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Abstract: Recently reported acetosolv soft- and hardwood lignins as well as ionosolv soft- and
hardwood lignins were transformed into monomeric aromatic compounds using either a vanadate or
a molybdate-based catalyst system. Monomers were generated with remarkable, catalyst-dependent
selectivity and high depolymerisation yields via oxidative exo- and endo-depolymerisation processes.
Using the vanadate–hydrogen peroxide system on acetosolv pine lignin, vanillin and isovanillin
were produced as main products with depolymerisation yields of 31%. Using the molybdate
system on acetosolv and ionosolv lignin, vanillic acid was the practically exclusive product,
with depolymerisation yields of up to 72%. Similar selectivities, albeit with lower depolymerisation
yields of around 50% under standardised conditions, were obtained for eucalyptus acetosolv lignin,
producing vanillin and syringaldehyde or vanillic acid as products, by using the vanadate- or the
molybdate-based systems respectively.

Keywords: oxidative lignin upgrade; catalytic lignin oxidation; vanadate; molybdate; organosolv;
ionosolv; lignin; biomimetic

1. Introduction

Lignocellulosic biomass received great interest as a sustainable and renewable source of fuel
and platform chemicals in recent years [1,2]. Numerous studies target the conversion of cellulose
and hemicelluloses into ethanol and other biofuels as well as platform chemicals for the chemical
industries [3–5]. In sharp contrast, research on the conversion of lignin has often been limited to its
removal from the other two principal biomass components either to enhance their chemical and/or
enzymatic valorisation. Conversion of lignin—representing after all 30% of the weight and 40% of the
energy content of lignocellulosic biomass and being isolated as a by-product in form of various technical
lignins with different characteristics by cellulose-focused processes—is still a challenge [6,7]. Enzymatic
and chemical reactions have been proposed for oxidative lignin valorisation. Several biocatalysts,
mimics of biocatalysts, and inorganic catalysts have been studied regarding formation of aromatic
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monomers for the chemical industries. Nevertheless, both reductive and oxidative degradation
methods have been studied and presented [8–12]. Mechanistic insights obtained using lignin model
compounds to simulate the most abundant bonding motifs within the backbones of various technical
lignins were only scarcely applicable to the complexity of a lignin oligomeric and/or polymeric material.
In case of oxidative degradation, a series of oxidation products is obtained even in case of simple
models, pointing at a lack of selectivity of the reactions triggered by the various catalytic sstems.
As a noteworthy exception, only the methylrheniumoxide catalyst system has been reported [13,14].

Vanadium-based catalysts have been reported for lignin valorisation, interestingly both for
oxidative and reductive depolymerisation approaches [8,9,11,15–20]. Molybdenum catalysts have been
widely reported for the oxidative valorisation of technical lignins, especially in form of polyoxometalates
(POMs) [21,22]. More recently, mixed, i.e., bifunctional catalyst systems such as copper-vanadium [23]
and molybdenum-vanadium [24] systems have been reported for lignin valorisation.

In case of enzymatically mediated reactions, obtaining a large panel of different oxidation
products—due to the natural evolution of phenoxy radical intermediates—is furthermore associated to
a limited biocatalyst lifetime, which constitutes an additional problem for lignin valorisation. Potential
ways to tackle both issues consist of supporting and/or encapsulating the enzymes or to mimic the
catalytic centre of lignolytic enzymes using stable organometallic complexes that would eventually
exhibit tuning possibilities towards a higher product selectivity [25–28].

In an effort to combine such an active centre-mimicking approach with our interest in evaluating
the use of non-lignolytic enzymes in lignin valorisation [29], we tested a vanadate (V)-based and
a molybdate (Mo)-based catalytic system [V] and [Mo], respectively, as mimics of the reactive vanadate
and molybdate centres in bromide peroxidases [EC 1.11.1.18] and xanthine oxidase [EC 1.17.3.2],
respectively. The vanadate and molybdate catalyst systems can, based on their reactivity, be eventually
considered suitable non-lignolytic biocatalyst mimics for lignin degradation. The reactivity of the
catalyst systems holds the promise that they are capable of oxidising lignin in a more selective way
than the typical lignolytic enzymes, i.e., laccases or manganese peroxidases due to the different range
of electric potentials [30]. The present study deals with the investigation of the oxidation potential of
vanadate and molybdate catalysts toward lignin oxidation.

Two hardwood and two softwood lignins, isolated from Eucalyptus nitens and Pinus pinaster,
in form of both organosolv and ionosolv lignins have been selected. These lignins have been reported
and characterised before [31–33] and were chosen as starting materials for this study also because the
structural characterization had revealed noteworthy structural differences between the acetosolv and
ionosolv lignin of each biomass. These lignins were used in this study without any further refinements
or fractional purifications. We refrained in this study from following the wide-spread approach in
which the catalyst activity is demonstrated using monomeric, dimeric, or sometimes trimeric lignin
models. While this approach allows relatively facile mechanistic understanding of product formation,
applicability of the results to whole lignin degradation is often scarce, due to the high density of
reactive sites along the lignin backbone prone to undergo inter- and intramolecular reactions not
delineable using lignin models.

2. Materials and Methods

General information: Reagents and solvents were purchased from Sigma-Aldrich/Merck KGaA,
Darmstadt, Germany and Carlo Erba, Milano, Italy, and used without further purification, if not stated
otherwise. Acetosolv pine lignin (AP) and acetosolv eucalyptus lignin (AE), as well as ionosolv
pine lignin (IPB) and ionosolv eucalyptus lignin IEB were produced and characterised as described
elsewhere [31–33]. Ammonium vanadate (V), NH4VO3, and ammonium molybdate tetrahydrate
(Mo), (NH4)6Mo7O24·4H2O were purchased from Sigma Aldrich/Merck KGaA and used without
further purification.

Oxidation of lignins: 50 mg of lignin were weighted in a screw cap vial and suspended in 1 mL of
a pre-made stock solution containing the catalyst. Stock solutions comprised: (i) 30 µL perchloric acid;



Processes 2020, 8, 1161 3 of 13

(ii) 450 µL hydrogen peroxide 30% (w/v); (iii) 2520 µL distilled water; (iv) the vanadate or molybdate
catalyst at concentrations of 5%, 7.5%, or 10% (w/w) of liquid phase. Reactions were heated to 80 ◦C for
9 h while being continuously stirred and allowed to cool down to room temperature overnight.

Degradation products were isolated in an extraction process. The reaction mixture was centrifuged
to separate any solids, and the liquid phase was taken and mixed with an equal volume of ethyl
acetate. As internal standard, 50 µL of a solution of 4-ethoxy-3-methoxy benzaldehyde in ethyl
acetate at a concentration of typically 50 µmwere mixed into the solution. The biphasic system was
vigorously shaken for 30 s. The organic phase was separated, dried over MgSO4, and centrifuged.
An aliquot was sampled for analysis by gas chromatography coupled to mass spectrometry (GC-MS)
as described below.

Solid lignin residues were isolated by centrifugation and washed four times using a 1 m aqueous
solution of sulphuric acid. Lignin residues were dried to constant weight for 31P NMR analysis
as described below. Experiments were run in duplicate by default, and selected experiments were
additionally repeated for verification of results. An error margin for solid mass returns/depolymerisation
yields of max ±6% was encountered.

Quantitative 31P NMR spectroscopy: In general, a procedure similar to the one originally published
and previously applied was used [34]: approx. 30 mg of the lignin were accurately weighed for
analysis after phosphitylation using an excess of 2-chloro-4,4,5,5-tetramethyl-1,3,2-dioxa-phospholane
(Cl-TMDP). 31P NMR spectra were recorded on a Bruker, (Billerica, MA, USA, 300 MHz or Bruker
700 MHz NMR spectrometer controlled by TopSpin software, using an inverse gated decoupling
technique with the probe temperature set to 20 ◦C. The maximum standard deviation of the reported
data is 0.02 mmol g−1, while the maximum standard error is 0.01 mmol g−1 [35,36]. NMR data were
processed with MestreNova (Version 8.1.1, Mestrelab Research, Santiago di Compostella, Spain).
Technical loadings are determined by comparing the abundancies of total aromatic hydroxyl groups of
the product lignin with the starting lignin.

Gel permeation chromatography (GPC): For GPC measurements, approx. 2–3 mg of solid were
dissolved in HPLC-grade dimethylsulphoxide (DMSO) (Chromasolv®, Sigma-Aldrich/Merck KGaA)
containing 0.1% (m/v) lithium chloride (LiCl). A Shimadzu, Kyoto, Japan, instrument was used consisting
of a controller unit (CBM-20A), a pumping unit (LC 20AT), a degasser (DGU-20A3), a column oven
(CTO-20AC), a diode array detector (SPD-M20A), and a refractive index detector (RID-10A) and was
controlled by Shimadzu LabSolutions (Version 5.42 SP3). For separation, a PLgel 5 µm MiniMIX-C
column (Agilent, Santa Clara, CA, USA, 250 × 4.6 mm) was eluted at 70 ◦C at 0.25 mL min−1 flow
rate with DMSO containing 0.1% lithium chloride for 20 min. Standard calibration is performed with
polystyrene sulfonate standards (Sigma Aldrich/Merck KGaA, MW range 0.43–2.60 × 106 g mol−1) in
acid form; lower calibration limits are verified by the use of monomeric and dimeric lignin models.
Final analyses of each sample were performed using the intensities of the UV signal at λ = 280 nm
employing the Shimadzu analysis software.

Gas chromatography coupled to mass spectrometry (GC-MS): A prepared sample of extractives
of each reaction was analysed by gas chromatography coupled with mass spectrometry, using
a Shimadzu, Kyoto, Japan, GCMS QP2010 Ultra equipped with an AOi20 autosampler unit. A SLB®-5ms
Capillary GC Column (L × I.D. 30 m × 0.32 mm, df 0.50 µm) was used as the stationary phase,
ultrapure helium as the mobile phase. The Shimadzu LabSolutions GCMS Solution software
(Version 2.61) was used. The various components were identified by comparison against the NIST11
library. For control of sensitivity of analysis, selected samples were analysed after silylating the
OH-groups present in the analytes: after this first analysis, 100 µL dry pyridine and 100 µL of
N,O-bis(trimethylsilyl)-trifluoroacetamide were added to the aliquot, in order to repeat the analysis,
after gently stirring the mixture for 30 min at room temperature, using identical GC-MS conditions.
Reproducibility of single sample measurements was encountered with an error of maximum ±0.5%.
Reproducibility across duplicated experiments was approx. ±5%.
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3. Results and Discussion

3.1. Catalytic Systems

Taking inspiration from natural enzymes, several V- and Mo-based systems have been proposed in
the literature, to perform sustainable oxidations on various substrates [37–39]. Basically, the mechanism
of action of the [V]- and [Mo]-catalysts here adopted tracks the one of vanadium-dependent
haloperoxidase enzymes [38,40]. Dissolving a [V]-catalyst precursor, such as NH4VO3, in acidic
aqueous solution (pH = 1), in the presence of H2O2, a vanadium-monoperoxido complex forms,
which is the effective catalytic species in solution. Conversely, at higher pH values, the formation of
the diperoxido vanadium species occurs, which is less effective than the mono-peroxido in oxidation
and oxybromination reactions. Therefore, in this study, pH = 1 was chosen to perform the oxidative
lignin degradation.

Similarly, dissolution of ammonium molybdate at pH = 1 in water, with H2O2, leads to the
formation of the diperoxido–molybdenum complex, which is much more stable than the molybdenum
monoperoxo derivative [38].

Importantly, the reactivity of vanadium-peroxo and molybdenum-diperoxo complexes is definitely
superior than that of H2O2 in oxidation reactions, therefore the oxidation of different alkanes, alkenes,
alcohols, aromatic substrates, sulphides, as well as oxybromination reactions were successfully achieved
with such catalytic systems [41–44]. Literature reports suggest that vanadate/peroxide oxidation system
acts following substrate specifics in radical or ionic modes [38,41,45,46].

3.2. Lignin Starting Materials

The lignins chosen for this study are representative samples of a series of lignins isolated in course
of a process optimisation and have recently been presented and characterised [31–33]. More specifically,
they comprised two softwood lignins isolated from Pinus pinaster (acetosolv, AP, and ionosolv isolated
using [bmim] HSO4, IPB), and two hardwood lignins isolated from Eucalyptus nitens (acetosolv, AE,
and ionosolv isolated using [bmim] HSO4, IEB).

With respect to the acetosolv lignins that exhibited structural features typical for this type of
lignin and close to those attributed to pristine lignin, ionosolv species showed clear signs of structural
degradation when compared to the milder isolation process, i.e., the organosolv treatments. IPB and
IEB presented lower molecular weight distributions and comparatively lower contents of aliphatic
OH-groups (Table 1), a fact ascribed to a partial degradation of the backbone [31]. The use of these
lignin samples was envisaged to allow for delineating the effect of a ‘pre-degradation’ to the oxidative
valorisation process.

The catalytic activity of the chosen oxidative systems was expected to take effect mainly via
the OH-groups present in the lignin structures; changes in relative abundances of hydroxyl groups
based on consumption upon degradation and/or polymerisation is indicative of catalyst activity
and allows mechanistic insight. Table 1 details again the OH-group contents as determined by 31P
NMR spectroscopy.

3.3. Catalytic Degradation of Softwood Lignins

Degradation studies started using the softwood samples reported in Table 1, i.e., AP and IPB, and
the Vanadate system discussed above. In order to test for a potential direct downstream application of
the degrading catalyst in an industrial set-up, lignins were used as obtained in the initial isolation
process. Effectiveness of treatments was tested via the analysis of newly generated low molecular
weight components extractable in ethyl acetate. Results are summarised in Table 2.

Using the softwood acetosolv lignin AP, an initial screening of conditions revealed that optimum
conversions are obtained employing catalyst loadings of 7.5% or 10% (w/w) at elevated temperatures
of 80 ◦C for reaction times of 9 h. Lower catalyst loadings of 5% (w/w) resulted in lower conversions
under otherwise unchanged conditions.
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Table 1. Distribution of OH-groups and molecular weight key data of acetosolv and ionosolv lignins
tested for oxidative valorisation.

Lignins a AP IPB AE IEB IPB
[V]10 IPB

[Mo]10

OH-group Abundance (mmol/g)

aliphatic OH 0.23 1.36 0.34 1.28 1.31 0.80 b

Condensed 0.96 0.95 2.90 3.28 0.89 0.06 b

o-disub. phenols (S units) — — 1.25 1.23 — —
4-O-5′ + 5-5′ 0.96 0.95 1.65 2.05 0.89 0.06 b

o-monosub. phenols (G units) 1.14 1.56 0.60 0.73 1.22 0.07 b

p-OH phenols 0.21 0.24 0.15 0.14 0.36 0.04 b

total phenolic OH 2.32 2.75 3.65 4.16 2.47 0.17 b

carboxylic OH 0.24 0.22 0.31 0.05 0.33 0.75 b

total phenolic OH/aliphatic OH 9.9 2.0 10.8 3.2 1.9 0.2 b

total phenolic OH/
condensed phenolic OH 1.9 2.2 1.2 1.2 2.8 2.8 b

Mn [kDa]
(PDI) c

1.75
(7.3)

1.40
(5.8)

1.20
(2.4)

1.20
(2.5) n.d. d n.d. d

a: AP: acetosolv pine lignin; IPB: ionosolv pine lignin isolated using [bmim] HSO4; AE: acetosolv eucalyptus lignin;
IEB: ionosolv eucalyptus lignin isolated using [bmim]HSO4; IPB

[V]10: ionosolv pine lignin using [bmim] HSO4
treated with 10% V; IPB

[V]10: ionosolv pine lignin using [bmim] HSO4 treated with 10% Mo. b: Compound not
fully soluble. c: PDI: polydispersity index. d: Not determined, sample not soluble.

Under the chosen conditions, the vanadate catalyst system [V] generated a series of oxidation
products on the basis of AP that are comparable to products observed in the archival literature
(Table 2). The molybdate catalyst system [Mo], on the other hand, led to detectable product formation
on the basis of AP when applied in loadings of 5–10% (w/w). In any case, the molybdate system
revealed a higher selectivity as fewer products were formed in comparatively higher amounts (Table 2).
In both cases, catalytic activity of the present metal species is evident from the significantly increased
depolymerisation yields compared to the blank sample.

In case of both [V]- and [Mo]-catalysed degradation, lignin polymerisation takes place as a
background reaction, as indicated by the increase in both the number average molecular weight (Mn)
and the polydispersity as compared to the starting material. This polymerisation can be explained
by the activation of the lignin by the catalyst system by formation of radicals (vide infra, mechanistic
discussion). Importantly, also in case a metal species is absent, polymerisation is observed (Table 2,
blank sample), pointing towards an expected activation of the lignin by the perchloric acid alone.
Control of this intrinsic activation is obtained, however, only when a metal catalyst is present as well.
Polydispersities in case of [V]- and [Mo]-mediated reactions are significantly lower than in the case of
the blank sample. Overall, both depolymerisation yields as well as the characteristics of the reisolated
lignins thus indicate a beneficial role of the metal catalysts in the investigated valorisation system.

When subjecting ionosolv pine lignin IPB to different loadings of vanadate and molybdate
systems under otherwise unchanged conditions, product formation is actually overall enhanced
(Table 2). Both catalyst systems show an overall comparable activity, under various loadings, but a rather
remarkable selectivity in product formation is observed. The [V]-system, at a loading of 10% (w/w),
delivers as dominant product of more than 90% relative abundance vanillin. The [Mo]-system,
on the other hand, delivers isovanillic acid as the most abundant species under otherwise
unchanged conditions.

When estimating the absolute amount of these products against an internal standard during
work-up and GC-analysis, a depolymerisation yield can be calculated based on the amount of total
extractives generated upon the reaction. This depolymerisation yield was found to be 34% in case
of the vanadate system and, remarkably, 62% in case of molybdate-based catalyst applied each at
a loading of 10% (w/w). Also, in case of IPB, the presence of the metal catalysts led to a significant
increase in depolymerisation yields compared to the blank.
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Table 2. Results obtained in the oxidative degradation of aceto- and ionosolv pine lignins, AP and IP, respectively, using various loadings of vanadate- and molybdate
catalyst systems.

Lignin a AP IPB

Catalyst System b [V] [Mo] [V] [Mo]

Loading [% (w/w)] Blank 5 7.5 10 5 7.5 10 Blank 5 7.5 10 5 7.5 10

compound c abundance [%] d abundance [%] d

vanillin (2a) — e — e — e 50 — e — e — e — e 67 90 100 7.4 10 11
vanillic acid (3a) — e 33 33 — e 100 100 100 — e 24 — e — e 93 90 — e

isovanillin (4) — e 50 17 17 — e — e — e — e — e — e — e — e — e — e

isovanillic acid (5) — e — e — e — e — e — e — e — e — e — e — e — e — e 89
1-(4-hydroxy-3-methoxy-phenyl)-2-
methylprop-2-en-1-one (6) — e — e 17 33 — e — e — e — e 9 10 — e — e — e — e

4-acetoxy-3-methoxyacetophenone (7) — e 17 33 — e — e — e — e — e — e — e — e — e — e — e

depolymerisation yield [%] f 6.0 23 26 31 26 69 72 9.8 31 33 34 58 57 62

Mn [kDa]
(PDI) g

2.80
(6.0) n.d. h n.d. h 1.95

(2.6) i n.d. h n.d. h 3.20
(4.8) i

1.80
(8.3) n.d. h 1.95

(3.2) i n.d. h n.d. h 2.50
(3.7) i n.d. h

a: AP: acetosolv pine lignin and IPB: ionosolv pine lignin isolated using [bmim]HSO4. b: [V]: vanadate catalyst system and [Mo]: molybdate catalyst system. c: Determined after
extraction using GC-MS analyses, only lignin-stemming products are listed. d: Product abundancies normalised considering all lignin-derived compounds present in abundances higher
than 0.05% in the chromatogram. e: Not present or present at quantities lower than 0.05%. f: Calculated on the basis of reisolated lignins. g: PDI: polydispersity index. h: Not determined.
i: Sample not fully soluble under analysis conditions.
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Residues of the IPB lignin successfully depolymerised using 10% of vanadate-based catalyst
or molybdate-based catalyst were subsequently isolated and analysed for structural changes using
quantitative 31P NMR. Results are given in Table 1; Figure 1 shows a comparison of the 31P NMR spectra
of starting IPB and residues isolated after treatment with the [V]- and [Mo]-based catalysts systems.
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Results show a drastic decease of OH-groups, independent of the catalyst type. This suggests
significant oxidation along the lignin backbone. An increase in carboxylic acid group content as seen
in the 31P NMR of IPB subjected to 10% (w/w) supports this analysis (Figure 1). Analysis of the number
and the weight average molecular weights of reisolated lignins sustain the picture that emerged during
the analysis of the AP system: the lignins are mainly activated towards polymerisation by perchloric
acid, while in presence of the metal species, depolymerisation is favoured and re-polymerisation is
present as a background reaction (compare mechanistic discussion below).

3.4. Catalytic Degradation of Hardwood Lignins

Given the promising results obtained with the softwood lignin, attention was turned towards
Eucalyptus nitens lignins, both in acetosolv and ionosolv form. Maximum catalyst loadings were studied
using identical conditions for the oxidative degradation and valorisation of AE and IEB; the results are
summarised in Table 3.

The vanadate-based system led, in case of acetosolv hardwood lignin AE, to the formation of
a seemingly homogenised product portfolio. Depolymerisation yields were found to be ranging
from 38 to 53% (Table 3). Highest selectivity was found at a catalyst loading of 7.5% (w/w) with
essentially only syringaldehyde being formed. Lower depolymerisation yields of around 38% are
observed independent of catalyst loading in the case of IEB lignin (Table 3). When using 5% (w/w)
vanadate-based catalyst, vanillin, and syringaldehyde were formed as single products; at higher catalyst
loadings, depolymerisation yields remained constant, while product diversity increased. Together with
1-(4-hydroxy-3-methoxy-phenyl)-2-methylprop-2-en-1-one (6), 2,6-dimethoxybenzoquinone (8) was
found. Interestingly, in none of the experiments the corresponding acids were found; the aqueous
phase was controlled during extraction for sufficient acidity. The findings thus correspond to the
activity of the vanadate system towards the pine lignin samples discussed above.

Given the overall better results obtained when applying lower concentrations of the [Mo] catalyst
system in case of the softwood lignin, the eucalyptus acetosolv lignin AE and the ionosolv lignin IEB

were, respectively, treated with only 7.5% and 5% (w/w) of molybdate catalyst, as these concentrations
led to more selective product formation with the other catalyst. In both cases, vanillic acid was detected
as the only significantly abundant depolymerisation product, achieving depolymerisation yields of 84
and 78%, respectively (Table 3).
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Table 3. Results obtained in the oxidative degradation of aceto- and ionosolv eucalyptus lignins, AE and IEB, respectively, using various loadings of vanadate and
molybdate catalyst systems.

Lignin a AE IEB

Catalyst System b blank [V] [Mo] blank [V] [Mo]

Loading [% (w/w)] — 5 7.5 10 7.5 — 5 7.5 10 5

compound c abundance [%] d abundance [%] d

vanillin (2a) — e — e — e — e — e — e 23 24 49 — e

syringaldehyde (2b) — e 61 100 69 — e — e 77 65 42 — e

vanillic acid (3a) — e — e — e — e 100 — e — e — e — e 100
syringic acid (3b) — e — e — e — e — e — e — e — e — e — e

isovanillin (4) — e 12 — e — e — e — e — e — e — e — e

1-(4-hydroxy-3-methoxy-phenyl)-2-
methylprop-2-en-1-one (6) — e 27 — e 31 — e — e — e 6 9 — e

2,6-dimethoxy-benzoquinone (8) — e — e — e — e — e — e — e 5 — e — e

depolymerisation yield [%] f 22 46 38 53 84 25 38 37 38 78

Mn [kDa]
(PDI) g

2.00
(3.8) n.d. h n.d. h 3.35 (9.3) 5.40 (3.8) 2.10 (3.5) n.d. h n.d. h 3.00 (14) 3.60 (9.9)

a: AE: acetosolv eucalyptus lignin and IEB: acetosolv eucalyptus lignin isolated using [bmim] HSO4. b: [V]: vanadate catalyst system and [Mo]: molybdate catalyst system. c: Determined
after extraction using GC-MS analyses, only lignin-stemming products are listed. d: Product abundancies normalised considering all lignin-derived compounds present in abundances
higher than 0.05% in the chromatogram. e: Not present or present at quantities lower than 0.05%. f: Calculated on the basis of reisolated lignins. g: PDI: polydispersity index.
h: Not determined.
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The overall more difficult situation encountered in case of the investigated oxidative hardwood
valorisation is reflected as well in the molecular weight analyses. As in the case of the softwood lignins,
the presence of the metal catalysts helps to increase depolymerisation, but in contrast to the situation
found in the softwood cases, re-polymerisation is less effectively suppressed. Rather high values for
the polydispersities indicate that re-polymerisation poses a significant problem during the oxidative
degradation, which is likely to contribute to the overall lower depolymerisation yields seen for the
hardwood lignins.

3.5. Mechanistic Considerations

Given the basic reactivities of the catalysts and the polyphenolic substrates, different reaction
pathways can be assumed. One route comprises an initial attack of the catalytic system on the phenolic
OH-group [44,46,47]. The phenoxy radical (I) formed initially can be stabilised by the aromatic system
before eventually reaching the ipso-position where it can trigger an exo-depolymerisation pathway
of the lignin chains (Scheme 1). In the case of the [V]-mediated oxidation of IEB isolated monomeric
quinone 8 supports this thesis.
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Formation of vanillin (2a) and syringaldehyde (2b) in the case of [V]-mediated pine and
eucalyptus ionosolv lignin degradation can be seen as immediate products originating from
an exo-depolymerisation process triggered by oxidative activation of the benzylic position (II) in
terminal β-O-4′ motifs; previous in silico studies had revealed that the benzylic position is similarly
susceptible to an activation via radicals [48]. Formation of alkenone 7 can be explained by this route as
well. Isolation of isovanillic acid (5), as in case of [Mo]-mediated valorisation of IPB, and formation
of vanillic acid, in case of [Mo]-treated IEB, suggests a similar mechanism under eventually less
controlled conditions favouring rearrangement reactions. Functionalisation of the benzylic position is
an important aspect for rendering the transformation of the lignin aromatic monomers effective by
giving rise to an effective endo-polymerisation happening in parallel.

Importantly, hydroquinones as products deriving from a Dakin reaction [49] have not
been observed.

31P NMR data (Table 1) indicate the presence of significant amounts of condensed units in the
starting lignins, whereas material isolated after oxidative valorisation using the [V] and [Mo] catalysts
systems contains less of these groups. In addition, the loss of these motifs can be interpreted in favour
of an endo-depolymerisation. Repolymerisation reactions via the phenoxy radical could lead to an
increase i 4-O-5′ groups, however this is not observed in this study.

Reduced amounts of aliphatic OH-groups (Table 1, Figure 1) show the activity of the catalyst
systems on the aliphatic OH-groups along the lignin chain (Scheme 1); this activity is more pronounced
in case of the [Mo]-based catalyst system, especially in case of softwood ionosolv lignin in which
essentially all OH-groups must have been oxidised in remaining oligomeric structures (Scheme 1);
structure 9 in Scheme 1 illustrates such a putatively ‘per-oxidised’ lignin fragment.

An interesting insight into the tighter interplay of the involved redox potentials can be delineated
from the presence of vanillic acid (3a) in case of the [Mo]-mediated oxidation of pine and eucalyptus
lignin, while the [V]-mediated valorisation of both soft- and hardwoods is possible yielding
preferentially vanillin (2a) and syringaldehyde (2b), respectively. The data further suggest that
the oxidation potential of the phenolic OH-group in initially formed vanillin still fits the dynamic
range of the [Mo]-catalyst, while it is outside of the oxidation range of the [V]-catalyst.

Observed selectivities can be reasoned based on structural features of the lignins involved.
However, the current study does not allow making clear connections between the catalyst type,
the biomass source, and/or the isolation process and the observed activities and selectivities. Additional
studies targeting this aspect are currently being pursued.

4. Conclusions

Acetosolv soft- and hardwood lignins as well as ionosolv soft- and hardwood lignins were
transformed into monomeric aromatic compounds using either a vanadate or molybdate-based
catalyst system. Monomers were generated with remarkable, catalyst-dependent selectivity and
high depolymerisation yields via oxidative exo- and endo-depolymerisation processes. Using the
vanadate–hydrogen peroxide system on acetosolv pine lignin, vanillin and isovanillin were produced
as main products with depolymerisation yields of 31%. Using the molybdate system on the same lignin,
vanillic acid was the practically exclusive product, with a depolymerisation yield of 72%. Ionosolv pine
could be valorised into vanillin and vanillic acid as practically exclusive products in depolymerisation
yields of 34 and 57%, respectively, using either the vanadate or the molybdate catalyst system.
Similar selectivities, albeit with lower depolymerisation yields of around 50% under standardised
conditions, could be obtained for eucalyptus acetosolv lignin, producing vanillin and syringaldehyde
or vanillic acid as products, using either the vanadate or the molybdate system. Omitting the metal
species in the reactions mixture, acetosolv eucalyptus was converted into benzoquinones as effectively
only isolable aromatic monomer. Interestingly, the ionosolv hardwood lignins did not perform as well
as the ionosolv softwood under the chosen conditions. A partial backbone degradation, as induced
during the isolation of ionosolv lignins employing [bmim]HSO4, does not fundamentally enhance
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oxidative depolymerisation. In all cases, (re-)polymerisation reactions in form of elevated number
average molecular weights in combination with significantly increased polydispersities of re-isolated
materials have been observed. In case of softwood lignins, the presence of the metal catalysts led to
a partial control/suppression of such (re-)polymerisation; in case of the hardwood samples, however,
metal catalysts appeared less effective in this respect.

Author Contributions: Conceptualization, F.S., V.C., H.L. and C.C.; data curation, L.P., M.G. and H.L.; investigation,
L.P., M.G. and F.S.; methodology, F.S., P.G., V.C., H.L. and C.C.; project administration, V.C., J.C.P. and C.C.;
resources, P.G., V.C., V.S., J.C.P. and C.C.; supervision, V.S., J.C.P., F.S., P.G., H.L. and C.C.; validation, M.G.,
H.L. and C.C.; writing—original draft, M.G., F.S. and H.L.; writing—review & editing, J.C.P., V.C., H.L. and C.C.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the “Ministry of Economy and Competitiveness” of Spain (research project
“Modified aqueous media for wood biorefineries”, reference CTQ2017-82962-R).

Acknowledgments: H.L. acknowledges the MIUR Grant ‘Dipartimento di Eccellenza 2018–2022’ to the Department
of Pharmacy of the University of Naples ‘Federico II’. C.C. acknowledges the Ca’Foscari FPI 2019 funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Aresta, M.; Dibenedetto, A.; Dumeignil, F. Biorefineries, An Introduction; De Gruyter: Berlin, Germany; Boston,
MA, USA, 2015; ISBN 978-3-11-033158-5.

2. Fernando, S.; Adhikari, S.; Chandrapal, C.; Murali, N. Biorefineries: Current Status, Challenges, and Future
Direction. Energy Fuels 2006, 20, 1727–1737. [CrossRef]

3. Takkellapati, S.; Li, T.; Gonzalez, M.A. An overview of biorefinery-derived platform chemicals from a cellulose
and hemicellulose biorefinery. Clean Technol. Environ. Policy 2018, 20, 1615–1630. [CrossRef] [PubMed]

4. Yabushita, M.; Kobayashi, H.; Fukuoka, A. Catalytic transformation of cellulose into platform chemicals.
Appl. Catal. B Environ. 2014, 145, 1–9. [CrossRef]

5. Delidovich, I.; Leonhard, K.; Palkovits, R. Cellulose and hemicellulose valorisation: An integrated challenge
of catalysis and reaction engineering. Energy Environ. Sci. 2014, 7, 2803–2830. [CrossRef]

6. Argyropoulos, D.S.; Crestini, C. A Perspective on Lignin Refining, Functionalization, and Utilization.
ACS Sustain. Chem. Eng. 2016, 4, 5089. [CrossRef]

7. Fiorani, G.; Crestini, C.; Selva, M.; Perosa, A. Advancements and Complexities in the Conversion of
Lignocellulose Into Chemicals and Materials. Front. Chem. 2020, 8. [CrossRef]

8. Mobley, J.K. Conversion of Lignin to Value-added Chemicals via Oxidative Depolymerization. In Chemical
Catalysts for Biomass Upgrading; Crocker, M., Santillan-Jimenez, E., Eds.; Wiley: Hoboken, NJ, USA, 2020;
pp. 357–393. ISBN 978-3-527-34466-6.

9. Lange, H.; Decina, S.; Crestini, C. Oxidative upgrade of lignin—Recent routes reviewed. Eur. Polym. J. 2013,
49, 1151–1173. [CrossRef]

10. Crestini, C.; Crucianelli, M.; Orlandi, M.; Saladino, R. Oxidative strategies in lignin chemistry: A new
environmental friendly approach for the functionalisation of lignin and lignocellulosic fibers. Catal. Today
2010, 156, 8–22. [CrossRef]

11. Zakzeski, J.; Bruijnincx, P.C.A.; Jongerius, A.L.; Weckhuysen, B.M. The Catalytic Valorization of Lignin for
the Production of Renewable Chemicals. Chem. Rev. 2010, 110, 3552–3599. [CrossRef]

12. Argyropoulos, D.S. Oxidative Delignification Chemistry: Fundamentals and Catalysis; ACS Symposium Series;
American Chemical Society: Washington, DC, USA, 2001; ISBN 978-0-8412-3738-4.

13. Crestini, C.; Pro, P.; Neri, V.; Saladino, R. Methyltrioxorhenium: A new catalyst for the activation of hydrogen
peroxide to the oxidation of lignin and lignin model compounds. Bioorg. Med. Chem. 2005, 13, 2569–2578.
[CrossRef]

14. Crestini, C.; Caponi, M.C.; Argyropoulos, D.S.; Saladino, R. Immobilized methyltrioxo rhenium (MTO)/H2O2
systems for the oxidation of lignin and lignin model compounds. Bioorg. Med. Chem. 2006, 14, 5292–5302.
[CrossRef]

15. Guadix-Montero, S.; Sankar, M. Review on Catalytic Cleavage of C–C Inter-unit Linkages in Lignin Model
Compounds: Towards Lignin Depolymerisation. Top. Catal. 2018, 61, 183–198. [CrossRef]

http://dx.doi.org/10.1021/ef060097w
http://dx.doi.org/10.1007/s10098-018-1568-5
http://www.ncbi.nlm.nih.gov/pubmed/30319323
http://dx.doi.org/10.1016/j.apcatb.2013.01.052
http://dx.doi.org/10.1039/C4EE01067A
http://dx.doi.org/10.1021/acssuschemeng.6b02173
http://dx.doi.org/10.3389/fchem.2020.00797
http://dx.doi.org/10.1016/j.eurpolymj.2013.03.002
http://dx.doi.org/10.1016/j.cattod.2010.03.057
http://dx.doi.org/10.1021/cr900354u
http://dx.doi.org/10.1016/j.bmc.2005.01.049
http://dx.doi.org/10.1016/j.bmc.2006.03.046
http://dx.doi.org/10.1007/s11244-018-0909-2


Processes 2020, 8, 1161 12 of 13

16. Chan, J.M.W.; Bauer, S.; Sorek, H.; Sreekumar, S.; Wang, K.; Toste, F.D. Studies on the Vanadium-Catalyzed
Nonoxidative Depolymerization of Miscanthus giganteus-Derived Lignin. ACS Catal. 2013, 3, 1369–1377.
[CrossRef]

17. Son, S.; Toste, F.D. Non-Oxidative Vanadium-Catalyzed C-O Bond Cleavage: Application to Degradation of
Lignin Model Compounds. Angew. Chem. Int. Ed. 2010, 49, 3791–3794. [CrossRef] [PubMed]

18. Amadio, E.; Di Lorenzo, R.; Zonta, C.; Licini, G. Vanadium catalyzed aerobic carbon–carbon cleavage.
Coord. Chem. Rev. 2015, 301–302, 147–162. [CrossRef]

19. Bozell, J.J.; Hoberg, J.O.; Dimmel, D.R. Heteropolyacid Catalyzed Oxidation of Lignin and Lignin Models to
Benzoquinones. J. Wood Chem. Technol. 2000, 20, 19–41. [CrossRef]

20. Mobley, J.K.; Jennings, J.A.; Morgan, T.; Kiefer, A.; Crocker, M. Oxidation of Benzylic Alcohols and Lignin
Model Compounds with Layered Double Hydroxide Catalysts. Inorganics 2018, 6, 75. [CrossRef]

21. Voitl, T.; Rudolf von Rohr, P. Oxidation of Lignin Using Aqueous Polyoxometalates in the Presence of Alcohols.
ChemSusChem 2008, 1, 763–769. [CrossRef]

22. Weinstock, I.A.; Atalla, R.H.; Reiner, R.S.; Moen, M.A.; Hammel, K.E.; Houtman, C.J.; Hill, C.L.;
Harrup, M.K. A new environmentally benign technology for transforming wood pulp into paper. Engineering
polyoxometalates as catalysts for multiple processes. J. Mol. Catal. A Chem. 1997, 116, 59–84. [CrossRef]

23. Mottweiler, J.; Puche, M.; Räuber, C.; Schmidt, T.; Concepción, P.; Corma, A.; Bolm, C. Copper- and
Vanadium-Catalyzed Oxidative Cleavage of Lignin using Dioxygen. ChemSusChem 2015, 8, 2106–2113.
[CrossRef]

24. Hao, K.; Zhang, L.-L.; Song, L.; Guan, H.-Y.; Li, C.-M.; Liu, T.; Yu, Q.; Zeng, J.-M.; Wang, Z.-W. Highly active
Mo-V-based bifunctional catalysts for catalytic conversion of lignin dimer model compounds at room
temperature. Inorg. Chem. Commun. 2020, 116, 107910. [CrossRef]

25. Drago, G.A.; Gibson, T.D. Enzyme Stability and Stabilisation: Applications and Case Studies. In Engineering
and Manufacturing for Biotechnology; Hofman, M., Thonart, P., Eds.; Focus on Biotechnology; Springer:
Dordrecht, The Netherlands, 2002; pp. 361–376. ISBN 978-0-306-46889-6.

26. Crestini, C.; Pastorini, A.; Tagliatesta, P. Metalloporphyrins immobilized on motmorillonite as biomimetic
catalysts in the oxidation of lignin model compounds. J. Mol. Catal. A Chem. 2004, 208, 195–202. [CrossRef]

27. Crestini, C.; Tagliatesta, P. Metalloporphyrins in the Biomimetic Oxidation of Lignin and Lignin Model
Compounds: Development of Alternative Delignification Strategies. Porphyr. Handb. Bioinorg. Bioorg. Chem.
2003, 11, 161.

28. Crestini, C.; Tagliatesta, P.; Saladino, R. A biomimetic approach to lignin degradation, metalloporphyrins
catalysed oxidation of lignin and lignin model compounds. Oxid. Delignification Chem. Fundam. Catal. 2001,
213–225.

29. Giannì, P.; Lange, H.; Crestini, C. Lipoxygenase: Unprecedented Carbon-Centered Lignin Activation.
ACS Sustain. Chem. Eng. 2018, 6, 5085–5096. [CrossRef]

30. Wong, D.W.S. Structure and Action Mechanism of Ligninolytic Enzymes. Appl. Biochem. Biotechnol. 2009,
157, 174–209. [CrossRef]

31. Penín, L.; Lange, H.; Santos, V.; Crestini, C.; Parajó, J.C. Characterization of Eucalyptus nitens Lignins
Obtained by Biorefinery Methods Based on Ionic Liquids. Molecules 2020, 25, 425. [CrossRef]

32. Penín, L.; Peleteiro, S.; Santos, V.; Alonso, J.L.; Parajó, J.C. Selective fractionation and enzymatic hydrolysis
of Eucalyptus nitens wood. Cellulose 2019, 26, 1125–1139. [CrossRef]

33. Penín, L.; Santos, V.; del Río, J.C.; Parajó, J.C. Assesment on the chemical fractionation of Eucalyptus nitens
wood: Characterization of the products derived from the structural components. Bioresour. Technol. 2019,
281, 269–276. [CrossRef]

34. Meng, X.; Crestini, C.; Ben, H.; Hao, N.; Pu, Y.; Ragauskas, A.J.; Argyropoulos, D.S. Determination of
hydroxyl groups in biorefinery resources via quantitative 31 P NMR spectroscopy. Nat. Protoc. 2019, 14,
2627–2647. [CrossRef]

35. Granata, A.; Argyropoulos, D.S. 2-Chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane, a Reagent for the
Accurate Determination of the Uncondensed and Condensed Phenolic Moieties in Lignins. J. Agric. Food Chem.
1995, 43, 1538–1544. [CrossRef]

36. Argyropoulos, D.S. 31P NMR in Wood Chemistry: A Review of Recent Progress. Res. Chem. Intermed. 1995,
21, 373–395. [CrossRef]

http://dx.doi.org/10.1021/cs400333q
http://dx.doi.org/10.1002/anie.201001293
http://www.ncbi.nlm.nih.gov/pubmed/20397179
http://dx.doi.org/10.1016/j.ccr.2015.06.004
http://dx.doi.org/10.1080/02773810009349622
http://dx.doi.org/10.3390/inorganics6030075
http://dx.doi.org/10.1002/cssc.200800050
http://dx.doi.org/10.1016/S1381-1169(96)00074-X
http://dx.doi.org/10.1002/cssc.201500131
http://dx.doi.org/10.1016/j.inoche.2020.107910
http://dx.doi.org/10.1016/j.molcata.2003.07.015
http://dx.doi.org/10.1021/acssuschemeng.7b04772
http://dx.doi.org/10.1007/s12010-008-8279-z
http://dx.doi.org/10.3390/molecules25020425
http://dx.doi.org/10.1007/s10570-018-2109-4
http://dx.doi.org/10.1016/j.biortech.2019.02.098
http://dx.doi.org/10.1038/s41596-019-0191-1
http://dx.doi.org/10.1021/jf00054a023
http://dx.doi.org/10.1007/BF03052265


Processes 2020, 8, 1161 13 of 13

37. Amini, M.; Haghdoost, M.M.; Bagherzadeh, M. Oxido-peroxido molybdenum(VI) complexes in catalytic and
stoichiometric oxidations. Coord. Chem. Rev. 2013, 257, 1093–1121. [CrossRef]

38. Conte, V.; Floris, B. Vanadium and molybdenum peroxides: Synthesis and catalytic activity in oxidation
reactions. Dalton Trans. 2011, 40, 1419–1436. [CrossRef] [PubMed]

39. Schwendt, P.; Tatiersky, J.; Krivosudský, L.; Šimuneková, M. Peroxido complexes of vanadium.
Coord. Chem. Rev. 2016, 318, 135–157. [CrossRef]

40. Conte, V.; Floris, B. Vanadium catalyzed oxidation with hydrogen peroxide. Inorg. Chim. Acta 2010, 363,
1935–1946. [CrossRef]

41. Conte, V.; Coletti, A.; Floris, B.; Licini, G.; Zonta, C. Mechanistic aspects of vanadium catalysed oxidations
with peroxides. Coord. Chem. Rev. 2011, 255, 2165–2177. [CrossRef]

42. Galloni, P.; Mancini, M.; Floris, B.; Conte, V. A sustainable two-phase procedure for V-catalyzed toluene
oxidative bromination with H2O2–KBr. Dalton Trans. 2013, 42, 11963–11970. [CrossRef]

43. Langeslay, R.R.; Kaphan, D.M.; Marshall, C.L.; Stair, P.C.; Sattelberger, A.P.; Delferro, M. Catalytic Applications
of Vanadium: A Mechanistic Perspective. Chem. Rev. 2019, 119, 2128–2191. [CrossRef]

44. Floris, B.; Sabuzi, F.; Coletti, A.; Conte, V. Sustainable vanadium-catalyzed oxidation of organic substrates
with H2O2. Catal. Today 2017, 285, 49–56. [CrossRef]

45. Kirillova, M.V.; Kuznetsov, M.L.; Romakh, V.B.; Shul’pina, L.S.; Fraústo da Silva, J.J.R.; Pombeiro, A.J.L.;
Shul’pin, G.B. Mechanism of oxidations with H2O2 catalyzed by vanadate anion or oxovanadium(V)
triethanolaminate (vanadatrane) in combination with pyrazine-2-carboxylic acid (PCA): Kinetic and
DFT studies. J. Catal. 2009, 267, 140–157. [CrossRef]

46. Garau, G.; Palma, A.; Lauro, G.P.; Mele, E.; Senette, C.; Manunza, B.; Deiana, S. Detoxification Processes
from Vanadate at the Root Apoplasm Activated by Caffeic and Polygalacturonic Acids. PLoS ONE 2015, 10,
e0141041. [CrossRef] [PubMed]

47. Linskens, H.F.; Jackson, J.F. (Eds.) Plant Cell Wall Analysis; Modern Methods of Plant Analysis; Springer:
Berlin/Heidelberg, Germany, 1996; Volume 17, ISBN 978-3-642-64644-7.

48. Crestini, C.; Jurasek, L.; Argyropoulos, D.S. On the Mechanism of the Laccase-Mediator System in the
Oxidation of Lignin. Chem. Eur. J. 2003, 9, 5371–5378. [CrossRef] [PubMed]

49. Dakin, H.D. The oxidation of hydroxy derivatives of benzaldehyde, acetophenone and related substances.
Am. Chem. J. 1909, 42, 477–498.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.ccr.2012.11.018
http://dx.doi.org/10.1039/C0DT00706D
http://www.ncbi.nlm.nih.gov/pubmed/21157600
http://dx.doi.org/10.1016/j.ccr.2016.03.011
http://dx.doi.org/10.1016/j.ica.2009.06.056
http://dx.doi.org/10.1016/j.ccr.2011.03.006
http://dx.doi.org/10.1039/c3dt50907a
http://dx.doi.org/10.1021/acs.chemrev.8b00245
http://dx.doi.org/10.1016/j.cattod.2016.11.006
http://dx.doi.org/10.1016/j.jcat.2009.08.006
http://dx.doi.org/10.1371/journal.pone.0141041
http://www.ncbi.nlm.nih.gov/pubmed/26484667
http://dx.doi.org/10.1002/chem.200304818
http://www.ncbi.nlm.nih.gov/pubmed/14613147
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Results and Discussion 
	Catalytic Systems 
	Lignin Starting Materials 
	Catalytic Degradation of Softwood Lignins 
	Catalytic Degradation of Hardwood Lignins 
	Mechanistic Considerations 

	Conclusions 
	References

