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In this Supplementary Material, we describe how to compute predictive quantities of
interest from the MCMC output in Section A, and in Sections B and C, we report
additional results for the simulated data example and the application to the Colombian
women dataset described in the paper.

Appendix A: Predictions

The weighted posterior samples obtained with the adaptive truncation algorithm can
be used to produce various posterior and predictive quantities of interest. Here, we de-
scribe how to compute the predictive densities, medians, probability of censoring for the
(undiscretized) ages at event and probability of success for binary variables. Full details
and implementation for other quantities are provided in the accompanying software and
documentation: https://github.com/sarawade/BNPDensityRegression AdaptiveT

runcation.

Focusing on the application in Section 6, for ` = 1, 2, 3, we denote by Z̃` the (undis-
cretized) age at sexual debut, the (undiscretized) age at union, and the time from
sexual debut to first child, respectively. These are linked to our model by the relation
Z̃` = exp(Y`), and the corresponding ages are obtained through discretization. The
(undiscretized) age at first child is denoted as Z̆3 = Z̃1 + Z̃3. For Work Status, we have
Z4 = 1(0,∞)(Y4). In the following, let J denote the final truncation level, with corre-
sponding weighted particles (wm

1:J ,θ
m
1:J ,ψ

m
1:J ,y

m
1:n) and unnormalized particle weights

ϑ̃m, for m = 1, . . . ,M (without loss of generality, we drop the subscript J). We indicate
with ϑm, for m = 1, . . . ,M , the normalized particle weights.

We begin with marginal predictive quantities of interest. First, the predictive prob-
ability of success for a binary response given x∗ (e.g. for ` = 4, shown in Figure 5,
bottom row) is:

P(Z∗,` = 1|x, z,x∗) = P(Y∗,` > 0|x, z,x∗) ≈
M∑

m=1

ϑm
J∑

j=1

wm
j (x∗)Φ

 x∗β
m
j,(·,`)√

Σm
j,(`,`)

 .
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2 SM for Multivariate Density Regression

For ` = 1, 2, 3, the marginal predictive density of Z̃∗,` given x∗, shown in Figure 6 for
some values of x∗, is given by:

f(z̃∗,`|x, z,x∗) ≈
M∑

m=1

ϑm
J∑

j=1

wm
j (x∗)f(z̃∗,`|θmj ,x∗)

=

M∑
m=1

ϑm
J∑

j=1

wm
j (x∗)logN(z̃∗,`|x∗βm

j,(·,`),Σ
m
j,(`,`)), (1)

for z̃∗,` > 0, where βm
j,(·,`) denotes the `-th column of β in component j and particle

m; Σm
j,(`,`) denotes element (`, `) of the matrix Σ in component j and particle m; and

logN(·|µ, σ2) denotes the log-normal density with parameters µ and σ2. Due to the
skewness of the predictive densities in our application (Section 6), we focus on the
predictive median over the predictive mean to better represent the central tendencies
and summarize the predictive densities. The marginal predictive median (Figure 5)
can be computed numerically by evaluating the marginal predictive density (1) on a
sufficiently dense grid of z̃∗,` values.

For ` = 1, 2 corresponding to age at sexual debut and union, an interesting quantity
is the predictive probability that the indexed event has not yet occurred for a new
individual with x∗,1 years of age (Figure C.8), computed as:

P(Z̃∗,` ≥ (x∗,1 + 1)|x, z,x∗) = P(Y∗,` > log(x∗,1 + 1)|x, z,x∗)

≈
M∑

m=1

ϑm
J∑

j=1

wm
j (x∗)

1− Φ

 log(x∗,1 + 1)− x∗β
m
j,(·,`)√

Σm
j,(`,`)

 . (2)

This can be interpreted as the predictive probability of censoring of the event for a new
individual and corresponds to the mass above the dashed line of Figure 6, given x∗,1.

Our model also recovers the joint relationship between responses, which allows in-
ference on conditional properties. Specifically, when ` indexes a binary response and `′

indexes an age at event response, the conditional predictive probability of success given
z̃∗,`′ and x∗ (Figure 8) is:

P(Z∗,` = 1|z̃∗,`′ ,x, z,x∗) ≈
M∑

m=1

ϑm
J∑

j=1

wm
j (x∗)Φ

 µm
j,`|`′√
σ2 m
j,`|`′

 logN(z̃∗,`′ |x∗βm
j,(·,`′),Σ

m
j,(`′,`′))

f(z̃∗,`′ |x, z,x∗)
,

where
µm
j,`|`′ = x∗β

m
j,(·,`) + Σm

j,(`,`′)(Σ
m
j,(`′,`′))

−1(log(z̃∗,`′)− x∗β
m
j,(·,`′)),

σ2m
j,`|`′ = Σm

j,(`,`) − (Σm
j,(`,`′))

2(Σm
j,(`′,`′))

−1,

and the density in the denominator is the marginal predictive of equation (1). For ` 6= `′

both indexing ages at event, the conditional predictive density of Z̃∗,` given z̃∗,`′ and
x∗ takes the form:

f(z̃∗,`|z̃∗,`′ ,x, z,x∗) =
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M∑
m=1

ϑm
J∑

j=1

wm
j (x∗)logN(z̃∗,`|µm

j,`|`′ , σ
2m
j,`|`′)

logN(z̃∗,`′ |x∗βm
j,(·,`′),Σ

m
j,(`′,`′))

f(z̃∗,`′ |x, z,x∗)
. (3)

Figure C.11 shows the conditional predictive density of Z̃∗,2 − z̃∗,1 given z̃∗,1 and x∗,
which can be easily computed from (3). The corresponding predictive medians (Figure
7) can be obtained numerically from evaluations of this density on an adequate, dense
grid of values. The conditional density plot for Z̃∗,3 given z̃∗,1 (Figure C.12) and the
corresponding median (Figure C.9) can be obtained directly from equation (3).

Finally, we note that for the (undiscretized) age at first child, Z̆∗,3 = Z̃∗,1 + Z̃∗,3,
and more generally constrained responses, the corresponding marginal and conditional
predictive quantities may require integration over Z̃∗,1. For example, the conditional

predictive density of Z̆∗,3 given z̃∗,1 is simply the conditional predictive density of equa-

tion (3), evaluated at z̆∗,3− z̃∗,1. While the marginal predictive density of Z̆∗,3 given x∗
(Figure 6) is obtained as:

f(z̆∗,3|x, z,x∗) =

∫
f(z̃∗,3|z̃∗,1,x, z,x∗)f(z̃∗,1|x, z,x∗)dz̃∗,1

≈
M∑

m=1

ϑm
J∑

j=1

wm
j (x∗)

∫ z̆∗,3

−∞
logN(z̃∗,3|µm

j,3|1, σ
2m
j,3|1)logN(z̃∗,1|x∗βm

j,(·,1),Σ
m
j,(1,1))dz̃∗,1,

(4)

where z̃∗,3 = z̆∗,3 − z̃∗,1. We evaluate the integral stochastically, via a Monte Carlo
approximation, and compute the marginal predictive median of the undiscretized age
at first child (Figure 5) numerically from the marginal predictive density in (4). Also,
the predictive probability that the woman has not yet had a child at x∗,1 years of age
(Figure C.8) takes the form:

P(Z̆∗,3 > x∗,1|x, z,x∗) = P(Z̃∗,3 + Z̃∗,1 ≥ x∗,1 + 1|x, z,x∗)

≈
M∑

m=1

ϑm
J∑

j=1

wm
j (x∗)

∫ 1− Φ

 l(x∗,1 + 1)− µm
j,3|1√

σ2 m
j,3|1

 logN(z̃∗,1|x∗βm
j,(·,1),Σ

m
j,(1,1))dz̃∗,1,

where l(z) = log(max(0, z − z̃∗,1)). The conditional predictive density of the (undis-

cretized) age at first child Z̆∗,3 given the (undiscretized) age at union z̃∗,2 and x∗,1
is:

f(z̆∗,3|z̃∗,2,x, z,x∗) ≈
M∑

m=1

ϑm
J∑

j=1

wm
j (x∗)f(z̆∗,3|z̃∗,2, θmj ,x∗)

logN(z̃∗,2|x∗βm
j,(·,2),Σ

m
j,(2,2))

f(z̃∗,2|x, z,x∗)
.

(5)

Notice that this expression differs from equation (3) in that

f(z̆∗,3|z̃∗,2, θmj ,x∗) =

∫ z̆∗,3

−∞
logN(z̆∗,3 − z̃∗,1|µm

j,3|(1,2), σ
2 m
j,3|(1,2))logN(z̃∗,1|µm

j,1|2, σ
2 m
j,1|2)dz̃∗,1,
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where

µm
j,3|(1,2) = x∗β

m
j,(·,3) + Σm

j,(3,1:2)Σ
−1m
j,(1:2,1:2)(log(z̃∗,1:2)− x∗β

m
j,(·,1:2)),

σ2m
j,3|(1,2) = Σm

j,(3,3) −Σm
j,(3,1:2)Σ

−1m
j,(1:2,1:2)Σ

m
j,(1:2,3).

(6)

Figure C.13 shows the conditional predictive density of Z̆∗,3 − z̃∗,2 given z̃∗,2 and x∗,
which can be easily computed from (5), with the corresponding predictive medians
in Figure C.10. Lastly, the conditional predictive probability of success for a binary
response, e.g. ` = 4 in our application, given z̆∗,3 and x∗ is:

P(Z∗,4 = 1|z̆∗,3,x, z,x∗) ≈
M∑

m=1

ϑm
J∑

j=1

wm
j (x∗)P(Y∗,4 > 0|z̆∗,3,θmj ,x∗)

f(z̆∗,3|θmj ,x∗)
f(z̆∗,3|x, z,x∗)

,

where

P(Y∗,4 > 0|z̆∗,3, θmj ,x∗)f(z̆∗,3|θmj ,x∗)

=

∫ log(z̆∗,3)

−∞
Φ

 µm
j,4|(1,3)√
σ2 m
j,4|(1,3)

 logN(z̆∗,3 − z̃∗,1|µm
j,3|1, σ

2 m
j,3|1)logN(z̃∗,1|x∗βm

j,(·,1),Σ
m
j,(1,1))dz̃∗,1,

where µj,4|(1,3) and σ2
j,4|(1,3) are calculated analogously to expression (6).

Appendix B: Simulation study

We assess the performance of the proposed procedure on a simulated data set including
q∗ = 3 covariates and d = 3 responses. The first covariate mimics Age and, as such,
is assumed to be registered at a discrete level: x1 = bx̃1c, where x̃1 ∼ U(15, 30). The
remaining covariates are categorical: x∗2 has three levels with probabilities (0.5, 0.3, 0.2)
while x∗3 has two levels with probabilities (0.4, 0.6).

We generate two positive discretized responses and one binary response. The first
response, Z1, is a discretized noisy observation of a nonlinear function of x1. To build
Z1, we first generate:

Z̃i,1 = µt
1(x̃i,1, x

∗
i,2, x

∗
i,3) + εi,1, for i = 1, . . . , n,

where ε1,1, . . . , εn,1
i.i.d.∼ 0.9N(−15/90, 0.52) + 0.1N(1.5, 0.752), and

µt
1(x̃i,1, x

∗
i,2, x

∗
i,3) =


−0.057x̃2

i,1 + 3.08x̃i,1 − 21.247 if x∗i,2 6= 1, x∗i,3 = 2
1
3
x̃i,1 + 10 if x∗i,2 6= 1, x∗i,3 = 1

0.0001x̃3
i,1 − 0.0695x̃2

i,1 + 3.83x̃i,1 − 30.584 if x∗i,2 = 1, x∗i,3 = 2
8
15
x̃i,1 + 7 if x∗i,2 = 1, x∗i,3 = 1

.

Similarly, Z2 is a discretized noisy observation of a nonlinear function of x1 and the
realized z1 and it is built by generating:

Z̃i,2 =

{
−0.056x̃2

i,1 + 3.08x̃i,1 − 18 + 0.75
[
z̃i,1 − µt

1(x̃i,1, x
∗
i,2, x

∗
i,3)
]

+ εi,2 if x∗i,3 = 2
0.5x̃i,1 + 8 + 0.75

[
z̃i,1 − µt

1(x̃i,1, x
∗
i,2, x

∗
i,3)
]

+ εi,2 if x∗i,3 = 1
,
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where the errors are assumed to depend also on x̃1 and x∗3:

εi,2 ∼


0.9N(− 1

6 , 0.4
2) + 0.1N(1.5, 0.752) if x∗i,3 = 2

0.9N

(
− 1

6 ,
(

7.5
x̃i,1

)2
)

+ 0.1N

(
1.5,

(
7.5
x̃i,1

)2
)

if x∗i,3 = 1
.

Note that the response curves are the same for x∗2 = 2, 3 and differ for other categorical
combinations, while the errors are not normal but right skewed, additionally depending
on x1 and x∗3 for the second response. Observed responses are set to missing for censored
observations, defined as individuals with z̃1,i > x̃1,i or z̃2,i > x̃1,i. Since the age-related
variables in our motivating application are registered at a discrete level, the observed
responses were rounded down to the nearest integer, i.e. z1 = bz̃1c, z2 = bz̃2c. The true
curves and densities are depicted in Figure B.1 (top row) for selected combinations of
the covariates. The behavior of Z1 and Z2 may at a first sight seem a simple function
of x1 alone, however it depends also on the interactions between x1 and the categorical
covariates. Moreover, this consideration holds both for the regression function and for
the variance. Combined together these aspects, which are of the same nature as those
present in our motivating data, pose challenges for parametric and semi-parametric
models. Indeed, the relationship between each response and the Age at interview is
relatively smooth, but interactions with the categorical covariates and changes in vari-
ability increase complexity. Finally, a binary response is simulated from a linear probit
model depending only on x1 (Figure B.2):

Z3,i ∼ Bern

(
Φ

(
x̃1,i − 18

6

))
.

We seek to recover the conditional distribution of the response variables given the
covariates using our proposed model, from a sample of size n = 700. We define the link
functions h`(y,x) as:

z` = h`(y,x) = c`(y,x)bexp(y`)c, for ` = 1, 2,

z3 = h3(y,x) = 1[0,∞)(y3),
(7)

where c`(y,x) = 1(0,x1+1)(exp(y`)). In this case, the bounds required in the adaptive
MCMC are obtained from inverting z` = h`(y,x); concretely,

(l`, u`) =

{
(log(x1 + 1),∞) for censored z` = 0

(log(z`), log(z` + 1)) for uncensored z` 6= 0
, when ` = 1, 2,

(l3, u3) =

{
(−∞, 0) for z3 = 0

(0,∞) for z3 = 1
.

Prior specification and computational details. Prior parameters for the linear co-
efficients and covariance matrix of each component are specified empirically based on
multivariate linear regression fit to the data. Specifically, for ` = 1, 2, we set yi,` =
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Figure B.1: Simulated data set. True data-generating density (top row) and estimated
predictive density (bottom row) of the (undiscretized) Z1 and Z2 as functions of x1

for two combinations of the categorical covariates. The estimated/true mean function
is depicted with a black solid line; crosses and stars mark respectively observed and
censored points.
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Figure B.2: Simulated data set. True (dashed line) and predictive (solid line) probability
of Z3 = 1 as a function of x1 for two combinations of the categorical covariates.

(li,` + ui,`)/2 and yi,` = log(xi,1 + 2) for uncensored and censored observations, re-

spectively, where the bounds li,` and ui,` are defined in Section 4. Additionally, we let

yi,3 = −1 for zi,3 = 0 and yi,3 = 1 for zi,3 = 1. A multivariate linear regression fit

on these auxiliary responses gives estimates β̂ of the linear coefficients and Σ̂ of the

covariance matrix. We then define

E[βj ] = β0 = β̂ and E[Σj ] =
1

ν − b− 1
Σ0 = Σ̂.
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Together, U and Σj reflect the variability of βj across components, and we set the

matrix U such that min(diag(Σ̂)) U = 10(XᵀX)−1. The factor of this g-prior was
selected to ensure reasonable ages (i.e. mostly lower than 100) in prior simulations. We
explored more uninformative and vague prior choices but found that this could lead to
quite large and unreasonable imputed ages for censored data. We further set ν = b+ 3,
to ensure the existence of the first and second moments of Σj a-priori. Other specified
hyperparameters include µ0,1 = x1, u1 = 1/2, α1 = 2, γ1 = u1(range(x1:n,1)/4)2,
%k = (1, 1) for k = p + 1, . . . , q, and the parameters of the stick-breaking prior are
ζj,1 = 1 and ζj,2 = 1. Here x1 and range(x1:n,1) denote the sample mean and range of
(x1,1, . . . , xn,1).

The MCMC stage of the adaptive truncation algorithm, with J0 = 15 components,
is run for 20,000 iterations after discarding the first 10,000 as burn-in. Every 10-th
iteration is saved to produce M= 2,000 initial values for the particles in the SMC stage.

Results In Appendix A, we describe various posterior and predictive quantities that
can be computed from the weighted particles to describe the relationship between the
observed response z and covariates x. Here, we focus on the marginal predictive mean
and density functions for (undiscretized) Z1 and Z2, as well as on the marginal predictive
probability of success for Z3, and compare them with the true data-generating functions
in Figures B.1 and B.2, for a selected combinations of the categorical covariates. We also
show the conditional mean of Z2 as a function of x1 given different values of z1 in Figure
B.3. Overall, the model is able to recover the underlying structure present in the data,
despite the heavy censoring of Z2 for lower levels of x1, particularly when x∗3 = 2. The
true conditional structure is well recovered in areas where data (crosses) is available,
i.e. in the left plot of Figure B.3, for 15 ≤ x1 ≤ 18 given z1 = 15 (magenta) and for
27 ≤ x1 ≤ 29 given z1 = 23 (black). However, as can be expected, the model struggles
when predicting at values far from the observed data, i.e in the left plot of Figure B.3,
for 25 ≤ x1 ≤ 30 given z1 = 15 (magenta) and for 15 ≤ x1 ≤ 20 given z1 = 23
(black). We highlight that interpretation of the conditional dependence structure in the
latent scale as well as the latent covariance matrices of the mixture components and its
relation to the dependence structure on the observed scale is an open and interesting
direction of research, which would expand the work of Garćıa-Zattera et al. (2007) in
the parametric setting.

Robustness analysis. We perform a robustness analysis comparing several initializa-
tion specifications, namely by setting J0 = 2, 3, 5, 10, 15, 20, 30. We also compare with
a parametric version of the model that is similar in nature to the parametric model
of Korsgaard et al. (2003), i.e. a multivariate Gaussian regression model with the link
functions h`(y,x) in (7) and a prior given by the base measure P0. For the sake of
comparison, we use the Metropolis-within-Gibbs scheme for inference. In all scenarios,
the adaptive MCMC algorithm is run for 30,000 iterations, discarding the first 10,000
as burn-in, and saving only every 10th iteration for a total of M = 2,000 particles to
be used in the SMC step. A summary of the analysis is reported in Table B.1. Besides
the number of components inferred by the model (J∗), and the elapsed CPU time (in
hours), the table reports the ESS for the log-likelihood in the MCMC stage (ESSMCMC)



8 SM for Multivariate Density Regression

15 20 25 30

12

14

16

18

20

22

24

26

28

15 20 25 30

12

14

16

18

20

22

24

26

28

z
1
 = 15 z

1
 = 17 z

1
 = 19 z

1
 = 21 z

1
 = 23

Figure B.3: Simulated data set. Conditional mean of Z2 given z1 as a function of x1

with colors representing the different values of z1, for two combinations of the categorical
covariates. The estimated and true conditional mean functions are depicted with solid
and dashed lines respectively, and dotted lines indicate when the mean exceeds x1.
Crosses and stars mark respectively the observed and censored points, colored by the
observed value of z1.

computed with the mcmcse package in R (Flegal et al., 2017), and the ESSJ∗ of the
final iteration of the SMC, that can be used to compare mixing. Results are reported for
two different discrepancy measures used to define the stopping rule of SMC, namely the
ESS and the CESS (Zhou et al., 2016). In order to assess the fit of the model, we com-
pute for each Z` the log-pseudo marginal likelihood (LPML, Geisser and Eddy, 1979),
and the percentage absolute errors with respect to the true mean and true density at a
set of new test covariates, x∗i , for i = 1, . . . , n∗, denoted by ERRMean and ERRDens:

LPML` =

n∑
i=1

log(CPO`
i) with CPO`

i =

(
1

M

M∑
m=1

1

f(zi,`|wm,ψm, θm,xi)

)−1

,

ERR`
Mean =

100

n∗

n∗∑
i=1

|µt
`(x
∗
i )− µ̂`(x

∗
i )|

|µt
`(x
∗
i )| ,

ERR`
Dens =

100

n∗

n∗∑
i=1

∫
|f t(z∗` |x∗i )− f̂(z∗` |x∗i )|dz∗`∫

|f t(z∗` |x∗i )|dz∗`
≈ 100

n∗

n∗∑
i=1

G∑
g=1

|f t(z∗g,`|x∗i )− f̂(z∗g,`|x∗i )|∆,

where for each response ` = 1, . . . , d, µt
`(x
∗
i ) and µ̂`(x

∗
i ) indicate the true and estimated

mean functions, and f t(·|x∗i ) and f̂(·|x∗i ) indicate the true and estimated densities. For
each response, densities are evaluated on a grid of values, z∗1,`, . . . , z

∗
G,`, with grid size

∆. The results show robustness with respect to the choice of the discrepancy measure.

We observe that for J0 ≥ 20 only a moderate number of components are added, sug-
gesting that a sufficient approximation is obtained with around 20 components. Recall
that the SMC is run for at least I = 4 cycles, i.e. at least four new components are added
to the initial model. Therefore, if J0 is large enough, we have J∗ = J0 +I. Generally, the
computational time increases with J0, although this is not always the case, especially
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J0 J∗ CPU ESSMCMC ESSJ∗ LPML (103) ERRMean ERRDens

Z1 Z2 Z3 Z1 Z2 Z3 Z1 Z2 Z3

Parametric 1 1 0.66 767.3 -1.17 -0.82 -0.34 5.82 3.26 15.39 163.79 115.32 13.86

ESSJ 2 13 1.90 495.0 1,125.5 -1.01 -0.76 -0.34 3.93 5.38 6.99 132.55 119.69 7.23

5 14 3.93 519.6 1,966.7 -0.91 -0.71 -0.34 2.94 4.89 7.41 97.80 104.74 6.59

10 19 5.29 537.0 1,918.9 -0.94 -0.71 -0.34 2.41 3.12 8.42 90.47 98.56 7.99

15 26 5.77 543.5 1,266.0 -0.93 -0.73 -0.35 2.94 3.75 9.30 82.99 109.44 8.32

20 24 5.43 567.8 1,990.3 -0.86 -0.69 -0.34 2.31 3.56 7.92 78.89 95.45 7.88

30 34 9.04 550.8 2,000.0 -0.85 -0.69 -0.34 2.59 3.67 8.37 78.06 97.60 7.96

CESSJ 2 14 3.67 495.0 1,989.8 -1.01 -0.76 -0.34 3.89 5.26 6.82 129.35 116.34 7.09

5 14 3.90 519.6 1,978 -0.91 -0.71 -0.34 2.94 4.89 7.41 97.80 104.79 6.59

10 17 5.18 537.0 1,905.9 -0.92 -0.71 -0.34 2.35 2.92 8.21 89.79 98.81 7.96

15 23 6.13 543.5 1,974.9 -0.93 -0.73 -0.35 3.00 3.75 9.35 84.40 109.41 8.38

20 24 5.51 567.8 1,994.1 -0.86 -0.69 -0.34 2.31 3.56 7.92 78.89 95.45 7.88

30 34 11.17 550.8 2,000 -0.85 -0.69 -0.34 2.59 3.67 8.37 78.06 97.60 7.96

Table B.1: Simulated data set. Summaries of the performance: computational burden,
mixing, goodness of fit, and predictive errors in mean and density obtained with the
parametric model (first row) and the nonparametric model for different values of J0.
Results are reported for the adaptive truncation algorithm based on the ESS and CESS
stopping rules.

if ESSJ becomes too low so that resampling and rejuvenation are required. Despite the

increased number of parameters for large J0, the mixing of the MCMC, reflected in

the ESSMCMC, does not deteriorate; however, note the improved mixing for the para-

metric model, which has the least number of parameters, due to the absence of the

covariate-dependent weights. Focusing on the SMC, a larger J0 generally results in less

degeneracy of the particles, reflected in a higher ESSJ∗ . Finally the LPML, measuring

the goodness of fit of the model, increases with J0, while the errors in predictive mean

and density both decrease. This is particularly true for Z1, the most nonlinear response,

while there is little improvement in the binary response Z3, which is indeed simulated

from a linear probit model. Similar results are obtained when substituting the ESS with

the CESS in the discrepancy measure of the SMC, confirming robustness to the choice

of the stopping rule. To conclude, initializing the algorithm with a conservative number

of components provides a good compromise between computational time, mixing, and

accuracy.

Focusing on the model flexibility and its ability to recover the correct structure

present in the data, we explore three additional scenarios: (i) longer number of itera-

tions (25,000 burn-in; 10 thinning; M = 2, 500); (ii) doubled sample size (n = 1, 400);

(iii) omitted censoring. In all cases, J0 = 15. The results are reported in Table B.2,

showing the same goodness-of-fit and error indicators used in Table B.1. As expected,

mixing improves for scenario (i), due to the higher number of iterations, and modest

improvements in the predictive power are observed. Increasing the sample size (scenario

(ii)) without adjusting the algorithm settings (e.g., length of the chain, J0), does not

lead to consistent improvements. Note that this scenario yields approximately doubled

LPML values, due to the definition of this quantity. The removal of censoring (scenario

(iii)) yields faster and more precise computations. Estimates of the predictive densities

for the undiscretized variable Z1 as function of x1 are reported in Figure B.4.
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Figure B.4: Simulated data set. Alternative scenarios by column: (i) longer MCMC
chain; (ii) n = 1, 400; (iii) no censoring. True data-generating density (top) and esti-
mated predictive density (bottom) of the (undiscretized) Z1 as a function of x1 for one
combination of the categorical covariates. The true and estimated mean functions are
depicted with black solid lines; crosses and stars mark observed and censored points,
respectively.

J∗ CPU ESSMCMC ESSJ∗ LPML (103) ERRMean ERRDens

Z1 Z2 Z3 Z1 Z2 Z3 Z1 Z2 Z3

(i) 23 10.24 619.1 1,352 -0.93 -0.74 -0.35 2.60 3.85 9.41 80.83 105.49 8.28

(ii) 23 12.15 516.0 1,117.2 -1.75 -1.4 -0.73 2.60 3.86 9.71 87.85 103.60 9.32

(iii) 23 4.42 560.5 1,070.9 -0.88 -0.96 -0.34 2.33 2.13 8.59 75.34 79.74 7.66

Table B.2: Simulated data set. Alternative scenarios: (i) longer MCMC chain; (ii) n =
1, 400; (iii) no censoring. Summaries of the performance: computational burden, mixing,
goodness of fit, and predictive errors in mean and density obtained with the algorithm
initialized at J0 = 15.

Appendix C: Application: life patterns of Colombian
women

In the following sections, we provide some further discussion on the DHS data charac-
teristics and report some additional figures, complementing and enriching the results
reported in the main paper. We begin by providing a map of the regions of Colombia
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used in the study in Figure C.5. Different territorial divisions of Colombia are used
in different contexts. We follow Ojeda et al. (2011), considering six regions: Atlantica,
Oriental, Central, Pacifica, Bogota, Territorios Nacionales. We point out that Bogota is
in fact a part of the Oriental region but was treated separately because of its peculiar
features in terms of social and economic development. Territorios Nacionales could be
divided into smaller, more homogeneous regions (e.g., Orinoquia and Amazon), but this
is the definition employed by the DHS for the 2010 survey.

Figure C.5: Map of Colombia identifying the six regions considered by the DHS for the
data collection and final report (Ojeda et al., 2011), and adopted in this work.

C.1 The data: some considerations on sample weights

The data arise from a complex survey design, and thus have associated weights with
a rather complicated structure due both to survey design and to additional post-
stratification carried out to adjust for various factors (e.g., the total number of women
interviewed in each municipality, non-response, etc.; see Ojeda et al., 2011, for details).
This creates difficulties in further adjusting the weights based on the filtering considered
(see Section 2 in the main text). Specifically, we do not know the population proportions
for each filter within each municipality (e.g. of ethnicity, or of residents that have lived
in the same region from at least the age of 6). Thus, the weights for the filtered data
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would need to be post-adjusted based on the observed sample proportions, leading to
uncertainty in the weights. In addition, how this correction should relate to the post-
stratification is unclear. We emphasize that even if we were able to obtain accurate
weights for the filtered data, the use of survey weights in regression analyses is debated
within the literature. From a frequentist perspective, Winship and Radbill (1994) point
out that when ordinary least squares (OLS) and weighted OLS lead to similar estimates
the former is preferred, because it leads to improved efficiency, power, coverage. In fact,
the authors state that “where the sampling weights are solely a function of the inde-
pendent variables” (as in our case), “unweighted OLS estimates are preferred because
they are unbiased, consistent, and have smaller standard errors.” Moreover, the authors
suggest that when OLS and weighted OLS estimates are substantially different one
should investigate more flexible models, with e.g. non-linearity or interactions. Thus,
since our model is nonparametric and can flexibly recover non-linearity, interactions,
multi-modality (that may be due to missing or unmeasured covariates), we prefer the
unweighted median regression and density regression estimates.

From a Bayesian perspective, although our model and algorithm could be adjusted
to include the sample weights, for example through a pseudo (i.e. weighted) likelihood or
via data augmentation, as outlined by Gunawan et al. (2020), this may lead to Bayesian
interval estimates that do not have the correct frequentist coverage. Indeed, the authors
show that this is the case with the pseudo likelihood approach, and provide empirical
evidence that data augmentation can perform better. In summary, due to the issues
involved in the determination of accurate weights for the filtered data and to the poor
coverage and efficiency of the weighted estimates that has been identified in literature,
we carry out inference based on the unweighted data, which is further supported by the
flexibility of our model.

C.2 Additional figures

We display additional figures, enriching the results reported in the main text, and
for convenience, comments on possibly relevant findings are reported in the figures’
captions. Figure C.6 complements Figure 5 by reporting median ages at events for
women who grew up in violent environments with only physical punishment or only
parental domestic violence, i.e (P, B̄) or (P̄,B). Figure C.7 completes Figure 6 by
displaying the predictive density of the age at sexual debut. Figure C.8 reports the
predictive probability of censoring, that is the probability that a woman will experience
the event after the given Age, as a function of Age. Turning to the conditional analysis,
the conditional predictive medians for the time from sexual debut to first child given
the age at sexual debut is shown in Figure C.9 and for the time from union to first child
given the age at union is shown in Figure C.10. The underlying conditional predictive
densities for selected covariate combinations are visualized in Figures C.11, C.12, and
C.13. Finally, to explore the possible relation between anticipation of union on work
activity, Figure C.14 reports the conditional predictive probability of working as function
of Age given different ages at union.
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Figure C.6: Predictive medians of the ages at sexual debut, union and child, and pos-
terior probability of working, as functions of Age, for women who grew up in violent
environments with only physical punishment or only parental domestic violence, i.e
(P, B̄) or (P̄,B). Dotted lines indicate when the median exceeds Age. Combined with
Figure 5, observe that median ages increase as violence levels decrease, while the prob-
ability of working increases in younger cohorts for greater violence levels. This provides
evidence for an anticipation of adulthood as violence levels increase.
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Figure C.7: Predictive density of the age at sexual debut as a function of Age for women
who grew up in violent (P,B) and non-violent families (P̄, B̄). Analogously to Figure 6,
results are reported for urban and rural areas of the least developed region (Territorios
nacionales) and for the capital (Bogota). The region above the dashed line indicates
when age at event exceeds Age. The black line is the posterior median function. The
median represents well the center of the distribution, and a decrease in both the median
and dispersion of sexual debut is observed in younger cohorts, particularly in urban and
developed regions.
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Figure C.8: The predictive probability of censoring represents the probability that a
woman will experience the event after the specified Age and is depicted for the events
of sexual debut, union and child as a function of Age, for women who grew up in
violent (P,B) and non-violent families (P̄, B̄). Equivalently, the censoring probability
represents the mass above the dashed line for a given Age in the density plots of Figures
6 and C.7; when the right tail in the density exceeds the dashed line, interpreting the
censoring probability is more reliable than focusing on the shape of the right tail. As
expected, higher censoring probabilities are observed for younger cohorts and more
developed regions and for the age at union and child over sexual debut.
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Atlantica Oriental Central Pacifica Bogota Terr.Nac.
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Figure C.9: Conditional predictive medians of the time from sexual debut to first child
given the age at sexual debut, as a function of the latter, for women with Age =
20, 30, 40, who grew up in violent (P,B) and non-violent families (P̄, B̄). Dotted lines
indicate when the age at child is higher than the Age. Notice that medians are higher for
younger cohorts; thus, although we observe an anticipation of sexual debut in younger
generations in Figure 5, these women tend to wait longer between sexual debut and first
child. We can also appreciate a polarization between Atlantica, Oriental, and Territorios
Nacionales on one side and Central, Pacifica, and Bogota on the other, particularly as
Age increases.
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Atlantica Oriental Central Pacifica Bogota Terr.Nac.
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Figure C.10: Conditional predictive medians of the time from union to first child given
the age at union, as a function of the latter, for women aged 20, 30, and 40 at interview
and who grew up in violent (P,B) and non-violent families (P̄, B̄). Dotted lines indicate
when the age at child is higher than the Age. As can be expected, median time from
union to child decreases with age at union. Indeed, it is negative for high values of age
at union, particularly in rural areas and for violent family environments, suggesting a
greater tendency to have children out of wedlock.
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Figure C.11: Conditional predictive density of the time from sexual debut to union
given age at sexual debut, as a function of the latter, for women with Age = 20, 30, 40.
Results are shown for women who grew up in a non-violent family (P̄, B̄) and for urban
and rural areas of Atlantic and Pacifica. The region above the dashed line indicates
when age at union exceeds Age. Combined with Figure 7, we observe that women
in Pacifica and Bogota compared with Atlantica and Territorios Nacionales (and to
a lesser extent Oriental) not only have a higher median time from sexual debut to
union but also increased dispersion and a heavier right tail, reflecting a wider variety
of choices for women to delay union after sexual debut in these regions. Additionally,
a slight increase in median time and dispersion can be appreciated for decreasing Age,
supporting a weaker relation between sexual debut and union in younger cohorts, that
is more evident in developed urban areas.
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Figure C.12: Conditional predictive density of the time from sexual debut to child given
age at sexual debut, as a function of the latter, for women with Age = 20, 30, 40. Results
are shown for women who grew up in a non-violent family (P̄, B̄) and for urban and
rural areas of Atlantic and Pacifica. The region above the dashed line indicates when
age at child exceeds Age. The heavier right tail, reflecting a wider variety of choices for
women to delay motherhood after sexual debut, is evident as Age increases, particularly
in developed urban areas. This supports the claim of a weaker relation between sexual
debut and motherhood in younger cohorts.
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Figure C.13: Conditional predictive density of the time from union to first child given
age at union, as a function of the latter, for women with Age = 20, 30, 40. Results are
shown for women who grew up in a non-violent family (P̄, B̄) and for urban and rural
areas of Atlantic and Pacifica. The region above the dashed line indicates when age at
first child exceeds Age.
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Figure C.14: Conditional predictive probability of working as function of Age given
different ages at union, for women who grew up in violent (P,B) and non-violent families
(P̄, B̄). Dotted lines indicate when Age is less than the age at event. While we observe
an increased probability of working for young cohorts that established an early union,
in contrast to Figure 8, no scaring effect is visible, i.e. the probability of working in
older cohorts is unaffected by the conditioned age at union.
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