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Abstract 

In this study, we present the analysis of the temporal profile and height of space-
time (ST) extreme wind waves. Wave data were gathered from an observational ST 
sample of sea surface elevations collected during an active sea state, and they were 
examined to detect the highest waves (exceeding the rogue wave threshold) of 
specific 3D wave groups close to the apex of their development. Two different 
investigations are conducted. Firstly, local maximum elevations of the groups are 
examined within the framework of statistical models for ST extreme waves, and 
compared with observations and predictions of maxima derived by one-point time 
series of sea surface elevations. Secondly, the temporal profile near the maximum 
wave crests is analyzed and compared with the expectations of the linear and 
second-order nonlinear extension of the Quasi-Determinism (QD) theory. Our goal 
is to verify, with real sea data, to what extent, one can estimate the shape and the 
crest-to-trough height of near-focusing large 3D wave groups using the QD and ST 
extreme model results. From this study, it emerges that the elevations close to the 
crest apex are narrowly distributed around a mean profile, whilst a larger 
dispersion is observed away from the maximum elevation. Yet the QD model 
furnishes, on average, a fair prediction of the maximum wave heights, especially 
when nonlinearities are taken into account. Moreover, we discuss how the 
combination of ST extreme and QD model predictions allows establishing, for a 
given sea condition, the portrait of waves with very large crest height. Our results 
show that these theories have the potential to be implemented in a numerical 
spectral model for wave extreme prediction.  

 

 



1. Introduction 

Extreme oceanic surface waves are topical for scientist, mariners and engineers 
(Muller et al., 2005). Indeed, their relevance and apparently elusive nature make 
extreme waves a well-studied topic by pure and applied researchers. In the 
oceanographic community, extreme waves are often referred to as “rogue” or 
“freak” (a notion which was first introduced by Draper, 1965) when the crest-to-
trough height H is at least about twice the significant wave height Hs, or the crest 
height exceeds 1.25Hs (Dysthe et al., 2008, Kharif et al., 2009). For the simplest 
case of linear waves with infinitively narrow spectrum, the occurrence probability 
of rogue waves is rather small (a rogue wave with H > 2Hs should appear on 
average once among about 3000 individual waves), and for a given sea state the 
theory fails to predict the probability of waves much larger than those in the 
surrounding field. Generally, rogue waves appear in a wave record apparently out 
of nowhere in small groups either singly (Gemmrich and Garrett, 2008, Kharif et 
al., 2009). The use of theoretical models that deviate from linearity increases the 
understanding of the occurrence and magnitude of extreme events for two principal 
mechanisms. First, waves with finite amplitude generate second- and higher-
order nonlinearities that make wave crests sharper and higher (Forristall, 
2000, Sharma and Dean, 1979, Tayfun, 1980). Second, considerable deviations 
from linearity are also given by nonlinear four-wave interaction that produces, 
under certain circumstances, very large waves in such a way that extreme events 
become more likely (Janssen, 2003, Onorato et al., 2013, Onorato et al., 2001). By 
analyzing a large dataset of field measurements, Christou and Ewans 
(2014) provided evidence that rogue waves are not directly governed by sea state 
parameters, and at the time of the rogue wave event almost all frequency 
components with nonzero spectral values are approximately in phase with each 
other. Nonlinearities are also responsible of changes in the dynamics of large wave 
groups (Adcock et al., 2015). 
In addition to non-Gaussian sea conditions, large probabilities of occurrence of 
very high waves are attained when the statistics applied to one-point observations 
is extended to incorporate the probability that maxima occur over a specific sea 
surface region. The statistical distribution of maximum sea surface elevations over 
a spatial or spatio-temporal (ST) domain is thereby derived (Fedele, 
2012, Krogstad et al., 2004). This approach considers the sea surface elevation as a 
multi-dimensional (2D space + time) Gaussian field, whose probability of maxima 



is linked to the geometrical and statistical properties of the ST field, according to 
the Piterbarg's theorem (Piterbarg, 1996) or the Euler Characteristic approach 
(Adler and Taylor, 2007, Adler, 2000). ST extreme stochastic model results have 
been assessed and discussed using numerical (Barbariol et al., 2015, Krogstad et 
al., 2004, Socquet-Juglard et al., 2005) and observational data (Benetazzo et al., 
2015, Fedele et al., 2013), and extended to incorporate weakly nonlinear 
waves by Socquet-Juglard et al., 2005, Fedele et al., 2013, and Benetazzo et al., 
(2015). More recently, Fedele (2015) confirmed that in the ST models the second-
order nonlinearities cannot be neglected, while it is expected a modest contribution 
due to third-order nonlinearities. The ST extreme model based on the Euler 
Characteristic technique will be used in this study to characterize the maximum 
elevations of specific 3D wave groups close to the apex of their development. 
Indeed, there is a close connection between ST maxima and spatio-temporal 
modulation of unsteady and dispersive wave groups (Boccotti, 2000, Fedele et al., 
2013). In particular surface elevations around the maximum wave crests can be 
derived by the shape of specific 3D wave groups whose apex occurs at time and 
position of the crest itself. In this study we use the principal results of the Quasi-
Determinism (QD) theory (Boccotti, 2000, Boccotti, 1983) that predicts the ST 
Gaussian free surface displacement and the velocity potential around a large wave 
occurring at a fixed time and location. There are two versions of the QD theory: 
the first version (used in this study) analyzes the ST shape of wave groups reaching 
a maximum crest elevation, while the second version emphasizes on the shape 
when the groups experience the maximum wave height. The two forms of the QD 
are consistent with each other as they reveal that the two extreme states are specific 
conditions of well-defined ST wave groups. As important corollaries of the QD 
theory, Boccotti (2000) derived the asymptotic form of the probability distribution 
of wave heights (generalized for nonlinear waves by Alkhalidi and Tayfun, 2013), 
and characteristic periods of the highest waves in a sea state with a given energy 
spectrum. Both formulations of the QD theory were extended to second-order in 
the Stokes expansion by Arena (2005) and Fedele and Arena (2005). The QD 
theory was verified in different small-scale field experiments with undisturbed 
waves (Boccotti et al., 1993b) and waves interacting with structures (Boccotti et 
al., 1993a), but a thorough assessment using open sea data is still missing. 
However, scholars have already used the QD model results to characterize the 
shape of rogue waves. For example, this model has been corrected up to fifth-order 



by Walker et al., (2004) to clarify the magnitude and character of the nonlinear 
contributions in describing the shape of the Draupner “New Year” rogue wave 
(Haver, 2004). Walker et al., (2004) found that nonlinear contributions decrease 
rapidly as the order increases, and that effects of nonlinearity are more pronounced 
close to the apex of a crest. 
In this study, the QD theory, at first- and second-order of approximation, has been 
used to investigate the shape of observed extreme waves, and obtain, as corollary, 
a predictive framework for their wave height H. Predictions of the ST and QD 
models are evaluated using real wave data recorded by means of a stereo wave 
imaging system (namely Wave Acquisition Stereo System, WASS; Benetazzo, 
2006, Benetazzo et al., 2012) installed on an offshore oceanographic research 
platform in the northern Adriatic Sea (Italy). Space-time sea surface elevation 
fields were collected during an active sea state, and analyzed to extract time 
records at the spatial positions where the ST wave groups were close to the apex of 
their development stage (Benetazzo et al., 2015). We selected only groups whose 
maximum crest height exceeded the threshold 1.25Hs, thus obtaining a sample of 
23 rogue waves. These represent the sample used for our analysis. We review main 
results of QD and ST extreme theories aimed at improving (supported by field 
measurements) the link between them, attempting to define a predictive framework 
for the shape and height of large waves in a sea state with given directional energy 
spectrum. 
The paper is organized as follows. In Section 2.1 we summarize and discuss main 
characteristics of the QD model for linear and second-order nonlinear wave fields. 
Moreover, results of the theory are used to derive an expectation of the crest-to-
trough height of maximum waves. Section 2.2 describes the statistical model of ST 
extreme waves resulting in nonlinear sea surface elevation fields, which were 
measured in open sea using a stereo wave imaging system (Section 3). The latter 
are used to assess ST extreme wave predictions, which are also compared with 
outcomes of time-based statistical theories for wave extremes. In Section 4, results 
from QD and ST models are used to analyze the height and the temporal profile of 
extreme waves detected by the stereo system; results of both models are then 
combined in a framework to predict the profile and height of very high waves. Last 
section summarizes main findings of the study. 

 



2. Theoretical framework 

2.1. Expected shape and height of large waves 

2.1.1. Gaussian wave fields 

In this section we analyze and discuss basic elements of the QD theory for the 
general case of a Gaussian 3D random wave field with a given directional energy 
distribution. Let the sea surface elevation field, with zero-mean and standard 
deviation σ, be η1(x, y, t) = η1(x, t), where η1 is the Gaussian component of the 
field η(x, y, t), x = (x, y) denotes the horizontal coordinate vector, and t the time. 
Next, let η1cm = max{η1(x0, t0)} represent the elevation of a local wave maximum 
(crest) occurring at the horizontal position x0 = (x0, y0) and instant t = t0, such that 
the sea surface gradient ∇η1(x0, y0, t0) = 0. Now we denote by X = (X, Y) the 2D 
horizontal vector measured from x0, and τ the time lag from t0. In the finite 
coordinates X and τ the ST autocovariance function of η1(x,t) is given 
by(1)ψ1(X,τ)=E{η1(x0,t0)η1(x0+X,t0+τ)}where E{} denotes expectation. 
The QD model predicts that the sea surface elevation field surrounding the 
maximum wave crest is that of a stochastic ST wave group whose conditional 
mean surface profile η¯1(X, τ) is given by (Boccotti, 2000, Boccotti, 
1983, Lindgren, 1972, Lindgren, 1970, Slepian, 
1962)(2)η¯1(X,τ)=E{η1(x0+X,t0+τ)|η1(x0,t0)=η1cm}=η¯1,det+R1(X,τ)where(3)η¯1,det=
η1cmψ1(X,τ)σ2is of O(η1cm) and denotes the deterministic part of the process. The 
other way around, a large wave crest, with height η1cm, occurs where and when the 
wave is at its maximum elevation within a linear 3D group (with mean ST 
shape η¯1,det, shown, for instance, in Fig. 1) that evolves over background random 
waves represented by R1(X, τ). The residual R1(X, τ) is Gaussian, with E{R1(X, τ)} 
= 0, and it is of O(η1cm0), and it will be neglected in the following analysis. The 
variance of the profile is a function of (X, τ), it attains its minimum at (x0, t0), and it 
is smaller for higher wave crests. In fact, the random ST sea surface shape 
around η1cm tends asymptotically (with probability approaching 1) to the 
deterministic profile η¯1(X, τ) as the normalized crest height η1cm / σ → ∞ (i.e. the 
crest is very high with respect to the mean crest height). 



 
Fig. 1. Space-time shape of a large linear wave group. Normalized 
elevation ψ1(X, τ)/σ2 at three instants: τ = - 0.1Tp (growth stage; left panel), τ = 0 
(focusing point; middle panel), and τ = + 0.1Tp (decay stage; right panel). Direction 
of wave propagation is from top-right to bottom-left. Sea surface elevation isolines 
are drawn at 0.2 interval. The ST autocovariance function and the peak period Tp are 
determined using the observed directional wave spectrum shown in Fig. 5. For 
comparison see also Fig. 1. of Adcock and Draper (2015). 
 

For oceanographic applications we take advantage of the pairing (via Fourier 
transform) between the angular frequency (ω) - direction (θ) wave spectrum S(ω, 
θ) and the autocovariance function ψ1(X, τ), which can be written as follows 
(Boccotti, 2000)(4)ψ1(X,t)=∫ω∫θS(ω,θ)cos(k·X−ωτ)dωdθwhere k = (kx, ky) = (kcosθ, 
ksinθ) is the wavenumber vector associated with ω and θ via the linear dispersion 
relation for gravity waves. 
The autocovariance function attains its global maximum at coordinates X = (0, 0) 
and time τ = 0, where it coincides with the zero-th order moment of the spectrum 
given by(5)ψ1(0,0,0)=∫ω∫θS(ω,θ)dωdθ=σ2 
Since scholars usually deal with time records of sea surface elevations, it is 
interesting to obtain the shape of the group η¯1,det evolving over time only. As it 
can be seen by Eq. (2), the temporal profile of the ST wave group depends on the 
displacement X from the position x0. In the special case X = (0, 0), i.e. where the 
group is at the apex of its development, the temporal profile of the large wave 
(see Fig. 2) is given 
by(6)η¯1(τ)=E{η1(x0,t0+τ)|η1(x0,t0)=η1cm}=η1cmE{η1(x0,t0)η1(x0,t0+τ)}σ2=η1cmψ1(τ)
σ2where the autocovariance function ψ1(τ) can be expressed by means of spectral 
integral quantities as(7)ψ1(τ)=ψ1(0,0,τ)=∫ω∫θS(ω,θ)cos(ωτ)dωdθ=∫ωS(ω)cos(ωτ)dωand 
the omni-directional frequency spectrum S(ω) is given by(8)S(ω)=∫θS(ω,θ)dθ 



 
Fig. 2. Temporal shape of a large wave group at the focusing point X = (0, 0) near a 
crest with linear height η1cm = 5σ = 1.25Hs. Mean linear profile η¯1(I-order), mean 
second-order nonlinear profile η¯2(II-order), and second-order nonlinear correction. 
In Figure, the time lag τ is indicated with the time axis t, and t0 = 0. All profiles and 
the peak period Tp (used to scale t) are determined using the wave spectra shown 
in Fig. 5. 
 

It is worth noting that for one-point wave records at sea (e.g. collected with wave 
gauges or buoys) the position X is not determined. Consequently, it is not possible 
to derive the theoretical temporal profile of very high waves at coordinates 
(x0 + X), so that it can ben compared, for instance, with observations. This has 
consequences for the interpretation of QD model results, as we shall see in Section 
4. 

2.1.2. Second-order nonlinear wave fields 

It is well known that the inclusion of nonlinearities modifies the theoretical shape 
of linear sea waves (Longuet-Higgins, 1963). Second-order nonlinearities due to 
bound harmonics (i.e., harmonics that do not satisfy the linear dispersion relation 
for gravity sea waves) displace upward crest heights and trough elevations, and 
generate wave crest steeper than the linear counterpart (Fig. 2). As a consequence, 



the probability density function of sea surface elevations is skewed to the negative 
values, and the skewness coefficient of η (equal to zero for Gaussian fields) is 
positive. For weakly nonlinear random seas, the second-order sea surface elevation 
field η2 can be described by the nonlinear mapping (Longuet-Higgins, 
1963, Sharma and Dean, 1979)(9)η2=η1+η1−2where η1–2 is the second-order 
nonlinear correction to the linear elevation η1. Under general conditions in deep 
and transitional water depths, the extension of the time-dependent conditional 
process (6) to include the role of second-order bound nonlinearities is given by 
(Arena, 2005, Fedele and Arena, 2005, Fedele and Tayfun, 
2009)(10)η¯2(τ)=E{η2(x0,t0+τ)|η2(x0,t0)=η2cm}=η1cmψ1(τ)σ2+16η1cm2λ(τ)σ4=η¯1(x0,t
0+τ)+16η1cm2λ(τ)σ4where η¯2 is the mean nonlinear temporal profile (Fig. 2), 
and η2cm is the second-order nonlinear crest height occurring at the position x0 and 
instant t0. 
In Eq. (10) the term 16η1cm2λ(τ)σ4 is the nonlinear correction to the linear shape, 
and the function λ(τ) is expressed as (Tayfun and Fedele, 
2007)(11)λ(τ)=3E{η12(x0,t0)η1−2(x0,t0+τ)}=32∫ki∫kjS(ki)S(kj)[K+cosϕ++K−cosϕ−]dkidkj
where ϕ + = (ωi + ωj)τ, ϕ − = (ωi - ωj)τ, and S(k) is the omnidirectional wavenumber 
spectrum, which can be estimated using the Fourier transform of the 3D wave field 
(Banner et al., 1989, Benetazzo et al., 2016, Hwang et al., 2000, Romero and 
Melville, 2010), or, alternatively, evaluated from S(ω) using the following 
conversion(12)S(k)=S(ω)dωdk 
The interaction terms K+ and K− (which are function of the harmonics’ frequency 
and the water depth; Sharma and Dean, 1979) relate to the second-order bound 
harmonics with frequencies (ωi + ωj) and (ωi - ωj), respectively, and produce, on 
the one hand, higher wave crests and shallower wave troughs, and, on the other, 
set-down of the mean sea level under the wave groups. 
We note that at the wave group focusing instant (i.e. τ = 0) Eq. 
(11) yields(13)λ(0)=3E{η12(x0,t0)η1−2(x0,t0)}=32∫∫S(ki)S(kj)[K++K−]dkidkjwhere λ(0) 
is related to the skewness coefficient λ3 of η2 as follows (Fedele and Tayfun, 
2009, Janssen, 2009, Tayfun, 1986)(14)λ(0)=3E{η12η1−2}≈E{η23}=λ3σ3≥0which is 
therefore λ(0) = λ3σ 3 = 0 for linear waves. For zero time-lag, Eq. 
(10) yields(15)η2cm=η1cm+12λ33η1cm2σconsistent to the Tayfun equation (Tayfun, 
1980), and indicating that the nonlinear crest height is a quadratic function of the 
linear component. It is worth noting that in Eq. (10) first- and second-order wave 
group maxima are phase-locked (Fedele, 2008), in a way that a large crest (with 



elevation η1cm) of a linear wave occurs simultaneously with its second-order 
extension (with elevation η2cm). In other words, the nonlinear surface surrounding 
locally a large crest is function of the Gaussian wave group (Fedele and Tayfun, 
2009). For narrowband and long-crested waves in deep waters the second-order 
nonlinear correction to η¯1can be expressed as function of the Hilbert transform 
of η1 with respect to time (Tayfun, 1986, Tayfun, 1980). 

2.1.3. Height of large waves 

At the wave group focusing point X = (0, 0), linear and second-order nonlinear QD 
models can be used to derive an expectation, on the time domain, of the crest-to-
trough height of the wave with maximum crest height. The abscissa τ* of the first 
minimum (trough) of ψ1(τ) is related to the mean period of the highest waves of a 
sea state with a given energy spectrum (Boccotti, 1983). As a consequence, the 
expected height (H¯1cm) of the wave with (large) crest elevation η1cm can be 
analytically derived from η¯1(τ) in the following 
form(16)H¯1cm=η1cm(1−ψ1*)where ψ1* = ψ1(τ*) / σ 2 ∈ [−1 0) is the value of the 
first minimum of the autocovariance function, and η1cmψ1* < 0 is the mean 
displacement of the linear wave trough preceding or following η1cm. Boccotti 
(2000) demonstrated that, for a given linear group, H¯1cm is smaller than the 
expected value of the maximum wave height (H¯1m). If we 
assume η1 cm corresponding to the maximum crest height in a sequence of waves (as 
we shall do in Section 4), wave heights H¯1cm and H¯1mare linked by the 
following relationship (Boccotti, 2000)(17)H¯1m=H¯1cm2(1−ψ1*)1−ψ1* 
The ratio rH = H¯1m/H¯1cm is larger than 1 when ψ1* > −1, and it becomes rH = 1 
only if ψ1* = −1, that is, the height of the wave with the maximum crest 
corresponds to the maximum wave height if the wave spectrum is infinitely narrow 
(in this respect ψ1* is interpreted as a narrow-bandedness parameter of the wave 
spectrum; Boccotti, 2000). 
The effect on the wave height H¯1cm of second-order nonlinearities is generally 
small, particularly in narrow band seas (Tayfun and Fedele, 2007). 
Notwithstanding, in the general case, the expected height (H¯2cm) of the wave with 
second-order nonlinear crest elevation η2cm can be derived using the relationship 
(10) as 
follows(18)H¯2cm=[η1cm+λ(0)6σ4η1cm2]−[η1cmψ1*+λ*6σ4η1cm2]=η1cm(1−ψ1*)+λ(0)
−λ*6σ4η1cm2=H¯1cm+βH¯1cm2where λ* = λ(τ*), and(19)β=1(1−ψ1*)2λ(0)−λ*6σ4 



2.2. Space-time extreme crest heights 

In stormy seas, maximum sea surface elevations belong to specific wave groups 
(Longuet-Higgins, 1984) reaching their maximum development at different spatial 
positions and times. Benetazzo et al., (2015) shown that these maximum elevations 
are predicted using a stochastic model for nonlinear ST extremes. Here basic 
elements of that model are described, focusing our interest on the statistical 
structure of wind sea extreme waves at short-term time intervals (∼1 to 3 hours). 
The variable of interest is the sea surface elevation η (measured vertically from the 
mean sea plane and pointing upward) which is represented as a multi-dimensional 
random field in  ℜ3, evolving over time t and Cartesian horizontal 
coordinates x and y, viz.(20)η=η(x,y,t) 
The purpose is to obtain a formulation for the probability of exceedance of 
maximum elevations of the stochastic process (20), and a prediction of the global 
maximum ηSTm = max{η(x, y, t)} over a bounded ST region U ∈ ℜ3, delimited by a 
time duration and a 2D spatial region (see for example the region depicted in Fig. 
1 of Fedele, 2012). The sea state over U is assumed to be statistically stationary in 
time and homogeneous in space. 

2.2.1. The Euler Characteristic approach for Gaussian waves 

Let η1 be the linear component of the ST random process η, with η1STm = max{η1(x, 
y, t)}, and P1STm the probability that the maximum elevation exceeds the 
threshold z over the multidimensional compact region U ∈ 
ℜ3(21)P1STm=Pr{η1STm>z|(x,y,t)∈U} 
Adler (2000) developed a framework for handling the excursion sets defined 
as(22)SU,z={(x,y,t)∈U:η1(x,y,t)>z}which is the portion of the region U where the 
random variable η1 exceeds the level z. A topologic invariant of SU,z is the so-called 
Euler Characteristics (hereinafter EC; a concept named after Leonard Euler, see 
also Worsley, 1996), which is a property that links vertices (corners), edges, and 
faces of SU,z. For a generic value of z, a closed solution of the mean value of EC of 
the excursion set for Gaussian random fields η1 defined in  ℜN is given by (Adler, 
2000 and Adler and Taylor, 
2007)(23)E{EC(SU,z)}=|U|detΛ(2π)(N+1)/2σNHN−1(zσ)exp(−z22σ2)where |U| is the 
volume of U ∈ ℜN, and Λ is the covariance matrix of the sea surface elevation 



gradient vector ∇η1. The function HN-1 in Eq. (23) is the Hermite polynomial given 
by(24)Hn(zσ)=n!∑j=0|n/2|(−1)jj!(n−2j)!2j(zσ)n−2j 
It is interesting to note as for N = 1 the formula (23) reduces to the Rice's solution 
(Rice, 1954) that gives, in a time record, the mean number of upcrossings of the 
specific level z. 
Adler and Taylor (2007) proved the fundamental result that for large values of the 
level z (i.e. z ≫ σ) the probability of exceedance (21) is approximated by the 
expected value of EC (23). That is,(25)P1STm≈E{EC(SU,z)}as it was verified for 
spatial sea wave data by Fedele et al., (2012). The probability of exceedance of ST 
extremal waves is therefore measured by the mean EC in ℜ3, thus easing the 
calculation of P1STm (see Appendix A) and, as we shall see, making the EC approach 
relevant for oceanographic applications. 

2.2.2. An extension for second-order nonlinear waves 

We consider here the random wave field as a weakly nonlinear process. If second-
order nonlinearities are dominant, the key parameter to describe their effect on 
waves is the skewness coefficient, which affects both the wave shape and the 
statistics of wave crests and troughs. In particular the nonlinear processes distort 
the shape of the wave profile that results with crests higher and sharper and troughs 
shallower and flatter. Consequently, the crest height distribution function in a wave 
record deviates from the Rayleigh's distribution, and it is well described by 
the Tayfun (1980) model. According to the latter and following Benetazzo et al. 
(2015) the probability of exceedance P2STm of second-order nonlinear ST extremes 
over the region U is approximated as 
follows(26)P2STm=Pr{η2STm>z2|U}={N3[(z1σ)2−1]+N2z1σ+N1}PR(z1)where η2STm is 
the maximum nonlinear elevation; N3, N2 and N1 are proportional to the average 
number of 3D, 2D, and 1D waves within U, respectively (see Appendix A for the 
definition of these parameters), and PR is the Rayleigh probability of exceedance of 
crest heights (Longuet-Higgins, 1952). The nonlinear elevation  z2 satisfies 
the quadratic equation (Tayfun, 1980)(27)z2=z1+μ2z12σ>z1where μ is a measure of 
the wave steepness (related to the skewness coefficient), and  z1 is the linear 
elevation. For oceanic wave in deep waters in order to make the Tayfun model 
more accurate for applications, Fedele and Tayfun (2009) modified the definition 
of steepness parameter suggesting the following 
form(28)μ=μa(1−ν+ν2)where(29)μa=σka=σωa2/g=σ(m001/m000)2/gis an integral 



measure of the wave steepness, ν=m000m002/m0012−1 is the spectral bandwidth 
(Longuet-Higgins, 1975), and mijl are the moments of the directional wave 
spectrum S(ω, θ) (see Appendix A). 
Approximating the right tail of P2STm with a Gumbel distribution, the expected value 
of η2STm is expressed as (Benetazzo et al., 
2015)(30)η¯2STm=E{η2STm}=σh¯2STm≈σ[(h1+μ2h12)+γ(h1−2N3h1+N2N3h12+N2h1+
N1)−1(1+μh1)]where h1 is normalized mode of the probability function of linear ST 
extremes (see Appendix A). The expected maximum was derived by Fedele et al., 
(2013) for spatial nonlinear wave fields. The intensity function α2 of the nonlinear 
distribution is given by(31)α2=(h1−2N3h1+N2N3h12+N2h1+N1)/(1+μh1)and the 
standard deviation of η2STm is evaluated 
as(32)σ2m=σπ6α2=σπ6(h1−2N3h1+N2N3h12+N2h1+N1)−1(1+μh1) 
Eq. (30) can be rewritten 
as(33)η¯2STm/σ=h¯2STm=(h1+μ2h12)+γα1(1+μh1)=(h1+γα1)+(μ2h12+γα1μh1)=h¯1STm
+μ2(h12+γα12h1)=h¯1STm+μ2[h¯1STm2−(γα1)2]=(h¯1STm+μ2h¯1STm2)−μ2(γα1)2whic
h shows the dependence of the nonlinear extreme crest on its linear approximation. 
In particular, the first term (h¯1STm+μ2h¯1STm2) is the second-order nonlinear 
maximum elevation computed via the Tayfun quadratic form (27) applied to the 
linear ST extreme elevation h¯1STm (see Appendix A). The second term μ2(γα1)2is 
orders of magnitude smaller than the first one as the probability density function of 
extremes is generally rather narrow (Gumbel, 1958, Holthuijsen, 2008), thus the 
ratio (γα1)2≪ 1. For instance the stormy sea state described in Benetazzo et al. 
(2015) had μ2(γα1)2= 0.0007. 

3. Observation of extreme waves 

3.1. The sample of ST wave fields 

In this study, we analyze maximum waves of a sea surface elevation sample η(x, y, 
t) obtained by processing a stereo-image sequence provided by an imaging system 
mounted on the “Acqua Alta” oceanographic research platform (northern Adriatic 
Sea, Italy; Fig. 3). 



 
Fig. 3. (left panel) The Adriatic Sea (northern Mediterranean Sea) bathymetry and the 
surrounding orography. The black-red dot shows the position of the ‘‘Acqua Alta’’ 
oceanographic research platform (AA), which is situated 15 km off the 
Venetian littoral in (on average) 17 m deep water. (right panel) The platform structure 
and position of the stereo-camera system (white-red markers on the platform's roof). 
(For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
 

The stereo-camera rig was based upon a Wave Acquisition Stereo System 
(WASS; Benetazzo, 2006, Benetazzo et al., 2012), which provides a time-sequence 
of 3D wave fields (see for example the sea surface elevation map shown in Fig. 4). 
The sea surface region framed by the stereo-camera system has area A of about 
2900 m2, and during the experiment (starting at 0940 UTC on 10 March 2014), 
WASS operated for a duration D = 1798 s. The WASS accuracy along the vertical 
direction is estimated about 3 cm (see Appendix B). For additional details on data 
processing and statistics, the reader is referred to Benetazzo et al. (2015). 

 



Fig. 4. (left panel) Example of 3D wave field retrieved by WASS, and (right panel) 
right stereo-camera image with highlighted (dashed green lines) the surface area used 
for stereo-matching. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
 

Using the acquired sequence of 3D wave data, the frequency–direction wave 
spectrum S(ω, θ) was estimated using the extended maximum entropy 
method (EMEP; Hashimoto et al., 1994); the S(ω, θ) spectrum (shown in Fig. 5) 
was resolved with 180 equally spaced directions and 1024 equally distributed 
frequencies from 0.05 Hz to 2.00 Hz, the latter being also the cut-off frequency 
used to low-pass filter the data. Over the entire space-time sample, the significant 
wave height is Hs = 4σ = 1.34 m (where σ = 0.334 m is the standard deviation of η), 
the spectral mean zero-crossing period is Tm02 = 3.6 s, the peak period is Tp = 5.4 s, 
and the mean direction of wave propagation θm = 248 °N. The spectral width is ν 
= 0.50. The sea state corresponds to a short-crested and mature wind sea with wave 
age U10 / cp = 1.31, where U10 = 11 m/s is the wind speed at 10-m height measured 
during the experiment, and cp is the linear wave phase speed corresponding to Tp. 
The one-sided width (directional spreading; Holthuijsen, 2008) of the omni-
frequency directional distribution is 23°, which was computed between ± 90° the 
mean direction θm to limit the influence of noise. An estimate of the mean wave 
steepness μ was derived from the moments of the wave spectrum in accordance 
to Eq. (28) and results μ = 0.06. The significant steepness that we define as Hskp / 2 
(Adcock et al., 2015) is 0.09, where kp is the wavenumber corresponding 
to Tp computed using the linear dispersion relation. The minimum value of the 
autocovariance function ψ1* was derived from S(ω) and it is equal to −0.67. 

 
Fig. 5. - (left panel) Omnidirectional angular frequency spectrum estimated using the 
stereo wave data (OBS). The blue dashed and solid lines are reference spectral slopes 



proportional to ω−4 and ω−5, respectively. (right panel) Observed frequency–direction 
spectrum. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 

3.2. Space-time maxima 

Following the procedure described in Benetazzo et al. (2015), the sea surface 
elevation 3D fields were analyzed to isolate the largest ST wave groups evolving 
within the region shown in Fig. 4. The analysis of grouping properties using 
remote sensors (e.g., Nieto Borge et al., 2013) or fully-nonlinear simulations 
(Sanina et al., 2016) has been typically conducted using ad-hoc techniques to 
detect coherent 3D groups. In this study, we have followed a somewhat simplified 
approach, in which wave groups were visualized within the 3D fields and then 
grabbed at the positions (xi, yi) where groups were supposed to be close to the apex 
of their development. Afterwards, only groups whose local maximum crest height 
exceeded the rogue wave threshold 1.25Hs were retained. In doing so, 23 spatial 
locations have been selected, and time records η(xi,yi,t) extracted from the ST 
sample at the corresponding positions (xi, yi). Within each record, we selected the 
wave (labeled as Bi, with i = 1 to 23) with maximum crest 
height ηBim = max{η(xi,yi,t)}, which was referred to as a realization of the ST 
maximum elevation. 
The individual and mean temporal profiles nearby the crests ηBim are shown in Fig. 
6, the surface elevation being normalized by Hs, and time by Tp. It is noteworthy 
that the general shape of the largest waves is regular: indeed profiles do not display 
positive minima, and the sea surface elevations are narrowly distributed around the 
highest crests (where the confidence in estimate of the mean is maximum). 
Notwithstanding, scattering of sea surface elevations occurs around the mean 
profile, and troughs preceding and following the extreme crests are highly 
dispersed both in amplitude and timing (even though the mean profile is rather 
symmetric, as we shall discuss in Section 4). The average zero-crossing period of 
the largest waves of the records is 4.7 s (smaller than Tp, consistently with the QD 
theory results), with a standard deviation of 0.4 s, and at the troughs of the mean 
profile the confidence is twice as larger as that at the crest. For comparison, Fig. 
6 shows also the profile of the rogue wave recorded at the Draupner platform on 01 
January 1995 (Adcock et al., 2011, Cavaleri et al., 2017, Fedele et al., 2016, Haver, 
2004, Magnusson and Donelan, 2013); it is clear that all these “particularly high 



crests” have, once normalized, very similar temporal profile. This strongly 
suggests that the Draupner wave was not so exceptional after all, simply 
reproducing on a larger scale what should be expected in those conditions as the 
highest crest of a dynamical space-time wave group passing close to the platform. 

 
Fig. 6. Time series of the normalized profiles of the rogue waves Bi around the 
maximum crest heights ηBim, versus the normalized time t / Tp. (left panel) Individual 
temporal profiles. (right panel) Mean profile (red) and its confidence band (red-
shaded area, computed as the standard deviation of the elevations around the mean 
profile). Black curves show profiles of waves with maximum trough depth following 
the maximum crest (dashed line) and preceding the maximum crest (solid line). The 
dashed blue curve shows the Draupner rogue wave profile. For graphical purposes, 
maximum crest heights are imposed occurring at t = 0. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
 

Summary statistics of the rogue waves Bi is shown in Table 1: the mean crest 
height is η¯Bm = E{ηBim} = 1.38Hs, up to a maximum elevation of 1.59Hs, and the 
mean maximum crest-to-trough wave height is H¯Bm = E{HBim} = 2.08Hs, 
with HBim ranging between 1.79Hs and 2.42Hs. 

Table 1. Statistics of the rogue waves Bi: crest height (ηBim) and crest-to-trough height 
(HBim). Mean value (E{}), maximum value (max), minimum value (min), and standard 
deviation (std) of the variables are displayed. 

Variable E{} max min std 

ηBim / Hs 1.38 1.59 1.25 0.09 

HBim / Hs 2.08 2.42 1.79 0.16 



3.3. Time (one-point) maxima 

The crest and wave heights of the 23 waves Bi are compared with the maximum 
wave parameters derived from the ST wave field with no conditioning about the 
selection of the sea surface points (xi, yi). In doing so, we have resampled the data 
by randomly choosing 23 locations (xp, yp) on the xy-plane of Fig. 4. Time records 
at positions (xp, yp) have been processed with a zero-crossing analysis, and out of 
the 23 values we have retained the mean values (indicated by an overbar) of the 
quantities: maximum crest height (η¯pcm), crest-to-trough height of the wave with 
maximum crest height (H¯pcm), and maximum crest-to-trough height (H¯pm). We 
have then repeated 105 times the random sampling to derive a distribution of mean 
wave parameters (Fig. 7 and Table 2). 

 
Fig. 7. Histogram of the one-point mean maximum crest height (η¯cpm / Hs), 
associated crest-to-trough wave height (H¯pcm / Hs), and maximum crest-to-trough 
wave height (H¯pm / Hs). The sample space is the set of 105 randomly chosen 
realizations of 23 wave maxima on the xy-plane of Fig. 4. 
Table 2. Statistics (over 105 randomly chosen realizations of 23 wave maxima on 
the xy-plane of Fig. 4) of the one-point mean maximum crest height (η¯pcm), mean 
crest-to-trough height (H¯pcm) of the waves with maximum crest, and mean 
maximum crest-to-trough height (H¯pm). Mean value (E{}), maximum value (max), 
minimum value (min), and standard deviation (std) of the variables are displayed. 



Variable E{} max min std 

H¯pm / Hs 1.77 1.90 1.62 0.03 

H¯pcm / Hs 1.67 1.86 1.46 0.04 

η¯pcm / Hs 1.08 1.19 0.95 0.03 

The average value of the mean quantities are E{η¯pcm} = 1.08Hs, E{H¯pcm} 
= 1.67Hs, and E{H¯pm} = 1.77Hs, all with similar (and small) variability 
(std in Table 2) around the mean (indeed distributions shown in Fig. 7 are rather 
narrow). At most, the maximum average crest height is max{η¯pcm} = 1.19Hs, 
largely smaller than η¯Bm = 1.38Hs, as well as max{H¯pcm} 
= 1.86Hs < H¯Bm = 2.08Hs. These results clearly indicate that, for short-crested 
waves, the largest wave elevations occur at specific positions of the sea surface, 
and without a conditioning on the selection of time series it is unlikely to gather 
(on average) very large sea surface elevations. This constraint imposed on the 
observational strategy has consequences for the measurement of rogue waves. 
 

4. Results 

4.1. Comparison between space-time and time extreme waves 

In this section outputs of theoretical models used to predict extreme waves' 
parameters will be assessed with observations. Firstly, we compare (Fig. 8) the 
histogram of the observed ST maxima ηBim with the Gumbel-like probability 
density function (pdf) approximating the linear P1STm (see Appendix A) and 
nonlinear P2STm distribution functions. As already pointed out by Benetazzo et al. 
(2015), despite the limited number of observational data, there is close agreement 
between the empirical and the theoretical pdf of nonlinear ST extremes. As a 
result, assuming extreme elevations ηBim relative to a duration D = 1798 s and a sea 
surface region with sides X = Y = 11.2 m (corresponding to the side of a square 
with area A / 23), the expected value of the nonlinear ST maximum crest height 
is η¯2STm=1.37Hs(σm2=0.10Hs), which agrees favorably with the observed mean 
maximum η¯Bm. Assuming a Gaussian wave field, the theoretical pdf is shifted 
towards smaller elevations, in a way that the expected value of the linear ST 
maximum crest is height η¯1STm=1.19Hs(σm1=0.08Hs), about 13% smaller 
than η¯2STm. 



 
Fig. 8. Distribution of ST extreme sea surface elevations. The empirical histogram 
(OBS) is calculated using the maximum crest heights ηBim of the rogue waves Bi. The 
empirical function is compared with the Gumbel approximation of the second-order 
nonlinear pdf (2ST-GL) and linear pdf (1ST-GL) of ST extreme elevations. 
 

Secondly, the extreme wave parameters derived from one-point wave records  
(Section 3.3) are compared with the expectations of theoretical model developed 
for the prediction of maxima in time series of sea surface elevations. In this 
respect, the expected value of the maximum linear wave height (H1Tm) in a time-
sequence of N waves is computed as the integral of the probability of exceedance 
as follows(34)H¯1Tm=∫0∞Pr{H1Tm>H}dH=∫0∞1−{1−exp[−41−ψ1*(HHs)2]}NdHwhere 
we have assumed wave heights H in a time record distributed according to the 
Boccotti's asymptotic formula (Boccotti, 2000), which holds for linear waves and 
accounts for the spectral bandwidth (expressed by the parameter ψ1*). 
In our case, the average number of waves in the record is N = D / Tm02 = 1798 / 
3.6 = 499, and the expected maximum wave height is H¯1Tm= 1.68Hs, which 
underpredicts of about 5% (mainly due to nonlinear effects; see Section 4.2) the 
observed value E{H¯pm} = 1.77Hs. Moreover, assuming crest heights in a wave 
record distributed according to the second-order nonlinear Tayfun (1980) model, 



we have computed an expected time extreme crest height of η¯2Tm = 1.03Hs, about 
5% smaller than the observed mean E{η¯pcm}. 
Additionally ST and time extreme wave parameters derived in Sections 
3.2 and 3.3, respectively, are inter-compared to assess the relationship, if any, 
between maximum crest heights and maximum crest-to-trough wave heights. For 
the case of the 23 waves Bi the ratio rST = E{HBim / ηBim} = 1.51 is close to the ratio 
derived using one-point time extremes, rT = E{H¯pcm/ η¯pcm} = 1.54, confirming 
the presence of a similarity law (trough the autocovariance function) between 
maximum crest and wave heights at different scales. This provides an aspect in 
which maximum wave events (whether rogue or not) do not differ, as it has been 
already noticed by Christou and Ewans (2014). The two ratios rST and rT are 
overestimated by the prediction of the linear QD model that would provide the 
value (1 - ψ1*) = 1.67, but they are well determined by the nonlinear extension of 
the QD theory, which, for a linear crest height of 1.25Hs (as in Fig. 2) predicts a 
ratio equal to 1.55. Also, for point-like wave observations the ratio rpH = E{H¯pm} / 
E{H¯pcm}= 1.06 is larger than 1, and it is explicitly computable using Eq. (17), 
which, for ψ1* = −0.67, provides rH = 1.09. 
In this respect, Fedele (2015) guessed the presence of a scaling law between the 
ratio r2m = η¯2STm/ η¯2Tmand the normalized sea surface area XY used to compute 
the ST extremes. Focusing on the data used in this paper, Fig. 9 shows the 
distribution of r2m as a function of the normalized area rA = (XY) / (LxLy), 
where Lx and Ly are the mean zero-crossing wavelength and the mean wave crest 
length, respectively. We note a strong dependence of r2m on rA, confirming what 
shown by Fedele et al., (2013) and Barbariol et al., (2015) using observational and 
numerical data, respectively. As a preliminary attempt, observational data has been 
least-square fitted with a power law of the type(35)r2m=a(rA)b+1which, passing 
through the origin, guarantees that η¯2STm= η¯2Tm when the spatial area collapses 
to a single point (i.e. XY = 0). The empirical coefficients from the present fit 
are a = 0.38, b = 0.12, which provides a good fitting to the data (root-mean-square 
error is ∼10−2). However, as the extreme η¯2STm is also function of D and Tm, 
which have been excluded by the law (35), we have verified (not shown here) a 
dependence of coefficients a and b on the ratio D / Tm. This functional dependence, 
as well as the relation of r2m to other parameters as the wave steepness, should be 
further investigated. 



 
Fig. 9. Observation of space-time and time extreme crest heights. The black solid line 
shows the ratio between the second-order nonlinear ST (η¯2STm) and time extremes 
(η¯2Tm) as a function of the normalized sea surface area (XY) / (LxLy). The average 
number of waves in the time record is 499. A power-law type fitting curve is shown 
as dashed red line. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 

4.2. Comparison between theoretical and empirical wave profiles and heights 

In this section we shall examine how well temporal profiles and wave heights of 
the rogue waves extracted from the ST sample (Section 3.2) agree with the results 
of the QD and ST models. Assuming dominant the second-order nonlinearities, in 
the following, we neglect the differences, in the order of O(μ2), between first- and 
second-order spectral densities. Therefore we derive the ST autocovariance 
function ψ1(X, τ) from the observed directional spectrum S(ω, θ), and the temporal 
functions ψ1(τ) and λ(τ) from the omnidirectional spectra S(ω) and S(k), 
respectively. The minimum of the autocovariance function ψ1(τ) occurs at time τ* 
= 2.30 s, close to mean half-cycle period (2.35 s) of the waves Bi. 

4.2.1. Predictions of the QD model 



Aiming at predicting the shape of the rogue waves Bi we have firstly used the QD 
model to estimate the mean linear profile η¯1Bi(τ) of the maximum wave of each 
record. To this end, the linear component (η1Bim) of the observed maximum crest 
heights (ηBim) was derived using the Tayfun quadratic Eq. (27) as 
follows(36)η1Bim=σ−1+1+2μηBim/σμ 
The expected value of the linear crest height is E{η1Bim} = 1.21Hs, which is in very 
good agreement with the prediction η¯1STm = 1.19Hs of the Gaussian ST extreme 
model. For each wave Bi the mean linear profile (hereinafter 1QD) around η1Bim is, 
according to (6), given by(37)η¯1Bi(τ)=η1Bimψ1(τ)σ2which is shown in Fig. 10 for 
4 (namely B01, B07, B20, B22) out of the 23 waves. It can be seen that the linear 
profiles η¯1Bi(τ), apart from the expected underestimation of the maximum crest 
height, predict crests less steep and troughs shallower than those of the observed 
waves. The similarity between the observed and the linear waves is measured by 
the cross-correlation coefficient (CC) between the profiles within the time interval 
(-τ*, +τ*). The value of CC (Table 3) is on average 0.95, at most CC = 0.99 for the 
record B20, and at least CC = 0.86 for the record B22. The latter (see bottom-right 
panel of Fig. 10), indeed, displays elevations around the crest that significantly 
deviate from the theoretical wave group shape at X = (0, 0). The ratio ρ between 
standard deviations of observed and theoretical linear profiles within the time 
interval (-τ*, +τ*) is 0.87 on average, that is, the variance of the theoretical profile 
around the maximum crest is generally larger than the variance of the observations. 



 
Fig. 10. Time series of the normalized profiles of the rogue waves Bi around the 
maximum crest heights ηBim, versus the normalized time t / Tp. OBS: observed wave 
profile. Theorethical profiles: 1QD, linear QD model; 2QD, second-order nonlinear 
QD model; 1STQD, linear ST prediction and QD model; 2STQD, second-order 
nonlinear ST prediction and QD model. The blue-shaded area represents the 99% 
confidence interval of 2STQD. (top-left) Wave B01 with maximum crest height. (top-
right) Wave B07 with maximum crest-to-trough wave height. (bottom-left) Wave B20 
with maximum CC between OBS and 2STQD. (bottom-right) Wave B22 with 
minimum CC between OBS and 2STQD. In Figure, the time lag τ is indicated with 
the time axis t, and t0 = 0. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
Table 3. Statistical parameters of observed and theoretical extreme wave shapes around 
the maximum crest height within the time interval (-τ*, +τ*) = (−2.3 s, 2.3 s). OBS: 
observed waves. Theorethical profiles: 1QD: linear QD model; 2QD: second-order 
nonlinear QD model; 1STQD: linear ST prediction and QD model; 2STQD: second-
order nonlinear ST prediction and QD model. Variables: E{H}: mean wave height; 
E{CC}: mean CC between observed and theoretical profiles; E{ρ}: mean ratio 
between the standard deviations of observed and theoretical profiles. 
 



Variable OBS 1QD 2QD 1STQD 2STQD 

E{CC} – 0.95 0.97 0.95 0.97 

E{ρ} – 0.87 0.89 0.88 0.89 

E{H} / Hs 2.08 2.01 2.10 2.00 2.08 

 
For each wave Bi, the theoretical profile of the second-order nonlinear elevation is, 
according to (10), evaluated 
as(38)η¯2Bi(τ)=η1Bimψ1(τ)σ2+16η1Bim2λ(τ)σ4=η¯1Bi(τ)+16η1Bim2λ(τ)σ4and it is 
displayed in Fig. 10 as 2QD. As we can infer from Table 3 the nonlinear 
formulation improves the performances of the predictions based on the QD model. 
Results shown in Fig. 10 deserve some considerations that can explain the 
differences between observed and theoretical profiles. Firstly, we have allowed a 
comparison between an expectation (1QD and 2QD) and a single realization (OBS) 
of a stochastic process. Strictly speaking, for the sake of assessment, we would 
need a set of independent realizations of waves with given crest height, from which 
inferring an empirical mean profile. Secondly, the QD model that predicts the 
temporal profile of waves with large crests assumes that the wave crest is at its 
maximum elevation (and thus at the wave group center x0). This condition, most 
likely, was not satisfied by all waves. Indeed, the limited spatial extension of the 
stereo-camera field of view restricted the possibilities to collect the complete ST 
dynamics of the wave groups. Therefore, although crest heights were indeed local 
maximum elevations of the groups, the positions (xi, yi) of the waves Bi were close 
to, but not exactly at the envelope center. Thus, for comparison, we should 
consider the ST group at a position (different for each wave) displaced from the 
unknown position x0. The effect of this critical task is illustrated, for example, 
in Fig. 11, where three temporal profiles of the ST autocovariance function are 
displayed: the profile at the focusing point x0 (where X = 0), which corresponds to 
ψ1(τ)/σ2, and two profiles taken at positions displaced from x0. We note that the 
latter have smaller crest height and an asymmetric shape around the maximum 
elevation (see also for comparison the observed profiles with maximum trough 
depth shown in Fig. 6). The question remains, for any wave record, as to what 
temporal transect of the ST autocovariance must be used to infer statistical 
properties of the one-point observation of maxima. 



 
Fig. 11. Time series of the normalized temporal profile of the linear ST group at 
different spatial positions: i) focusing point, where the group exhibits its maximum 
crest elevation (blue line); ii) growth stage (solid black line); iii) decay stage (dashed 
black line). In Figure, the time lag τ is indicated with the time axis t, which is scaled 
with Tp, and t0 = 0. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 
 

Observing the theoretical profiles in Fig. 11 we recognize that, changing the point 
of observation of the ST group, whilst the crest height shrinks (of about 20%) 
while leaving the envelope center, the maximum wave height decreases to a lesser 
extent (about 8%). We have also seen in Section 2.1.3 that the wave height is 
slightly influenced by the second-order nonlinearities. Both of these conditions 
could be the reason why the mean value of the linear crest-to-trough height of the 
waves Bi given by(39)H¯1QD=E{η1Bim}(1−ψ1*)and equaling 2.01Hs well agrees 
(difference of about 3%) with H¯Bm (OBS in Table 3). As expected, however, 
inclusion of nonlinearities improve the performance of the QD model (in Eq. 
(19) the coefficient β = 1.5*10−5 m−1), and it is relevant that the mean 
maximum nonlinear wave height given 
by(40)H¯2QD=E{η1Bim(1−ψ1*)+λ(0)−λ*6σ4η1Bim2}is very close 
(H¯2QD = 2.10Hs in Table 3) to H¯Bm (difference of 1%). 



These results, albeit assessed on a single dataset, indicate that linear and nonlinear 
versions of the QD model can be successfully used to estimate the mean wave 
height of ST extreme waves in a time record. A shortcoming of this theory is that 
the resulting model cannot be regarded as a complete predictive model, as it relies 
on the observed crest height (and its linear part). This limitation will be discussed 
in the next section, where the predictions of the ST extreme model will be used to 
scale the theoretical profiles of wave groups. 

4.2.2. Predictions of the combined QD and ST models 

The results presented so far have shown that scaling the time-dependent wave 
profiles with the autocovariance function allows the prediction of extreme waves 
heights in terms of spectral integral quantities. The practical application of QD is 
limited by the assumption that the sea surface maximum elevation is known a 
priori, which is not always doable in practice. However, we have seen that a high 
local maximum is, with a very high probability, also the crest height of a wave 
within a specific 3D wave group, and that the expected value of the highest wave 
crests is well approximated by the prediction of the second-order nonlinear ST 
extreme model. This would suggest the use of the QD theory adopting, as scale 
factor, the ST extreme model predictions. 
Along this line, we thus stop trying to reproduce each single wave profile Bi, as we 
have done in the previous section, but rather we attain a mean time-dependent 
profile that is compared with the waves Bi. In this respect, linear (hereinafter 
1STQD) and second-order nonlinear (hereinafter 2STQD) sea surface profiles 
around the maximum crest are scaled with η¯1STm and they are respectively given 
by(41)η¯1ST(τ)=η¯1STmψ1(τ)σ2(42)η¯2ST(τ)=η¯1STmψ1(τ)σ2+16η¯1STm2λ(τ)σ4=η¯1
ST(τ)+16η¯1STm2λ(τ)σ4 
The temporal profiles η¯1ST and η¯2ST are compared (Fig. 10) with the 
observations and their statistical performances are presented in Table 3. The linear 
profile η¯1SThas statistics very similar to those of 1QD, as we have seen 
that η¯1STm ≈ η¯Bm. A better performance is provided by 2STQD that predicts the 
mean maximum wave height equal to H¯Bm. Being CC = 0.97 on average, the OBS 
and 2STQD temporal profiles have a very high correlation (at most CC = 0.99 for 
B20 in Fig. 10), despite the ratio ρ of the standard deviations is still smaller than 1, 
as a consequence that the theoretical profiles are generally more rounded around 
the mean level than the observations. 



5. Conclusions 

In this study we have investigated the shape and height of extreme waves collected 
within a space-time sample of sea surface elevations. The sample has been 
analyzed to gather 3D moving wave groups where and when they were close to the 
apex of their development and consequently they exhibited largest elevations. 
Wave time records at the 2D position of ST maxima have been extracted from the 
sample and they have become main object of our study. In particular, we have 
examined the maximum crest height (always exceeding the rogue wave threshold 
1.25Hs), the maximum wave height, the height of the wave with maximum crest 
height, and the temporal profile of the extreme wave of each record. Observations 
have been compared, on the one hand, with results of space-time and time 
stochastic model for nonlinear wave extremes, and, on the other hand, with the 
predictions of the linear and nonlinear Quasi-Determinism model for the shape of 
very high waves. 
Moreover, results of ST extreme (via Euler Characteristic approach) and QD 
models have been coupled in a common framework to estimate, from a given wave 
energy directional spectrum, temporal profiles and heights of maximum waves 
during a sea state. This has implications for numerical predictions of extreme wave 
profiles and heights. In this respect, the computations of maximum crest and wave 
heights as formulated in this study are implemented as new outputs of the 
numerical wave model WAVEWATCH III® version 5.16 (WW3DG 
2016, Barbariol et al., 2017). 
Main results of the study can be summarized as follows: 

•Compared to observations, the QD model predicts favorably the average height of 
waves with maximum crest height. The most likely reason for this is that, as the 
central wave of the group runs throughout the envelope center, the crest-to-trough 
height of the maximum wave changes, but not too much (differences are generally 
smaller than 10%). The second-order nonlinear extension of the QD model 
provides a better agreement, but differences between linear and nonlinear 
estimates are small (in the order of 2 to 3%). 
•The height of waves with maximum crest height is smaller (of about 5 to 10%) 
than the maximum wave height in a wave record: this is a corollary of the QD 
theory, which is also able to determine the relationship between the two heights. 
Theoretical results have been confirmed by the observations. 



•Care must be taken when comparing one-point observations of the profile of very 
large waves and predictions based on the autocovariance function (the core of the 
QD theory). In this study we have discussed reasons that can weaken a fair 
comparison. It is worth recalling that a comparison between observed and 
theoretical profiles is possible only if measurements are collected at the sea surface 
position where the maximum crest elevation is at the ST group center (i.e. the 
focusing point). For oceanic observations, this condition cannot be always satisfied 
neither verified, thus QD model for single wave profile estimation should be used 
carefully. 
•We have analyzed the similarity between ST and time maximum wave 
parameters. We have verified that wave heights and crest heights relate at all scales 
in a similar behavior, which is well predicted by a second-order nonlinear 
extension of the QD model. Moreover, in search of a universal law connecting ST 
and time extremes, we have preliminarily explored how the ratio between the two 
extremes does change as a function of the sea surface area used to compute the ST 
extreme probability. 
•Even though it is not an original result that maximum elevations (even belonging 
to rogue waves) of 3D wave groups are well predicted by stochastic models for ST 
extremes, we have seen that for short-crested waves it is unlikely to gather these 
maxima unless one would be able to observe the 3D groups at the apex of their 
development. In this condition, we have seen that ST extreme and QD model 
results may be coupled in a predictive model for maximum wave heights within a 
sea state with specified wave energy spectrum. Indeed, all variables used to predict 
the temporal wave profiles η¯1ST(τ) and η¯2ST(τ) are derived from integral 
quantities of the directional wave spectrum (see also Appendix C). 
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Appendix A. The EC model for ST extreme of Gaussian 
wave fields 

The EC approach (Adler, 2000, Adler, 1981) was introduced in the field of oceanic 
waves by Baxevani and Rychlik (2006), and afterwards extended to include the 
complete ST structure of the covariance matrix Λ by Fedele (2012). Considering a 
Gaussian sea state over a ST domain (dimension N = 3) the 
matrix Λ becomes(A.1)Λ=[E{η1xη1x}E{η1xη1y}E{η1xη1t}E{η1yη1x}E{η1yη1y}E{η1
yη1t}E{η1tη1x}E{η1tη1y}E{η1tη1t}]where  ∇η1 = (η1x, η1y, η1t), and η1x, η1y, η1t are the 
first-order derivative of η1 with respect to the x-, y-, and t-coordinate, respectively. 
Using the random-phase/amplitude model results, the minors of the covariance 
matrix Λ can be determined from the moments mijl of the wave spectrum S(ω, θ) 
defined as follows(A.2)mijl=∫∫kxikyjωlS(ω,θ)dωdθ. 
Moments mijl with i ≠ 0 and j ≠ 0 depend on the orientation of the coordinate 
system and it should be a natural choice to select the x- and y-axis orientation in 
such a way that the variance of spatial derivatives along one axis (say x) is 
maximized (Baxevani and Rychlik, 2004). This condition is satisfied assuming the 
mean direction of wave propagation coincident with the x-axis, and it is used as 
reference direction in this study. 
Using the spectral moments the determinant of Λ can be written as (Fedele, 
2012)(A.3)detΛ=m200m020m002(1+2αxtαxyαyt−αxt2−αxy2−αyt2)where the following 
parameters(A.4)αxt=m101m200m002;αyt=m011m020m002;αxy=m110m200m020measur
e the “irregularity” of the sea state, as they equal the normalized cross-correlation 
coefficient between the components of the sea surface gradient. It is worth noting 
that while some moments mijl change with the orientation of the axes (Baxevani and 
Rychlik, 2004), the determinant of Λ, and consequently the ST extreme estimate, is 
unaffected by an axes rotation. With the selected axes, 
moments m200 m020 and m002 are associated with the mean zero-crossing period (Tm02), 
the mean zero-crossing wavelength (Lx) and the mean wave crest length (Ly) by the 
following(A.5)Tm02=2πm000m002;Lx=2πm000m200;Ly=2πm000m020where m000 = σ 2 
is the variance of the ST field η1(x, y, t). 



Using the definition of E{EC(SU,z)} and the approximation (25) the probability that 
the maximum sea surface elevation exceeds the linear threshold z = z1 over the 
interior domain Ω ∈ ℜ3 of U is given by (Fedele, 
2012)(A.6)P3D=Pr{η1STm>z1|Ω}=N3[(z1σ)2−1]PR(z1)where N3 = 2πN3D, 
and N3D approximates the average number of 3D waves within U and it is given 
by(A.7)N3D=XLxYLyDTm021+2αxtαxyαyt−αxt2−αxy2−αyt2and(A.8)PR(z1)=exp(−z122
σ2)is the Rayleigh probability of exceedance for crest heights. In (A. 7) X and Y are 
the side lengths of the horizontal sea surface covered by U, and D is its duration. If 
we consider a portion of U spanning the boundary surfaces (i.e. XD, YD and XY in 
ℜ2) of U, the probability that the threshold is exceeded on these surfaces can be 
expressed as(A.9)P2D=Pr{η1STm>z1|XD,YD,XY}=N2z1σPR(z1)where N2 = 2πN2D, 
and N2D approximates the average number of 2D waves on surfaces XD, 
YD and XY and it is given by 
(A.10)N2D=(XDLxTm021−αxt2+XYLxLy1−αxy2+YDLyTm021−αyt2) 
For domains in ℜ1 (namely the edges X, Y and D of the region U) the probability of 
exceedance of the absolute maximum is expressed 
as(A.11)P1D=Pr{η1STm>z1|X,Y,D}=N1PR(z1)where N1 = N1D approximates the 
average number of 1D waves as follows(A.12)N1D=XLx+YLy+DTm02 
The final expression for P1STm is obtained correcting P3D with P2D and P1D to account 
for the possibility that the excursion set touches the boundary / edges 
of U (Worsley, 1996). The exceedance probability P1STm is thus approximated 
for z >> σ as follows (Fedele, 
2012)(A.13)P1STm=Pr{η1STm>z1|U}={N3[(z1σ)2−1]+N2z1σ+N1}PR(z1) 
The inclusion of the three probability functions into the general formula (A.13) 
was argued by Romolo and Arena (2015). However, the correction of the 3D term 
has been proved to be in fair agreement with experimental data (Fedele et al., 
2013), and it becomes negligible as soon as the X and Y spatial dimensions of the 
region U become comparable or larger than the reference wave 
lengths Lx and Ly (Fedele, 2015). 
The expected value (η¯1STm) of η1STm is determined approximating the probability 
of extremes P1STm with a Gumbel distribution (Fedele, 2012, Socquet-Juglard et al., 
2005), which provides the following equation (Gumbel, 
1958)(A.14)η¯1STm=E{η1STm}=σh¯1STm≈σ(h1+γα1)where γ ≈ 0.5772 is the Euler-
Mascheroni constant, α1 is the intensity function (equal to the reciprocal of the 
scale parameter of the Gumbel distribution), and h1 is the normalized most 



probable (namely mode) linear extreme value, which is approximated as the largest 
positive solution of the following implicit equation 
in h(A.15)(N3h2+N2h+N1)exp(−h22)=1 
The intensity function α1 is given by(A.16)α1=h1−2N3h1+N2N3h12+N2h1+N1such 
that the normalized mean maximum elevation h¯1STmis given 
by(A.17)h¯1STm=h1+γ(h1−2N3h1+N2N3h12+N2h1+N1)−1 
The uncertainty of the estimate η¯1STm is defined as follows (Gumbel, 
1958)(A.18)σ1m=σπ6α1=σπ6(h1−2N3h1+N2N3h12+N2h1+N1)−1in a way that the 99% 
confidence interval of the largest values distribution is bound by ± 3σ1m around the 
mean value. 

Appendix B. Accuracy of the stereo wave imaging system 

In this Appendix we take a look at the errors associated with the stereo 
reconstruction of the 3D sea surface. Two principal sources of uncertainties can be 
expected in any stereo method: the uncertainty in the determination of the 
corresponding pixels (matching error) and the uncertainty in the recovery of 3D 
coordinates (quantization error). Indeed, when designing a stereo-camera system 
one must compromise to meet mainly the conflicting requirements of accurate 3D 
estimation and accurate image feature matching. In fact, as pointed out by Mironov 
et al., (2012), the major difference between stereo wave imaging and the classical 
problem of stereo reconstruction is in the fact that the water surface reflectance is 
not Lambertian. However, Benetazzo (2006) shown that the matching error is 
small for highly-textured water surfaces, and Jähne (1993) indicates that the 
matching error is small when the wave slope is much larger than the inclination of 
the stereo cameras optical axis. For installing the cameras, the geometry of the 
stereo rig was empirically tuned so that the interplay between the light vector, the 
point of view and the surface normal is similar for the two cameras. Thus, we 
assume that the disparity of each corresponding pixel is dominated by the spatial 
position of the 3D surface point and not by the rather complex water 
surface bidirectional reflectance distribution function. 
To provide an accurate 3D reconstruction, care has to be taken when choosing the 
imaging system parameters, the principal being the camera cell size and pixel 
numbers, the focal length, the baseline, the camera reciprocal orientation, and the 
distance from the stereo-camera system to the scene of interest. Under general 
conditions, in order to keep small the range error due to quantization (hence to 



provide high accuracy in the 3D reconstruction) the baseline-to-distance ratio must 
be large; however, accurate feature points matching requires that this ratio be small 
(Jähne, 1993, Rodriguez and Aggarwal, 1990). An optimal set-up must be found. 
Based on our experience on stereo wave imaging at the sea (Benetazzo, 
2006, Benetazzo et al., 2016, 2015, 2012) the correspondence problem is 
negligible, in absence of sun glitters, setting stereo cameras with optical axes 
(almost) parallel in order to reduce as small as possible the angle between them, 
and letting the average baseline-to-distance as small as possible (around 0.10, 
much smaller than historical set-up used for field experiment; Jähne, 1993). For 
our tests this ratio was around 0.07. 
What remains to quantify is the quantization error; indeed because of the discrete 
nature of the image formation system, the image coordinates of each pixel can 
suffer from quantization errors up to 0.5 pixel, therefore the disparity can be in 
error as much as 1 pixel. Because of this error, the estimation of the range along 
the optical axis is inexact, as well along the two directions orthogonal to it. The 
error along the optical axis dominates (Benetazzo, 2006, Jähne et al., 
1994, Rodriguez and Aggarwal, 1990). The quantization error is alleviated by 
using subpixel (fractional pixel) correspondence. Subpixeling reduces errors 
depending on the weight function adopted to estimate the cross-correlation map 
(Nobach and Honkanen, 2005), and has a large impact on the accuracy of the 
smaller wavelengths (Benetazzo et al., 2012). 
An estimation of the quantization error for the stereo system used in his study is 
obtained through direct 3D computation of a synthetic wavy surface mapped onto 
the imaged area shown in Fig. 4. Quantization error was then computed through a 
comparison between the original 3D shape and that one retrieved after applying the 
stereo method. In this respect, Fig. 12 shows the map of the expected quantization 
error within the water surface region matched by the stereo cameras. The 
maximum absolute error is about 3 cm and the root-mean-square error is 1 cm, 
assuming a factor of 5 as a conservative upper bound for sub-pixel improvement 
(Benetazzo et al., 2016). 



 
Fig. 12. Map of the quantization error along the vertical axis within the horizontal 
field of view of the stereo cameras. 
 

To meet requirements of reduced matching and quantization errors we used a 
modified version (available as free software at http://www.dais.unive.it/wass/) of 
the dense-stereo algorithm proposed by Hirschmüller (2008), made available 
within the Open Source Computer Vision (OpenCV) library (Bradski & Kaehler, 
2008; http://opencv.org), in order to match (with sub-pixel accuracy) all the pixels 
of the stereo pair. The semi-global nature of the method has the great advantage 
that it can relate the photometric consistency of several matching pixels to improve 
the reliability of the disparity map, especially for areas with loosely distinctive 
features. As a consequence, we can keep a relatively small window size (13 × 13 
pixels) while still obtaining a precise localization of the matches between images. 
Finally, before being processed for rogue wave detection, time series of sea surface 
elevations at each position of the xy-plane were smoothed using a weighted linear 
least squares local regression and low-pass filtered at 2.0 Hz. 

 

 



Appendix C. Sensitivity to the spectral resolution 

In this study, extreme sea surface elevations and the surrounding profile have been 
formulated as a function of the wave spectrum S(ω, θ) and its integral moments. 
This assumption makes the calculation easier to a certain extent, but it requires that 
the spectrum is available. In this respect, phase-averaged wave numerical 
models are a routinely and well-consolidated tool used to establish wave conditions 
around the globe and in regional seas. The variable integrated by this class of 
models is the directional wave spectrum, which, therefore, may be directly used for 
the computations described in this study. Nevertheless, for practical applications, 
the number of frequencies / wavenumbers / directions that discretize the spectrum 
is generally limited to ease and speed up the computational process. Therefore, 
1024 frequencies and 180 directions used to represent the wave spectrum during 
the experiment with stereo cameras are far from being applicable to the purpose of 
wave models. Less resolved spectra are generally employed, and here we are 
interested in verifying to what extent these conditions alter the predictions of the 
ST and QD models. 
We have thus remapped (via linear interpolation; see Fig. 13) the wave spectra 
shown in Fig. 5 using 36 equally spaced directions, and 40 frequencies 
geometrically distributed such that fn+1 = 1.1 fn, with f1 = 0.05 Hz and f40 = 2.06 Hz. 
The new spectrum has been firstly used for the computation of the parameters 
required to estimate the probability levels of ST maxima. The expected ST 
maximum sea surface elevations (both linear and second-order nonlinear) 
estimated using the subsampled spectrum are very close to those given by the 
highly-resolved spectrum, with differences smaller than 1%. The differences 
between spectral moments mijl are of the same order of magnitude, and for the 
subsampled spectrum the normalized first minimum of the autocovariance 
function ψ1* = −0.68. Most likely the reason for these small changes is that the 
wave spectra are typically smoothed and continuous, so their integral quantities are 
slightly modified by a change in resolution (unless the spectral range is abruptly 
changed). The resampling also slightly affects the sea surface elevations η¯1(τ) 
and η¯2(τ) around the maximum crests, which show (Fig. 14) negligible differences 
when computed with the two differently resolved wave spectra. 



 
Fig. 13. Subsampling of the observed wave spectra (Fig. 5) using a reduced number of 
frequencies (for a total of 40 geometrically distributed such that fn+1 = 1.1 fn, 
with f1 = 0.05 Hz and f40 = 2.06 Hz) and directions (for a total of 36 equally spaced to 
cover the full circle). (left panel) Omnidirectional angular frequency wave spectrum 
estimated from stereo wave data (OBS). The blue dashed and solid lines are reference 
spectral slopes proportional to ω−4 and ω−5, respectively. (right panel) Observed 
frequency–direction spectrum. 
 

 
Fig. 14. Linear (I-order) and second-order nonlinear correction (II-order correction) of 
the temporal shape of the ST wave group elevation at X = (0, 0) near a wave crest 
with linear height η¯1STm = 1.19Hs. The profiles are determined using the observed 



wave spectra shown in Fig. 5 (high) and Fig. 13 (low). In Figure, the time lag τ is 
indicated with the time axis t, scaled with Tp, and t0 = 0. 
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