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Abstract

We propose a new generalization of the skew-normal distribution (Azzalini,

1985) referred to as the Kumaraswamy skew-normal. The new distribution is

computationally more tractable than the Beta skew-normal distribution (Mameli

and Musio, 2013) with which it shares some properties.
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1. Introduction

Some recent developments in distribution theory have proposed new tech-

niques for building distributions. Among these, the methods used to construct

the Beta generalized (Beta− F ) (Jones, 2004) and the Kumaraswamy general-

ized (Kw−F ) (Cordeiro and de Castro, 2011) class of distributions have received5

a lot of attention. The first work concerning the Beta-generated family was pro-

posed by Eugene et al. (2002), who defined and analysed the Beta-normal dis-

tribution. Further, Jones (2004) formalized the definition of the Beta-generated

family. Its work has inspired many researchers and has fuelled an enormous

literature regarding this family of distributions; see for example Gupta and10

Nadarajah (2005), Pescim et al. (2010), Mameli and Musio (2013). Recently,

following the idea of the class of Beta-generated distributions (Jones, 2004),

Cordeiro and de Castro (2011) proposed a new family of generalized distribu-
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tions, called Kumaraswamy generalized family, by means of the Kumaraswamy

distribution (Kumaraswamy, 1980; Jones, 2009). The maximum likelihood esti-15

mation for the family Kw − F distribution results simpler than the estimation

in the Beta − F family. Motivated by these facts, we define in this paper a

new generalization of the skew-normal based on the Kumaraswamy generalized

family, which is more tractable of the Beta skew-normal (BSN) introduced by

Mameli and Musio (2013). The resulting distribution, which will be called the20

Kumaraswamy skew-normal (KwSN), could be considered a valid alternative

to the BSN distribution with which it shares some similar properties. More-

over, for special values of the parameters the KwSN distribution is related to

the Beta skew-normal one. The KwSN distribution is always unimodal, unlike

the Beta skew-normal which can be either unimodal or bimodal. The KwSN25

model shows more flexibility than the SN one. Furthermore, under the null

hypothesis of normality the KwSN distribution, as the BSN one, is not iden-

tifiable. However, due to the tractability of the KwSN density, all the possible

sets of parameters for which this density reduces to the normal one can be es-

tablished by exploiting the Lambert W function; see Jeffrey et al. (1998). The30

rest of the paper organizes as follows. Section 2 defines the KwSN distribution

and presents some properties of the new distribution. Section 3 investigates

maximum likelihood estimation and analyses a data set of Australian athletes

measurements. Finally, concluding remarks are given in Section 4.

2. The new model35

In this section we first define the Kumaraswamy skew-normal distribution

and then we present some of its properties.

2.1. Definition and simple properties

For a given distribution function F (x), with associated density function (pdf)

f(x), Cordeiro and de Castro (2011) represented the cumulative distribution

function of the Kumaraswamy-F distribution as

GK
F (x)(x; a, b) = 1− (1− F (x)a)b, with x ∈ R. (1)
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The density function correspondent to (1) is

gKF (x)(x; a, b) = abf(x)F (x)a−1(1− F (x)a)b−1, with x ∈ R. (2)

The family of these distributions will be indicated by Kw − F (a, b). Replacing

the distribution function of the skew-normal Φ(x;λ) in (2), we obtain a new

distribution, which will be called the Kumaraswamy skew-normal distribution

(KwSN(λ, a, b)), whose density function is

gKΦ(x;λ)(x;λ, a, b) = abφ(x;λ)(Φ(x;λ))a−1(1− Φ(x;λ)a)b−1, with x ∈ R. (3)

This class can be generalized by including a location parameter µ and a scale

parameter σ > 0. Thus if X ∼ KwSN(λ, a, b), then Y = µ + σX is a40

KwSN random variable with vector of parameters ξ = (µ, σ, λ, a, b) or Y ∼

KwSN(µ, σ, λ, a, b). Hereafter, we will denote by SN the skew-normal, by

N(0, 1) the normal, by KwN the Kumaraswamy-normal and by Kw the Ku-

maraswamy distributions.

We now give some simple properties of KwSN(λ, a, b) density in (3).45

Property 1. Let X ∼ KwSN(λ, a, b).

(a) If a = b = 1, then X ∼ SN(λ).

(b) If λ = 0, then X ∼ KwN(a, b).

(c) If a = b = 1 and λ = 0, then X ∼ N(0, 1).

(d) If a = 1
2 , b = 1 and λ = 1, then X ∼ N(0, 1).50

(e) If a = 1, b = 1
2 and λ = −1, then X ∼ N(0, 1).

(f) Let Y = Φ(X;λ), then Y ∼ Kw(a, b).

(g) Let Y = Φ(X;λ)a, then Y ∼ Kw(1, b). Let Z = 1− Y , then Z ∼ Kw(b, 1).

(h) As λ → +∞, the KwSN density tends to the Kumaraswamy half-normal

density (Cordeiro et al., 2012).55

(i) If b = 1, then X ∼ BSN(λ, a, 1).

Proof. The results follow immediately by taking into account expression (3)

and from elementary properties of the skew-normal distribution.
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Graphical displays of the KwSN density with various combination of the pa-

rameters are shown in Figure 1. It should be noted that the KwSN density does60

not exhibit bimodality for any parameter values, unlike the BSN one which is

unimodal or bimodal according to the region in which (λ, a, b) lie (Mameli and

Musio, 2013).
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Figure 1: The KwSN(λ, a, b) for different values of λ, a and b.

As a result of the skewing mechanism introduced by Ferreira and Steel

(2006), the KwSN(λ, a, b) density can be represented as

gKΦ(x;λ)(x;λ, a, b) = φ(y)p(Φ(y)), −∞ < y < ∞

with p(·) on (0, 1) given by

p(u;λ, a, b) = 2abΦ(λΦ−1(u))
(

Φ(Φ−1(u);λ)
)a−1 (

1− Φ(Φ−1(u);λ)a
)b−1

. (4)

In view of this, the KwSN(λ, a, b) density is a member of the unified skewed

distributions of Abtahi et al. (2011). Therefore a stochastic representation of65

X ∼ KwSN(λ, a, b) follows from Proposition 1 in Abtahi et al. (2011). In

particular, the following property is obtained.

Property 2. Let U be a standard normal variable and let V be independent of

U with pdf p on (0, 1) given by equation (4).

• When W = V −Φ(U), the conditional distribution of U given (W = 0) is70

KwSN(λ, a, b).
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• Let X ∼ KwSN(λ, a, b). Then Φ(X)
d
= V .

Given the closed form of the cumulative distribution function, the KwSN distri-

bution can be easily simulated by using the probability integral transformation,

or by using Property 1 item (f). Supposed that a, b ≥ 1, another method for75

generating samples from the KwSN is given by the algorithm of acceptance-

rejection in Nadarajah et al. (2012).

2.2. Moment generating function and moments

In this section we provide the moment generating function of theKwSN(λ, a, b)

distribution. The proofs of the following two propositions are given in the sup-80

plementary material.

Proposition 1. The moment generating function of X ∼ KwSN(λ, a, b) is

given by

MX(t) = 2abe
t
2

2 EZ

[

(Φ(Z;λ))a−1(1− Φ(Z;λ)a)b−1Φ(λZ)
]

,

where Z ∼ N(t, 1).

We also get a recursive formula for the k − th moment.

Proposition 2. Let k ∈ N and k ≥ 1. If X ∼ KwSN(λ, a, b), with b > 1 then

EX

[

X
k
]

= (k − 1)EX

[

X
k−2
]

+ λEX

[

X
k−1 φ(λX)

Φ(λX)

]

+

+ (a− 1)EX

[

X
k−1 φ(X;λ)

Φ(X;λ)

]

− baEV

[

V
k−1 φ(V ;λ)

Φ(V ;λ)

]

, (5)

where V ∼ KwSN(λ, a, b− 1) is independent from X.85

Moments of the KwSN distribution, as the ones of BSN (Mameli and Musio,

2013), have not a closed form. However, they can be calculated numerically by

using any numerical computing environment. The classical skewness (γ1) and

excess kurtosis (γ2), and the Bowley’s skewness (B) and Moors’ kurtosis (M) of

aKwSN(λ, a, b) random variable are numerically computed for various values of90

the parameters; see table 1 of the supplementary material. See Alexander et al.

(2012) for the treatment of the Bowley’s skewness and Moors’ kurtosis in the
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Generalized Beta-Generated family of distributions of which the Kumaraswamy

skew-normal distribution is a member. It is worth to remark that the index

of skewness γ1 is restricted to the interval (−0.995, 0.995) of the SN distribu-95

tion, while the index of kurtosis γ2 lies in the range (0, 0.869) (Azzalini (1985)).

Then from table 1 of the supplementary material it can be inferred that the

Kumaraswamy skew-normal distribution exhibits more flexibility than the SN

one.

Graphical displays with various combinations of parameters, given in the sup-100

plementary material, show the numerical behaviour of the mean and of the

skewness γ1 as functions of b for various values of a and λ.

The following theorem presents expressions for moments of the KwSN when

the parameters a and b lie in the set of positive integers.

Theorem 1. Let X ∼ KwSN(µ, σ, λ, a, b) for integers values of a and b, then105

E [Xn] = µ
n + 2abµn

b−1
∑

j=0

(−1)j
(

b− 1

j

)

n
∑

i=1

(

n

i

)

(

σ

µ

)i

·

·







a(j+1)−1
∑

k=0

(−1)k
(

a(j + 1)− 1

k

)

Ii,k,λ + (−1)iIi,a(j+1)−1,−λ







,

where

Ii,k,λ =

∫ ∞

0

z
i
φ(z)Φ(λz)(1− Φ(z;λ))kdz.

Proof. The proof parallels that of theorem 1 in Gupta and Nadarajah (2005)

and is given in the supplementary material.

2.3. The KwSN(1, n, b)

As previously mentioned, moment generating function and moments ofKwSN(λ, a, b)

are in general difficult to evaluate analytically. However, we will show that mo-110

ments and moment generating function of the sub-model KwSN(1, n, b), ob-

tained by considering λ = 1 and an integer parameter a = n, can be easily de-

rived by using results on the Balakrishnan skew-normal distribution (Sharafi and

Behboodian, 2008). Throughout the section, we shall denote by X ∼ SNB(l, α)

a Balakrishnan skew-normal random variable with parameters l and α and by115
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cl(α) the associated normalizing constant. The proofs of the following two the-

orems are given in the supplementary material.

Theorem 2. The moment generating function of X ∼ KwSN(1, n, b) is

MX(t) = 2nb

∞
∑

j=0

(−1)j
(

b− 1

j

)

e
t
2

2 E[Φ(V )2n(1+j)−1],

where V ∼ N(t, 1).

The moments are given by the following recursive formula.

Theorem 3. Let X ∼ KwSN(1, n, b), then

E
[

X
k
]

=
b

√
π2

k+1

2

∞
∑

j=0

(−1)j
(

b−1
j

)

(1 + j)







2n(1 + j)[2n(1 + j)− 1]

c(2n(1+j)−2)

(

1√
2

) E
[

W
k−1
]

+ (k − 1)E
[

Y
k−2
]







,

where W ∼ SNB
(

(2n(1 + j)− 2), 1√
2

)

and Y ∼ SNB ((2(n+ j)− 1), 1).120

Similar properties hold also for the moments of the BSN(1, n, b), sub-model of

the BSN(λ, a, b); see Mameli (2012) and Mameli and Musio (2015). Moreover,

note also that moments of the SNB requires the evaluations of the normalizing

constant cl(α), whose approximated values can be found in Steck (1962).

2.4. Distributional properties125

Here, we focus on distributional properties of the KwSN distribution and

on the Kw − F family.

Let us first start with the following property whose proof is given in the sup-

plementary material:

Property 3. Let X ∼ KwSN(λ, a, b) be independent of Y ∼ KwSN(λ, a, d)130

then X| (Y ≥ X) ∼ KwSN(λ, a, b+ d), where a, b, d > 0.

The proofs of the following properties are quite similar to that of Property (3)

and are therefore omitted.

In a similar fashion, we get the following property:

Property 4. Let X ∼ KwSN(λ, a, 1) be independent of Y ∼ KwSN(λ, c, 1).135

Then X|(Y ≤ X) ∼ KwSN(λ, a+ c, 1), where a, c > 0.
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Note that the property follows easily by Property 1 item (i) and Mameli and

Musio (2013). In the special case that Y = Y(n), the largest order statistic, the

property permits to generate aKwSN(λ, n, 1) by using the acceptance-rejection

technique; see Mameli and Musio (2013) and references therein.140

The results presented in Properties 5 and 6 are generalizations to the class of

the Kumaraswamy generalized family Kw−F (Cordeiro and de Castro, 2011),

defined at equation (2), of Properties 3 and 4, respectively. The parameters

a, b, c and d are positive real parameters which control skewness and tail weights

of the family.145

Property 5. Let X ∼ Kw−F (a, b) be independent of Y ∼ Kw−F (a, d) then

X| (Y ≥ X) ∼ Kw − F (a, b+ d), where a, b, d > 0.

Property 6. Let X ∼ Kw−F (a, 1) be independent of Y ∼ Kw−F (c, 1). Then

X|(Y ≤ X) ∼ Kw − F (a+ c, 1), where a, c > 0.

2.5. An interesting proposition150

The Kumaraswamy skew-normal distribution, as well as the BSN distri-

bution, leads to the normal distribution for three different parameter sets; see

properties outlined in section 2.1. It can be inferred from these properties that

identifiability problems can occur under the null hypothesis of normality, there-

fore parameters cannot be uniquely determined. Then it would be desirable155

to determine all values of the parameters a, b and λ which yield the normal

distribution. Due to the tractability of the KwSN density, next result shows

that it is possible to determine all these possible sets of parameters. The proof

of this proposition is given in the supplementary material.

Proposition 3. Let X ∼ KwSN(λ, a, b) and ξ = (λ, a, b). The distribution of160

X reduces to a normal distribution if and only if one of the following conditions

holds:

1. ξ = (0, 1, 1);

2. ξ = (1, 1
2 , 1);

3. ξ = (−1, 1, 1
2 ).165
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3. Estimation

As we have seen in the previous section, the parameters representing the true

null distribution are not unique in the Gaussian case and classical likelihood

result does not applies (see e.g. Liu and Shao (2003) and references therein).

Hence, we just consider a special subclass of this family by choosing b = 1
a
,

this choice leads to a model which under the null hypothesis of normality is

described only by the parameters a = 1, b = 1 and λ = 0.

Consider a sample x1, . . . , xN from the KwSN(a, 1
a
, µ, σ, λ) density. The log-

likelihood function l(ξ) for the vector of parameters ξ = (a, µ, σ, λ) is

l(ξ) = −N log σ+

N
∑

i=1

[

log (φ (zi;λ)) + (a− 1) log (vi) +

(

1

a
− 1

)

log (1− vai )

]

,

where zi =
xi−µ
σ

and vi = Φ(zi;λ).

The components of the score vector are given in the supplementary material.

Estimation of the parameters could be carried out, for instance, through the

numerical procedure nlminb available in the computing R environment.170

3.1. Illustrative example

We analyse the data set ais available in the R-package sn (see Azzalini

(2014), Cook and Weisberg (1994)), which consists of different measurements

on 202 Australian athletes. Here, we concentrate on the variable measuring the

body mass index (BMI). We note that the data have positive skewness (0.9465)175

and positive excess kurtosis (2.1835). We fit the BSN , the KwSN , and the

SN distributions to the BMI data and we use the Akaike Information Criterion

(AIC) to compare the three models. Table 1 displays parameter estimates

with standard errors in parenthesis for the three distributions as well as the

values of the AIC and of the log-likelihood (log − lik). In line with the AIC180

criterion, the KwSN distribution furnishes the best model. Figure 2 illustrates

the histogram of the data in conjunction with the fitted densities and the kernel

density estimate. Even though, the KwSN and the BSN show very similar fit,

the estimates of the unknown parameters of BSN distribution display larger
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variability than the corresponding estimates of the KwSN . To investigate the185

variability of the estimates we conducted a simulation study, whose results are

reported in the supplementary material (Tables 2–4). Estimation of parameters

was based on 2,000 Monte Carlo replications from three simulated samples of

size 500 from the skew-normal distribution for different values of the parameters.

The simulation study shows the performances of the estimates of the parameters190

along with the standard errors in parentheses for the KwSN , for the BSN and

for the SN distributions. The study has highlighted that the estimates of the

parameter λ of the BSN distribution display slightly more variability than the

corresponding estimates of the KwSN .

Moreover, a further simulation study, not reported, shows that when the195

parameter a is far from 1.5 the maximization algorithm does not attain the

global maximum and converges to a local maximum both for the KwSN and

the BSN distributions; the convergence of the algorithm to the global maximum

depends mainly on the choice of the starting values.

Table 1: Parameter estimates for the BMI data set with standard errors in parenthesis and

the associated AIC and log-likelihood (log − lik) values for each of the models considered

a µ σ λ AIC log − lik

BSN 0.1622 (0.1139) 24.1582 (1.0280) 21.1714 (19.1637) 20.3588 (23.6592) 980.3090 −486.1545

KwSN 0.2996 (0.0892) 24.5336 (1.2452) 15.2074 (11.5439) 10.4375 (8.5670) 980.2804 −486.1402

SN − 19.9697 (0.3288) 4.1327 (0.3142) 2.3126 (0.5135) 986.1988 −490.0994

4. Final remarks200

In this paper, we study some structural properties of a new generalization of

the skew-normal distribution, called the Kumaraswamy skew-normal distribu-

tion, which represents a valid alternative to the Beta skew-normal one (Mameli

and Musio, 2013). Both distributions have the normal and the skew-normal

distributions as special cases. The Kumaraswamy skew-normal model, as well205

as the Beta skew-normal one, presents problems of identifiability under the null

hypothesis of normality. Due to the tractability of the KwSN , it is possible
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Figure 2: Histogram of the BMI data set for 202 Australian athletes with superimposed the

estimated densities: BSN (solid line), KwSN (dashed line), SN (dotted line), and kernel

estimate (dot-dashed).

to determine all the sets of parameters for which the density reduces to the

normal. There is not an analogous result for the Beta skew-normal density.

Investigation of the maximum likelihood estimator under loss of identifiability210

requires deeper work and will be presented in a future paper. Furthermore, it

could be of interest to study the behaviour of the maximum likelihood estimator

in relation with the inferential problems of the skew-normal distribution.
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