Ta, Ty, a time instant t and o type
type such that T, and T, avoid to meet, with threshold &, after t for At time
and the kind of avoidance is specified by type.

In order to get a more compact representation of the result set, we next
replace the set of timestamps for a couple of trajectories (avoidances(Ty,Ty))
with a disjoint set of intervals. The idea is to join two avoidances if the intervals
where they are detected overlap. To this aim, we introduce the notion of repeated
avotdance in an interval.

Definition 4.10 (Repeated avoidance). Given two trajectory tracks To, T,
the set of their timestamps TS = {timestamp(p) | p € Ta Vp € Tp}, a
look-ahead time At, and ti,to € TS we say that the interval [t1,t2] con-
tains a repeated avoidance, written repeated avoids(Ta, Tp, [t1, t2], type), when
for any t € [t1,to] there exists t' € TS such that t € [t',t' + At] and
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(t', ) € avoidancess(Ta, Tp). Moreover, type = sup{type’ | t' € [t1,ta] N
TS AN (t',type') € avoidancess(Tq, Ty)} where

weak if Ve e X x = weak
sup(X) = { mutual if 3z € X x = mutual

ndividual  otherwise

Hence, the compression of the set of avoidances consists of a set of mawi-
mal intervals satisfying the repeated_avoid predicate. The type of a repeated
avoidance is the upper bound of the types of the avoidances occurring in the
associated maximal interval.

Definition 4.11 (Compression of the set of avoidances). Given two tra-
jectory tracks T,, Ty, the set of their timestamps T'S = {timestamp(p) | p € TV
p € To}, a look-ahead time At, the compression of the set avoidancess(Tq, Tp)
1s defined as follows:

compressed_ avoids(Tq, To) = {([t1, t2], type) | t1,t2 € TS A
repeated__avoids(Ta, Ty, [t1,t2], type) A
[t1,t2] mazimal}

5. Algorithmic Framework

In this section we first present an algorithm for solving the avoidance search
problem (Section 5.1) and then make some considerations on the choice of the
right parameters to detect avoidances. As a consequence, we propose two dif-
ferent strategies for using our algorithm: the simple detector and the fused
detector. The simple detector consists of a single execution of the algorithm
with a fixed set of parameters. The fused detector consists of multiple exe-
cutions of the algorithm with various parameter sets; result sets produced by
individual executions are finally merged into a single result set. Both detectors
are formalized in Section 5.2.

5.1. An Algorithm for Avoidance Detection

In order to solve the problems posed in Section 4.2 we propose Algorithm 1
which, given a finite set of trajectory tracks D, a meet threshold § and a look-
ahead time At, returns a set of avoidance behaviors A, consisting of tuples
specifying a pair of trajectories, a compressed interval in which the avoidance
is detected between such trajectories and the relative type of avoidance.

The algorithm starts by considering every possible pair of trajectory tracks
in D and, for each pair, it determines the first and last useful sample timestamps
of each track with respect to the look-ahead time At, (functions getTimeFrame,
lines 4-5). More precisely, if t5:¢7 and t¢"? denote, respectively, the timestamps
of the very first and last samples of a trajectory track 7,,, then the timestamps of
the first and last useful samples with respect to At are determined as getTime-
Frame(Tp, At) = (min{t | p € T, A p= (z,y,t) A t >t + At} maz{t |
pETm N p=(z,y,t) A t<tend — At}).

m
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Algorithm 1: AVOIDANCE BEHAVIOR DETECTION

N =

10
11
12

13
14
15

16
17

18
19

20

Input: Finite set of trajectory tracks D, meet threshold ¢, look-ahead time
At.
Output: Set of avoidance behaviors A.

begin
A=10
foreach 7., 7, € D with m < n do

(tm, tszSt) = getTimeFrame(Tm, At)
(tn, til‘”t) = getTimeFrame(Tn, At)
while (tm <t Atn < 17 do

t =min(tm,tn)

if (avoids(interp(Tm), interp(Ty), [t,t + At])) then
type = type _avoids(interp(Tm), interp(Ta), [t, t + At])
([t1, t2], typelast) = get Last Result(A, T, Tn)
if (t2 + At < t) then
L appendResult(A, Tm, Tn, [, t], type)
else
removeLast Result(A, Tr, Tn)
appendResult(A, Tm, Tn, [t1,t], sup{typelast, type})

if (t =t,,) then
L tm = nextSampleTime(Tm,tm)

if (t=t,) then
L tn, = nextSampleTime(Tn, trn)

return A

Algorithm 2: THE FUNCTION type _avoid

N =

NN

Input: Trajectories T, Ty, time interval [t1,t2], meet threshold § such that
avoids (T, Tn, [t1, t2]) is true.
Output: Type of the avoidance.

begin
type = weak

if (change-behaviors(Tp, [t1,t2]) A change-behaviors(Ty, [t1,t2])) then
L type = mutual

else if (change-behaviors(Tm, [t1,t2]) V change-behaviors(Ty, [t1,t2]))
then
L type = individual

return type
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Once the first and last useful samples of both trajectory tracks are deter-
mined (if any), the algorithm starts scanning the trajectories from the first
useful samples (line 6). The sample with the smaller timestamp, ¢, is cho-
sen (line 7) and the algorithm verifies if there is an avoidance in the interval
[t,t + At] (line 8). In case the avoid predicate is true, the type of the avoidance
(Definition 4.6) is determined using Algorithm 2 (line 9).

Avoidance classification (Algorithm 2) first determines whether the avoid-
ance is mutual (line 3) or individual (line 5) by testing the change-behavior
predicate. It could happen that there is not enough evidence to further specify
the avoidance, hence it remains labeled as a weak avoidance.

Once the avoidance has been detected and classified, the algorithm (Algo-
rithm 1) checks the previous avoidance, identified by [t1,t2] with type typelast,
for the two trajectory tracks under investigation 7,, 7, (line 10). It verifies
whether the interval [t1,t2 + At] and the interval [t,t + At] are disjoint. In this
case the algorithm adds the new avoidance [t,t] with type (line 12). Otherwise,
it merges the two avoidances, by removing the subsumed one from the result set
and inserting the interval [t1,t] associated with the least upper bound between
typelast and type (lines 13-15). The definition of sup is given in Definition 4.10.

After having processed a sample, the function nextSample Time returns the
timestamp of the next sample(s) in the trajectory track(s) (lines 16-19).

The algorithm, for each pair of trajectories, linearly scans the union of their
samples. Given N trajectories having, on average, M samples, the outer foreach
loop (line 3) is executed N x (N — 1)/2 times since each trajectory has to be
compared with the others. The inner while loop (line 6) is executed at most
2 % M times, since we scan each point of the trajectories only once. This leads
to an overall complexity of O(N? x M). We remark that the algorithm is just
intended to show that the detection of avoidance patterns is feasible and, when
considering real-world datasets, is able to provide meaningful results. Clearly,
the algorithm can be improved in many aspects; in particular, a sensible gain
in efficiency would derive from the introduction of a preprocessing phase able
to filter out unnecessary information prior to the avoidance behavior detection
phase, hence reducing the overall amount of data to be analyzed. Additionally,
the algorithm can be trivially parallelized with respect to the set of trajectory
pairs under investigation, since each pair can be processed independently, thus
entailing linear speedups with respect to the number of cores used. A thorough
discussion of these improvements is out of the scope of this paper and is deferred
to future work.

5.2. Awoidance Detectors

In this section we present two different ways of using the algorithm proposed
in the previous section for avoidance detection: single detector and fused detec-
tor. Single detector represents a single run of the algorithm using a fixed pair
of (At,d) values.

Given a pair of trajectory tracks (7,,7p), a meet threshold ¢ and a look-ahead
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time At, the single detector returns the (possibly empty) set:

RSN = {Li}imt,m = {4, te}imt,om (1)
where % and ¢! (with t{ < t!) denote the starting and ending timestamps of
the i—th avoidance, I; = [t%,t'] denotes a temporal interval during which an

avoidance occurs, while the set {I;};=1, .., consists of disjoint intervals, i.e.,
Vi, j, ;N I; = 0.

Depending on the set of parameter values, an avoidance can be detected or
missed. To minimize this problem, we propose a fusion detector that will detect
the avoidance with different sets of parameters, and fuse the results in a unique
output. We call this the fused detector.

Given a fixed look-ahead time At, and a monotonically increasing sequence
of meet thresholds (d1,...,0), where 61 < ...d; < ... < dp, we can fuse the
result sets obtained for each §;, still obtaining a disjoint set of temporal intervals.
Specifically,

RS{™M = W RSZ, (2)

j=1,...,h

where the result set RS Xstl""’é" ) is obtained by fusing the interval sets obtained
by all the single detectors with parameters 6 € {d1,...,0p}. The operation (4 is
a simple set-union of the various intervals, except that the groups of overlapping
intervals — such that, for each interval I in a group, there is at least another
interval I’ belonging to the same group, where INI’" # () — are fused and replaced
by a single larger interval, that spans all the overlapping ones. Note that this
guarantees that the final fused result set is still composed of disjoint intervals,
each one representing a distinct avoidance.

6. Experimental Evaluation

The goal of this section is to evaluate the proposed algorithm under different
points of view. First, we quantitatively test the effectiveness of the algorithm
by analyzing the ability to correctly detect expected avoidance behaviors. To
this end we use an ad-hoc annotated dataset, our ground truth, created for the
purposes of this work (Section 6.1). Second, we compare our approach with the
one presented in [11] since, as pointed out in Section 2, this is the only work
we are aware of that deals with avoidance detection between moving objects
(Section 6.2). Third, we assess the ability of the algorithm in highlighting
interesting and previously unknown patterns emerging from avoidance behaviors
when using datasets for which no prior knowledge related to avoidance behaviors
is available (Section 6.3).

6.1. Ezperiments with the Ground-Truth Dataset

We exploit a ground truth of annotated trajectories, explicitly created for this
work, whose data derive from real GPS observations of moving objects collected
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in Florianopolis and Venice. This public dataset! contains an overall amount of
86 trajectories representing pedestrian movements, for a total of 7,834 samples
and an average sampling rate of one second. Although this dataset is not large,
it is sufficient to validate the proposed method.

In this trajectory dataset, 32 pairs of trajectories are labeled as positive, since
they exhibit at least one avoidance. Among the positive pairs, eight exhibit two
distinct avoidances while the remaining ones exhibits a single avoidance.

For each positive pair, the set of intervals during which the avoidance(s)
occur(s) is reported as well. The positive/negative labels and the temporal
intervals referring to single avoidances were given by human assessors. This
may result in imprecise annotation of temporal intervals, since their span may
depend on the perception of assessors.

In order to evaluate the effectiveness of the (simple/fused) detector that
solves the decision problem (Definition 4.7), for each pair of trajectories we
check the correctness of the detector by verifying if the yes/no answer matches
the positive/negative label in the ground truth. The detector returns yes if a
non-empty set of avoidances is detected, no otherwise.

On the other hand, in order to evaluate the quality of the detector that solves
the search problem (Definitions 4.9 and 4.11), for each positive pair correctly
detected we also inspect the temporal intervals returned by the detector, by
comparing them with the ones associated by the human assessor in the ground
truth.

In the following we define the metrics used to evaluate the proposed method.

Decision problem. For this study we recur to well-established metrics commonly
used in data mining to evaluate the quality of a classifier [27]. Given a set of
N pairs of trajectories, we evaluate the results of the detector algorithm by
constructing an integer confusion matriz (see Table 1), a 2 x 2 table where
the number of true positives (tp) and true negatives (tn) are given in the main
diagonal, while the anti-diagonal contains the number of false positives (fp) and
false negatives (fn) detected. Clearly, N =tp +tn+ fp+ fn.

We call positive any trajectory pair in the ground truth that is labeled as
avoidance behavior = yes, while we use the term negative otherwise. Hence, tp
and tn correspond to the pairs which the detector labels correctly yes or no,
respectively, while fp and fn correspond to mislabeled pairs. Specifically, fp
(fn) are pairs that the detector labels as positive (negative), but in fact appear
as negative (positive) in the ground truth.

Recall and Precision are two widely used metrics employed in applications
where successful detection of positive cases, i.e., in our case trajectory pairs for
which an avoidance behavior is observed, is considered more significant than
detection of other behavior. A formal definition of these metrics is given below:

_
tp+ fn

tp

e Recall, r =
tp+ fp

Precision, p =

Lanonymous link: https://wuw.dropbox.com/s/y7ch5v8yvyj6ivs/dataset.tar.gz7d1=0
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Detected
positive | negative
positive tp fn
negative fr tn

Actual

Table 1 Confusion matrix.

Precision p and recall » can be summarized into another metric known as
F-Measure, defined as follows:

2.T.p

F-Measure, F' =
r+p

where 0 < F' < 1.

Search problem. As previously stated, for positive pairs correctly detected by
the simple/fused detector we also inspect the temporal intervals returned by
comparing them with the ones associated by human assessor in the ground
truth.

Let TP be the set of positive pairs in the ground truth that were correctly
identified by the detector, i.e., pairs for which the result set returned by the algo-
rithm is not empty. Assuming that we are using a given combination of At and
0, for clarity purposes in this context we denote such result set as RSP for a pair
of trajectories p, omitting the parameters symbols in the notation. For each pair
p € TP, we know the set of actual disjoint temporal intervals G? = {I1,..., I}
in the ground truth, associated with k£ > 0 avoidances. The detector, either
single or fused, also returns a set of m intervals RS? = {I1,..., I, }.

Let G» = {I; € 67 | A, € RSP sit. (I; NI, #0) A (T € GP .k #
jost. IxnI, #0)}, ép C @GP, be the set of intervals in G¥ such that each
interval overlaps with only one interval in RS?, and the latter does not overlap
with any other intervals in GP.

We can quantitatively evaluate the quality of the results for all the pairs in
TP by Q-Measure: ~

p
ZpGTP Igpl

TP

where 0 < @-Measure < 1. Ideally @Q-Measure should be equal or close to 1.

In the following we present some visual examples of the output of the algo-
rithm (Section 6.1.1), then in Sections 6.1.2 and 6.1.3 we show quantitatively
the results obtained by exploiting the (simple/fused) detector that solves the
decision or the search problem.

In all the experiments described below, we discuss the various results ob-
tained by changing the two main parameters of our avoidance detection al-
gorithm, namely At and §, whose values are reported in seconds and meters,
respectively.

Q-Measure =
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6.1.1. Visual inspection of avoidances

In order to visualize some avoidances detected by our algorithm on the
ground truth dataset, we use Google Earth. Specifically, the avoidances shown
in Figure 8 refer to trajectory pairs collected in Florianopolis. The subset of
segments highlighted in purple represents the set of samples over which an avoid-
ance is detected. The segments highlighted in yellow and white represent, re-
spectively, a fixed sequence of samples occurring before and after the avoidance
detected by the algorithm. Figure 8(a) represents an individual avoidance by
entity ID11 (which moves initially from bottom-right to top-left), slowing down
at some point in order to avoid ID12 (moving from top-right to bottom-left).
Figure 8(b) depicts a mutual avoidance where ID21 (moving from bottom-left
to top-right) and ID22 (moving in the opposite direction) change their direction
as soon as they get close. Finally, Figure 8(c) depicts a mutual avoidance where
the two entities invert their direction as soon as they get too close.

Figure 8 Examples of three visual inspections performed on three different avoidances returned
by the algorithm.

6.1.2. Results for the Decision Problem

In this section we evaluate the ability of the detectors (simple detector and
fused detector) of correctly identifying the trajectory pairs of the ground truth
that are positively /negatively labeled (decision problem).

Simple detector. For each pair of parameters At and ¢, we build the confu-
sion matrix by considering all trajectories in the ground truth, then determine
precision /recall, and finally compute the F-Measure scores. Figure 9 reports the
scores obtained by the algorithm for all combinations of parameters. Specifi-
cally, each curve in the plot refers to a distinct At, and shows the F-Measure
score as a function of 4.

For almost all values of At, a common optimal value for the meet threshold
4 that maximizes the F-measure score falls in the interval [3, 6]; for larger values
of §, the score degrades. It is worth noting that these optimal values for §
approximately reflect the average avoidance distance used to physically produce
the avoidances for (positive) trajectory pairs included in the ground truth.

20



F-Measure

Meet threshold (meters)

At2sec. —t—  Atdsec. —K— At6sec. M At8sec. —@—
At3sec. —X—  At5sec. = At7sec. —O—

Figure 9 Decision problem with simple detector: F-Measure analysis.

Fused detector. In the following we show how the overall performance of the
algorithm can substantially be improved by fusing different result sets of distinct
simple detectors, according to the fusion operator defined by Equation (2).

Given a At, and a sequence of values for 4, e.g., (3,6,9), a pair of trajectories
is identified as a positive case, i.e., avoidance behavior = yes, if at least a simple
detector for some J in the sequence identifies one or more avoidance behaviors.
Conversely, if no simple detector is able to recognize any avoidance, the pair is
identified as a negative case, i.e., avoidance behavior = no. Still, for the fused
detector we can build the confusion matrix, by considering all trajectory pairs
in the ground truth, and finally compute the F-Measure scores.

Considering the results shown in Figure 9, we choose At € {4,5,6,7} to
evaluate the fused detector. For each At, we compute the F-Measure related
to the fused result sets RSXS??’),RSXSTP”&:G), ...,Rng&é:&“"é:lg) (each one
defined as per Equation 2). Results are reported in Figure 10, where each fused
result set is represented by its upper § threshold in the X-axis. The figure
shows how the fused detector entails substantial improvements in terms of F-
Measure (up to 95%), provided that At is properly chosen according to the
dataset features.

In general, we argue that the opportunity of fusing different result sets de-
pends on the kind of analysis we want to perform. Specifically, it depends on
the classes of avoidance behaviors we want to discover (e.g., only values for &
that are relevant for our purposes should be used for the fusion operation), and
on the amount of useful information an analyst is interested in extracting at the
expense of possible losses in precision (due to the detection of false avoidances).

6.1.3. Results for the Search Problem
In this section we assess the quality of the temporal intervals reported by
both detectors (simple and fused), for the positive pairs correctly detected, and
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Figure 10 Decision problem with fused detector: F-Measure analysis. In X-axis the values are

the maximums of the thresholds § used during the fusion operation, e.g., 9 is the maximum
for the set {3,6,9}.

thus included in the set of trajectory pairs TP, where tp = |TP|.

Q-Measure

3 6 9 12 15 18

Meet threshold (meters)

At2sec. —t—  Atdsec. —K— At6sec. M At8sec. —@—
At3sec. —¥— AtSsec. T  At7sec. —O—

Figure 11 Search problem with simple detector: Q-Measure analysis.

Simple detector. Figure 11 reports the Q-Measure scores obtained in the
experiments. The experimental findings confirm all the remarks done in Section
6.1.2 concerning At and . In general, we obtain the best Q-Measure score
for the same parameters At and ¢ for which we obtained the best F-Measure
scores. We also point out that using high values of At (where high is relative
to the dataset features) may erroneously induce the fusion of distinct avoidance
behaviors, due to compression, thus potentially mapping multiple avoidances
occurring between two trajectories in the ground truth to a single detected
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avoidance. This in turn induces losses in terms of Q-Measure scores.

Fused detector. Also for the fused detector we aim at analyz-
ing the quality of the temporal intervals for the trajectory pairs in
TP. To this end, we consider again the fused result sets belonging to

{RSXSt:3>7 RSXSt:&(S:G)’ - RSXZ:S,(?:(S,...,&:lS) }

Q-Measure

3 6 9 12 15 18

Cumulative meet threshold (meters)

At2sec. —F—  Atdsec. —K— At6sec. M= At8sec. —@—
At3sec. —X—  At5sec. T At7sec. —O—

Figure 12 Search problem with fused detector: Q-Measure analysis. In X-axis the values are
the maximums of the thresholds § used during the fusion operation, e.g., 9 is the maximum
for the set {3,6,9}.

Figure 12 reports the performance of the algorithm in terms of Q-Measure
score. We can observe how fusing different result sets entails substantial im-
provements. These improvements are particularly evident whenever the fusion
is performed for § values close to the average distances used for physically pro-
ducing avoidances ( € [3,6]).

6.2. Comparison with APPROXCOUNT

In this section we report the results of some experiments aimed at comparing
our technique with APPROXCOUNT, the approach proposed in [11].

As already explained in Section 2, the goal of APPROXCOUNT is to find sta-
tistical evidence of general avoidance/attraction relationships between moving
objects. By means of permutation tests, APPROXCOUNT tries to infer whether
pairs of moving objects, sharing a common territory, are consistently attracted
to each other (e.g., animals sharing common resources, therefore tending to
meet in the same locations) or consistently avoiding each other (e.g., preys
avoiding predators). Nonetheless, in the context of our work it is interesting
to check whether the statistical model underlying APPROXCOUNT is able to
“sense” avoidance episodes according to the definitions provided in our work.

In order to test APPROXCOUNT we used the application kindly provided
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by the authors?. The parameters fed into APPROXCOUNT were (i) the gap
threshold (0.5 seconds), which represents the minimum amount of time below
which APPROXCOUNT interpolates between the original trajectory samples, (ii)
the number of rounds (1000) during which a single permutation test is performed
and (iii) the distance threshold § below which we have a meet between moving
objects; in our experimental setting we used again § € {3,6,9,12, 15, 18} meters.
For each pair of moving objects APPROXCOUNT outputs a real value, avoid,
ranging over the interval [0,1]: the closer avoid is to zero, the stronger is the
avoidance relationship between the moving objects.

The comparison focuses on the decision problem which can be solved by
both approaches. We note, in particular, that APPROXCOUNT is not suited
when dealing with the research problem. In fact, as already mentioned pre-
viously, APPROXCOUNT analyzes the global behavior of a pair of trajectories
without identifying when and where individual avoidance episodes occur. For
the decision problem, we say that APPROXCOUNT answers yes whenever the
output avoid is less than 0.3, which represents a conservative value with respect
to the suggestions given in [11]. APPROXCOUNT is compared with our fused
detector, which in the following we denote by DETECTAVOID.

The results of the experimental comparison are reported in Figure 13. We
observe that, as far as F-Measure is concerned, APPROXCOUNT lags noticeably
behind DETECTAVOID. A separate analysis of the recall and precision measures
reveals that the discrepancy is mainly due to recall; indeed, DETECTAVOID is
able to find almost all the trajectory pairs having an avoidance behavior. The
recall values are particularly good for At € {5,6} when 0 increases. Instead, Ap-
PROXCOUNT yields 56% of recall as its best result. Concerning precision, both
algorithms achieve similar results. We believe that these results are justified
by the fact that APPROXCOUNT does not detect trajectory pairs showing occa-
sional avoidance episodes, since it is designed to detect more general avoidance
relationships.

6.3. Analysis of a Real World Unannotated Dataset

In this section we consider the AIS Brest dataset, a real world unanno-
tated dataset containing 824 trajectories related to the movements of 824 ships?
nearby Brest’s harbor [28]. Basic statistics reveal that the dataset contains
5.756.438 points, the trajectories move at an average speed of 7.77 km/h and
most of the trajectories have an average sampling rate between 1 and 20 sec-
onds. These characteristics make the dataset quite interesting in terms of the
precision with which the trajectories are described.

By considering the aforementioned statistics, and after a scrutinization of
different meet thresholds and look-ahead times, according to entities’ features
we chose a meet threshold § of 30 meters and a look-ahead time At of 50 seconds.

2The application can be retrieved at https://faculty.ist.psu.edu/jessieli/MoveMine
3Each trajectory is uniquely associated with a ship.
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Figure 13 Comparison between DETECTAvVOID and APPROXCOUNT.

Indeed, we argue that for this case study this combination of parameters allows
us to capture interesting patterns, as we will show further on.

The algorithm detects a total of 1480 avoidances, among which 321 are
mutual, 970 individual and 189 weak. Given this considerable amount of infor-
mation it is necessary to perform a deeper analysis in order to infer meaningful
patterns.

Among the 824 ships, 229 are involved in at least one avoidance. We call
this set as the set of active ships. If we further look at the number of avoidances
in which each active ship is involved, we notice that 8 ships are involved in
more than 100 avoidances, while the vast majority - more precisely 196 ships
(which constitutes the 85,5% of the active ships set) - are involved in a number
of avoidances between 1 and 10. We call the former set as the set of frequent
ships while the rest of the ships ends up in the set of infrequent ships.

The information above suggests that the frequent ships play a very important
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role in the dataset. If we decompose the total amount of avoidances detected
by the algorithm, we find out that the overall amount of avoidances between
frequent and infrequent ships are 973 (65,7% of the result set), while the avoid-
ances between frequent ships are 386 (26,1%) and between infrequent ones are
121 (8,2%).

If we look at the MMSI codes of the frequent ships in order to find out their
type (Table 2), we have that the top-2 frequent ships are pilot ships, while the
remaining ones are passenger ships and tugboats.

l MMSI Code ‘ Type ‘ Amount of avoidances ‘
227730220 Pilot ship 414
227005550 Pilot ship 364
227635210 | Passenger ship 194
227592820 Passenger ship 175
227574020 Passenger ship 174
227612860 Passenger ship 158
227574030 Passenger ship 147
228051000 Tugboat 119

Table 2 Frequent ships details.

Given these data we want to answer the following questions:

1. Which are the events producing so many avoidances between frequent and
infrequent ships?

2. Which are the events producing a considerable amount of avoidances be-
tween frequent ships?

3. Is there any kind of recurring pattern causing avoidances between infre-
quent ships?

When answering Question (1) we notice a dominant pattern (Figure 14) that
we call paired movement event. Through a graphical inspection we observe that
almost all these events can be decomposed in 3 phases: during the first phase
the two ships approach each other, mostly when they are entering or exiting the
harbor (approach phase, Figure 14(a)). Then, the ships proceed paired (paired
movement phase, Figure 14(b)) until they approach the docks or they exit the
harbor area. During this intermediate phase some avoidances may emerge or
not, depending on the continuous adjustment performed by both ships in order
to maintain the relative distance. Finally, the ships separate (detach phase), as
shown in Figure 14(c).

Given the types of the frequent ships reported in Table 2 we argue that
the pilot ships and the tugboats produce these events when they have to pilot
(or tow, respectively) an incoming (or outgoing) ship. For what concerns the
passenger ships, we argue that they adjust their trajectories in order to avoid
other infrequent ships nearby; moreover, the amount of avoidances in which they
are involved is justified by the fact that they are servicing, and thus repeatedly
going through, a fixed route.
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Figure 14 Example of a paired movement event involving the frequent ship 228051000. The
ships are moving from bottom to top.

In general we expect that these avoidances are mostly distributed in prede-
termined areas. Indeed, if we plot the avoidances occurring during a two-month
window we see that they are approximately distributed on a fixed path going
from the harbor’s docks to the strait exit (Figure 15). This also gives an idea
about the most dangerous or trafficked areas (especially near the docks).

“Roscanvel

Figure 15 Subtrajectories related to avoidance behaviors detected in a time interval spanning
two months ([20/04/2009, 20/06,/2009]).

Concerning Question (2), we found that many avoidances are produced ac-
cording to the same pattern observed for Question (1), or when a frequent ship
is docking (and therefore slowing down, hence the avoidance) in the harbor
nearby already docked ships. The latter pattern is observed between frequent
and infrequent ships as well, although with a lesser extent.

Finally, as far as Question (3) is concerned, we found out that the second
pattern observed when explaining the avoidances related to Question (2) also
occurs, i.e., almost all the avoidances between infrequent ships happen near the
docks when one or more ships are docked while one ship is docking nearby.
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7. Conclusion

Several algorithms have been proposed for mining different types of tra-
jectory patterns. However, an interesting behavior that has not been much
explored in trajectories of moving objects is avoidance.

In this paper we have introduced a new type of trajectory pattern: avoidance
between moving objects. We presented a set of theoretical definitions and an
algorithm which is able to detect such a pattern. The discovery of avoidances
between moving objects is challenging, since the intent of any moving object may
not be immediately apparent from its trajectories. To determine an avoidance,
two objects should move towards the same area at the same time, but either
one or both should change their behavior when they come close enough to be
aware of each other. To identify a behavior change we forecast the movements
of both moving objects and compare them with the actual movements. If the
forecasts predict a meet but the actual movements do not meet, an avoidance
is detected. Each detected avoidance is in turn classified, whenever possible, as
individual when only one moving object changes significantly its behavior, or as
mutual when both objects change their behavior significantly.

It is worth mentioning that a behavior change is measured through the dis-
tance between the forecast movement and the actual movement. Such general-
ization allows us to detect changes of behavior without using specific conditions
on speed or direction.

In this paper, besides analyzing the parameters of the algorithm, we went
one step further by introducing the idea of fused detector, which merges the
result sets of several simple detectors (with different meet thresholds) in order
to allow the detection of a possibly broad range of avoidance behaviors. The
proposed approach for avoidance detection makes use of only two parameters
and is able to deal with trajectories collected at different sampling rates and/or
having different temporal lengths.

The algorithm has been evaluated with two real-world datasets. The first
dataset is annotated and it contains pedestrian movements; the purpose of an-
alyzing such dataset is to verify that the algorithm is able to correctly detect
avoidances which actually occur and, in the experiments, we demonstrate that
this actually happens (F-measure up to 95%). The second real-world dataset,
unannotated, contains ship movements nearby the Brest’s harbor. Since no
prior avoidance information is available, the purpose of analyzing such dataset
is to check whether the algorithm is able to extract interesting evidence from
the data. Indeed, by characterizing the avoidances between ships on the basis
of their frequency, their spatial distribution and by means of visual inspections
on the behavior of frequent ships, we were able to highlight the most trafficked
areas, as well as a frequently recurring event, i.e., the paired movement event.

Future work includes an analysis on the effect of using different forecast
functions and the definition of a confidence measure to evaluate the avoidance.
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Appendix A. Main symbols

In the following we report the main symbols used throughout the paper.

Symbol Description

T Trajectory.

T Trajectory track.

D Set of trajectory tracks.

t Time instant.

TS Set of timestamps associated with trajectory samples.

0 Meet threshold.

At Look-ahead time.

M Movement of an object o which can be split into different
o

trajectories.

forecast(T, [t1,t2])

Movement predictor mapping a trajectory T to its fore-
cast in the interval [t1,t2] by exploiting the behavior of
T in the interval [0, ¢1].

interp(T)

Interpolation function mapping a trajectory track 7 to
a trajectory T

meets(Ta, Ty, [t1,t2])

Predicate indicating whether the trajectories Ti, and Ty
meet in the time interval [t1,t2] according to the meet
threshold §.

will_meet5 (Ta, Ty, [t1, tg])

Predicate indicating whether the trajectories Ti, and Ty
are ezpected to meet in the time interval [¢1, t2] according
to the meet threshold §.

avoids(Ta, Ty, [t1,t2])

Predicate indicating whether the trajectories Ti, and Ty
exhibit an avoidance behavior in the time interval [t1, t2]
according to the meet threshold §.

change_behaviors (T, [t1,t2])

Predicate indicating whether the trajectory T exhibits
a significant change in movement behavior in the time
interval [t1,t2] according to the meet threshold é.

type_avoids(Ta, Ty, [t1, t2])

Function ranging over {individual, mutual, weak} indi-
cating the avoidance type detected between trajectories
T, and T} in the time interval [t1,¢2] and according to
the meet threshold §.

Result set produced by Algorithm 1 according to the

)
RSt meet threshold § and the look-ahead time At.

@ ) Union of different result sets produced by different runs
RSAtl »0h of Algorithm 1 with different ds and the look-ahead time

At.

Table A.3 List of main symbols used throughout the paper.
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