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Abstract—Stochastic Petri nets are an important formalism
for performance evaluation of telecommunication systems and
computer hardware and software architectures whose underlying
process is a Continuous Time Markov Chain. In practice,
performance evaluation based on Petri net models suffers the
problem of state space explosion which makes exact analyses com-
putationally prohibitive and hence practitioners usually resort to
simulation. In this paper we propose an algorithm for perfect
sampling in stochastic Petri nets whose transitions have single or
infinite server semantics. Obtained samples are distributed ac-
cording to stationary distribution of the net, allowing for running
of stationary simulations without warm up period by starting a
simulation run from an obtained sample. We implement coupling
from the past—an algorithm for perfect sampling of discrete
time Markov chains—to sample from the stationary probability
distribution of the stochastic process underlying the Petri net. We
study the performance of the algorithm under different scenarios.

I. INTRODUCTION

In this paper we propose an algorithm for perfect sampling
from the stationary probability distribution of stochastic Petri
nets (SPN). Stochastic Petri nets are an important formalism
for modeling and performance evaluation of discrete event
dynamic systems whose underlying process is a continuous
time Markov chain (CTMC).

For Petri nets with large state spaces, simulation is widely
used in order to obtain stationary performance indices. The
initial part of the simulation (warm-up period), in which state
of the simulated model depends on the initial state, usually
needs to be discarded when estimating stationary performance
measures. This requires an estimation of the length of the
warm-up period, either prior to or during the simulation [1],
[2].

Alternatively, simulation can be started from a state sampled
according to the stationary distribution of the Petri net, allow-
ing for the stationary simulation without the warm-up period.
The algorithm that we propose produces samples from the
stationary distribution of stochastic Petri nets and is based on
coupling from the past [3], an algorithm for perfect sampling
from stationary distribution of discrete time Markov chains.

Coupling from the past is based on simulating the model
from all states until the different simulations couple into a
single state. Since this brute-force approach is not feasible for
models with large state spaces, methods applying coupling

from the past to such models avoid simulation from all states
by tailoring the coupling to the specific model or a class of
models under consideration and relying on their specific struc-
ture or properties. For example, such approaches are based
on monotonicity properties of the model and coupling [3],
envelope methods [4], bounding chains [5], [6] and existence
of blocking states for a subclass of stochastic Petri nets [7].
Unfortunately, the application of all these approaches requires
some restrictions on the structure of the net.

In contrast, the method proposed in this paper does not
depend on the special structure of the SPN, and can thus be
applied to general SPNs with finite state spaces. We require
some assumptions on the firing rates of transitions, but we
can handle the usual firing semantics of the SPNs including
the single server, multiple server and infinite server firing
semantics. We achieve this by implementing a brute-force
approach—coupling from all states of the model—based on
decision diagrams [8], [9], a data structure that has been
used with great success to efficiently generate and encode
state spaces and transition functions of discrete event dynamic
systems with very large state spaces [10], [11], [12]. For this
purpose, we construct a coupling scheme and prove that it
produces a coupling of all states in finite expected time.

The paper is structured as follows. In Section II we intro-
duce stochastic Petri nets and the notation used in the rest of
the paper. Section III discusses coupling from the past, and
Section IV introduces decision diagrams. In Section V we
present our algorithm and the proof of correctness follows in
Section VI. Finally, in Section VII we test the performance of
the algorithm on several models, and Section VIII concludes
the paper. Appendix contains descriptions of the stochastic
Petri nets used for the testing.

II. STOCHASTIC PETRI NETS

In this section we give the definition of Stochastic Petri Nets
(SPNs) and introduce the notation used in the paper. A SPN
[13] is a 6-tuple

SPN = (P, T , I(·), O(·),W (·),m0)

where P = {P1, . . . , PNP
} is the set of NP > 0 places,

T = {T1, . . . , TNT
} is the set of NT > 0 transitions, I :

T → NNP is a function associating an input vector with each



transition Ti ∈ T and O : T → NNP is a function associating
an output vector with each transition, m0 ∈ NNP is called
initial marking of the net. Function W : T → R+ assigns a
positive real number to each transition Ti ∈ T . A transition Ti
is enabled by a marking m ∈ NNP if m−I(Ti) ≥ 0, i.e., has
only non-negative components. We define enabling degree of
a transition Ti in marking m by ei(m) = max{k ∈ N : m−
kI(Ti) ≥ 0}. In general, a marking m enables zero, one or
more transitions. Let E(m) be the set of transitions enabled by
marking m. When a transition Ti ∈ E(m) fires, the marking
changes from m to m−I(Ti)+O(Ti), i.e., the tokens specified
by the input vector are consumed and those specified by the
output vector are produced. In Markovian Petri nets (or simply
SPN), we associate an exponentially distributed random delay
with each transition enabled by marking m. Thus, the non-
determinism on standard Petri nets is solved with the race
policy among exponential distributions. We consider two firing
semantics:

• Single server semantics: in this case a firing delay is set
when the transition is first enabled and a new delay is
sampled in case the same transition is enabled after the
firing. In other words, the firing rate of enabled transition
Ti is state independent and its value is W (Ti);

• Infinite server semantics: in this case every enabling set
of tokens is processed in parallel as soon as they arrive at
the input places. Each of these concurrent delays associ-
ated with transition Ti are i.i.d. exponentially distributed
random variables with rate W (Ti). According to the race
policy, this corresponds to a single server semantics in
which the firing rate depends on the marking in the
transition’s input places. More formally, the firing rate
of transition Ti in marking m is ei(m)W (Ti).

Given the initial marking m0, the set RS(m0) is the set of all
the possible markings reachable after an arbitrary number of
transition firings from m0. The reachability graph of a SPN
has the elements of RS(m0) as nodes and the arcs connect
markings which are reachable via the firing of a transition
(directly reachable markings). The marking process is the
stochastic process X(t) associated with the evolution of the
net’s marking for t ∈ R≥0. It can be proved that for SPNs,
X(t) is a Continuous Time Markov Chain (CTMC) whose
transition graph structure is identical to that of the SPN’s
reachability graph. The transition rates are set according to
the definition of function W (·) and the firing semantics which
is adopted. The derivation of the reachability graph of a SPN
is known to belong to the class of EXPSPACE problems.

In the literature, SPNs (or GSPNs) have been widely used
to study the performances of hardware and/or software archi-
tectures, see e.g., [14], [15], [16], [17]. However, in many
cases the analytical or numerical derivation of the stationary
distribution and hence of the stationary performance indices
becomes computationally prohibitive due to the state space
explosion. Indeed, for these nets the state space can grow faster
than any primitive recursive function [18].

III. COUPLING FROM THE PAST

Coupling from the past [3] is an algorithm for obtaining
samples from the stationary probability distribution of ergodic
discrete time Markov chains (DTMC) with finite state spaces.
It is based on simulating the DTMC starting from all states
until the simulations corresponding to different starting states
couple into a single state.

In some cases, the simulation can be performed starting
from a subset of states instead of all states, which can greatly
increase efficiency of the algorithm. An approach [7] closely
related to the one we propose applies coupling from the past
to event graphs (Petri nets where each place has a single input
and a single output transition), for which the authors show
that it is possible to perform the simulation starting from a
small number of initial states. In contrast, we do not require
assumptions on the structure of the net and base our approach
on a brute force version of coupling from the past—simulating
from all states of the Petri net. We use decision diagrams to
efficiently encode and store subsets of the state space and state
transition functions needed in the algorithm. In the remainder
of this section we discuss coupling from the past algorithm,
and we introduce decision diagrams in next section.

Let {Xn}n∈N be an ergodic discrete time Markov chain
with finite state space S and transition probabilities pij , i, j ∈
S, {U−n}n∈N a sequence of independent uniformly distributed
on [0, 1] continuous random variables, and φ : S × [0, 1]→ S
an update rule such that for all states i, j ∈ S and U an
uniformly distributed on [0, 1] continuous random variable the
following holds:

Pr{φ(i, U) = j} = pij .

For a subset A ⊆ S of the state space we denote with φ(A, U)
the set {φ(s, U) : s ∈ A} of images of states in A.

Under these assumptions, Algorithm 1 (if it terminates)
produces a sample from the stationary probability distribution
of the Markov chain {Xn}n∈N [3]. The inner loop of the
algorithm simulates the Markov chain starting from all states
for m iterations, and the outer loop repeats this process for
increasing values of m until simulations from all states couple
into a single state. This state is returned as the sample.
The number of iterations m that produces coupling is highly
dependent on the Markov chain and the update rule φ.

If the simulations that start from different states couple in a
finite expected number of steps then the algorithm terminates
with probability 1. The probability of coupling in finite time
depends on the update rule φ. In Section V we construct an
update rule that can be efficiently represented using decision
diagrams and in Section VI we show that it couples in finite
expected time.

IV. DECISION DIAGRAMS

In this section we introduce decision diagrams and some
elementary operations on them. Decision diagrams are data
structures that encode discrete-valued functions of discrete
variables. They have been successfully used to encode state
spaces and transition functions of discrete event dynamic



Algorithm 1: COUPLING(S, φ, U0, U−1, . . .)

Data: State space S, update rule φ and uniform on [0, 1] i.i.d.
random variables U0, U−1, . . .

Result: Sample from the stationary distribution.
begin

m← 1;
repeat
A ← S;
for i = −m+ 1 to 0 do
A ← φ(A, Ui);

m← 2m;
until |A| = 1;
return s ∈ A;

systems [8], [9], and efficient algorithms have been developed
that can generate decision diagram encodings of very large
state spaces [10], [11], [12]. While efficiency of methods
based on decision diagrams is in worst-case no better than
using explicit representation of state space and state space
generation based on traditional breadth-first search algorithm,
in practice performance gains are significant for many models.
We describe decision diagrams from the perspective of their
use in the encoding of sets of Petri net markings and of
relations on the sets of markings.

Decision diagrams can be used to encode functions of the
form f : D → R, where D =

∏n
i=1{0, . . . , Di} ⊂ Nn is a n-

variable finite discrete domain, and R = {0, . . . , Rmax} ⊂ N
is a finite discrete range. Decision diagram encoding of a n-
variable function f is a data structure composed of labeled
nodes and directed links between the nodes. Nodes are orga-
nized in n+ 1 levels labeled n, n− 1, . . . , 0, where nodes in
levels n, n− 1, . . . , 1 correspond to variables and are labeled
by possible values of the variables, and nodes in level 0 (which
are called terminal nodes) correspond to values of the function
f . Links can be present only between nodes on different
levels, pointing from a node in the higher level to a node
in the lower level. Value of encoded function f for an n-tuple
x = (x1, . . . , xn) ∈ D can be read from the decision diagram
by following a path containing nodes with labels xn, . . . , x1
from level n until a terminal node with label f(x) is reached
on level 0.

For our purposes, we distinguish four types of decision
diagrams, depending on the domain and range of the function
the decision diagram represents.

• For f : D → {0, 1}, the decision diagram is a multi-
way decision diagram (MDD). Here multi-way signifies
that variables can have multiple values in contrast to
binary decision diagrams where variables are constrained
to boolean values. MDDs can be used to encode charac-
teristic functions of subsets of D. We use them to encode
the reachability set of the Petri net and its subsets.

• For f : D × D → {0, 1}, the decision diagram is a
multi-way matrix diagram (MxD). MxDs can be used
to encode relations on D. We use them to encode Petri
net transitions and update rule for the perfect sampling

algorithm.
• For f : D → {0, . . . , Rmax} the decision diagram is a

multi-terminal multi-way decision diagram (MTMDD).
• For f : D × D → {0, . . . , Rmax} the decision diagram

is a multi-terminal multi-way matrix diagram (MTMxD).
We use MTMxDs in the construction of MxDs.

We use a C++ programming library MEDDLY [19] that
supports creation and manipulation of all of these types of
decision diagrams. In the following, we briefly introduce
several basic operations on decision diagrams that are sup-
ported by this library, some of which we use in Section V in
implementation of the perfect sampling algorithm.

A. Creating and manipulating decision diagrams

Here we introduce operations for creation of decision di-
agrams from scratch, and for manipulation of decision dia-
grams.
• For a vector of variable assignments (v1 = x1, . . . , vn =
xn), where (x1, . . . , xn) ∈ D, and for a value y ∈ R
an MDD or MTMDD that encodes a partial function
(x1, . . . , xn) 7→ y can be created. Any of the variables vi
can be set to a special value DONT CARE, meaning that
these variables can have any allowed value. In this case,
the resulting decision diagram encodes a partial function
that maps to y all n-tuples satisfying the specification.

• For matrix diagrams, given a vector of variable assign-
ments (v1 = x1, . . . , vn = xn, v

′
1 = x′1, . . . , v

′
n = x′n)

where (x1, . . . , xn, x
′
1, . . . , x

′
n) ∈ D × D and given a

value y ∈ R an MxD or MTMxD that encodes a partial
function (x1, . . . , xn, x

′
1, . . . , x

′
n) 7→ y can be created.

Like previously, any of the variables vi and v′i can have
a special value DONT CARE, which is handled in the
same manner. In addition, any of the primed variables
v′i can have a special value DONT CHANGE. In this
case, only 2n-tuples in which these primed variables are
equal to their unprimed counterparts are included in the
resulting partial function.

Decision diagrams encoding projections to a particular vari-
able can be created: for a variable index i, an MDD (or
MTMDD) can be created that encodes the function which
maps (x1, . . . , xn) 7→ xi for every (x1, . . . , xn) ∈ D.
Similarly, MxDs and MTMxDs can be created that encode
projections to either unprimed or primed variables.

These operations allow creation of decision diagrams that
encode simple functions and relations. To efficiently encode
more complex functions, one can combine simple functions
using a variety of operators. Tables I to IV contain an overview
of basic operators supported by MEDDLY, some of which we
use in this paper.

Operations BFS and DFS from table IV can be used to
generate a reachability set of a Petri net. They generate the
reachability set by starting from a set of markings represented
by MDD A and then repeatedly applying transition relation
represented by MxD B. BFS uses a breadth-first search algo-
rithm and DFS uses a more efficient saturation algorithm [?].



TABLE I
OPERATIONS (MTMDD A, MTMDD B)→ MTMDD C AND
ANALOGOUS FOR (MTMXD A, MTMXD B)→ MTMXD C

Operation Result

C ← PLUS(A,B) fC(x) = fA(x) + fB(x)

C ← MINUS(A,B) fC(x) = fA(x)− fB(x)

C ← MULTIPLY(A,B) fC(x) = fA(x)fB(x)

C ← DIVIDE(A,B) fC(x) = fA(x)/fB(x) (integer division)

C ← MIN(A,B) fC(x) = min(fA(x), fB(x))

C ← MAX(A,B) fC(x) = max(fA(x), fB(x))

TABLE II
OPERATIONS (MTMDD A, MTMDD B)→ MDD C AND ANALOGOUS

FOR (MTMXD A, MTMXD B)→ MXD C

Operation Result

C ← GREATER THAN(A,B) fC(x) = 1⇔ fA(x) > fB(x)

C ← GREATER EQUAL(A,B) fC(x) = 1⇔ fA(x) ≥ fB(x)

C ← LESS THAN(A,B) fC(x) = 1⇔ fA(x) < fB(x)

C ← LESS EQUAL(A,B) fC(x) = 1⇔ fA(x) ≤ fB(x)

C ← EQUAL(A,B) fC(x) = 1⇔ fA(x) = fB(x)

C ← NOT EQUAL(A,B) fC(x) = 1⇔ fA(x) 6= fB(x)

TABLE III
OPERATIONS (MDD A, MDD B)→ MDD C AND ANALOGOUS FOR

(MXD A, MXD B)→ MXD C

Operation Result

C ← A ∪B fC(x) = 1⇔ fA(x) = 1 or fB(x) = 1

C ← A ∩B fC(x) = 1⇔ fA(x) = 1 and fB(x) = 1

C ← A \B fC(x) = 1⇔ fA(x) = 1 and fB(x) = 0

TABLE IV
OPERATIONS (MDD A, MXD B)→ MDD C

Operation Result

C ← PRE IMAGE(A,B)
fC(x) = 1⇔ ∃y s.t.

fA(y) = 1 and fB(x,y) = 1

C ← POST IMAGE(A,B)
fC(y) = 1⇔ ∃x s.t.

fA(x) = 1 and fB(x,y) = 1

BFS(A,B) fixpoint of A ∪ POST IMAGE(A,B)

DFS(A,B) fixpoint of A ∪ POST IMAGE(A,B)

V. ALGORITHM

To implement coupling from the past, we first obtain a
discrete time Markov chain by uniformizing the continuous
time Markov chain underlying the stochastic Petri net. Then
we define the update rule φ that we use for coupling and
encode it using decision diagrams. These steps are explained
in the following subsections.

A. Uniformization

We assume an ergodic and bounded stochastic Petri net
with firing rates that depend on the enabling degree of the
transitions. This type of rate dependency includes single server

and infinite server firing semantics as special cases. For
i = 1, . . . , NT , let ri : N → R≥0 be a function that maps
an enabling degree to a firing rate of transition Ti. We assume
that for all transitions the firing rate is equal to 0 if the enabling
degree is 0, and the firing rate is nonzero otherwise:

∀Ti ∈ T , ri(k) = 0 if and only if k = 0.

Note that for a set of firing rates {W (T1), . . . ,W (TNT
)}

we obtain single server firing semantics by setting ri(k) =
min(1, k)W (Ti), and infinite server firing semantics by set-
ting ri(k) = kW (Ti) for all transitions.

Since coupling from the past works with discrete time
Markov chains, we use uniformization to obtain a discrete time
Markov chain with the same stationary probability distribution
as the continuous time Markov chain underlying the SPN. In
the following we describe the uniformization coefficient that
we use. Let E1, . . . , ENT

be maximum enabling degrees of
transitions:

Ei = max{ei(m) : m ∈ RS(m0)}, i = 1, . . . , NT

and let R1, . . . , RNT
be maximum rates of transitions:

Ri = max{ri(k) : 0 ≤ k ≤ Ei}, i = 1, . . . , NT .

We use uniformization coefficient Λ equal to the sum
∑NT

i=1Ri
of maximum transition rates. We choose this uniformization
coefficient as a result of balancing two requirements. First, we
want a uniformization coefficient for which the uniformization
is as efficient as possible. Second, we want to be able to
define update rule φ that in each step fires a single Petri
net transition, in order to be able to prove that the algorithm
terminates in finite expected time. The above definition of
Λ satisfies the second requirement while being as efficient
as possible. For single server semantics, this uniformization
coefficient Λ is equal to the sum

∑NT

i=1W (Ti) of transition
rates, as in [7]. For infinite server semantics, Λ is equal to
the sum

∑NT

i=1EiW (Ti) of base transition rates multiplied by
maximum enabling degrees of transitions.

B. Update rule

For each Petri net transition Ti and enabling degree k ∈
{0, . . . , Ei}, we define a partial update rule ψki : 2RS(m0) →
2RS(m0) in the following manner. For a set A ⊆ RS(m0)
of markings, ψki fires the transition Ti in states for which the
firing rate of transition Ti is at least ri(k), and leaves the rest
of the states unchanged:

ψki (A) = {m− I(Ti) +O(Ti) : m ∈ A, ri(k) ≤ ri(ei(m))}
∪ {m : m ∈ A, ri(k) > ri(ei(m))}.

Finally, we define the update rule φ for the perfect sampling
algorithm with φ(A, U) = ψ

k(U)
i(U) (A). Here i(U) is the unique

transition index such that

Λ−1
i(U)−1∑
i=1

Ri ≤ U < Λ−1
i(U)∑
i=1

Ri.



Further, k(U) is an enabling degree associated with the
minimum firing rate of transition Ti(U) that is larger than
ΛU −

∑i(U)−1
i=1 Ri:

k(U) ∈ arg min
k

ri(U)(k) : ri(U)(k) ≥ ΛU −
i(U)−1∑
i=1

Ri

 .

Note that if for some transition Ti and two enabling degrees
k1 6= k2 transition rates are equal, ri(k1) = ri(k2), then the
partial update rules ψk1i and ψk2i will also be equal. In this
case, k(U) will not be uniquely determined. This happens,
for instance, in case of single server firing semantics, where
the firing rate of transition Ti is equal to W (Ti) for any
nonzero enabling degree. In this case we can simply discard
the duplicate partial update rules. Because of this, we can
assume without loss of generality that for every transition Ti,
rates for different enabling degrees are different, and that the
enabling degree k(U) is unique. Further, this ensures that the
probability of selecting partial update rule ψki in a step of
perfect sampling algorithm is nonzero for all i and k.

With partial update rules ψki defined as above, we imple-
ment Algorithm 1 using decision diagrams to encode state
space S (the reachability set RS(m0)), set A and partial
update rules ψki . At each step of the inner loop, for the
associated random variable U we select a partial update rule
ψ
k(U)
i(U) as described above and apply it to the set A. We detail

this procedure in the following subsection.

C. Encoding partial update rules using decision diagrams

We encode sets of Petri net markings and transition func-
tions using decision diagrams in which each variable corre-
sponds to marking of a Petri net place. Efficiency of operations
on decision diagrams depends on the ordering of the variables
and finding the optimal ordering is computationally very
expensive [20]. To avoid bias that could be introduced by
selecting the ordering using a fixed heuristic, in our tests we
select an efficient ordering of the Petri net places (and thus of
the decision diagram variables) by a process of trial and error.
In the following, we assume some ordering of the places and
describe the construction of decision diagrams.

For i = 1, . . . , NP , let Bi be the bound on the number of
tokens in place Pi. We assume the bounds Bi are known. This
is not a limitation, since for bounded Petri nets it is possible
to generate a decision diagram encoding the reachability set
without knowledge of the bounds [12] and, from this decision
diagram, bounds on the numbers of tokens in places can then
be obtained. We define potential reachability set B of the Petri
net as the Cartesian product of possible markings for all places:

B =

NP∏
i=1

{0, . . . , Bi}.

To encode partial update rule ψki with a decision diagram,
we first encode two functions, STEPi : B × B → {0, 1} and
EDEGi : B×B → N. Using Algorithm 2, we encode in STEPi

a characteristic function of a step relation on B:

STEPi(m,m′) = 1⇔m− I(Ti) +O(Ti) = m′. (1)

In Algorithm 2, we first store in STEPi a characteristic
function of a relation on B such that two possible markings are
in relation if they don’t differ on places that are neither input
nor output places of transition Ti. Then, for each place Pj that
is input or output place of transition Ti we define a relation
EQUAL(PROJ’,DIFF) such that two possible markings are in
relation if they differ in place Pj by exactly −Ij(Ti)+Oj(Ti).
We intersect STEPi with this relation. It is easy to see that the
algorithm generates the characteristic function of a relation
satisfying (1).

Algorithm 2: ENCODE STEP(SPN,B, i)
Data: Stochastic Petri net SPN , potential reachability set B

and transition index i.
Result: Encoding of step function for transition Ti.
begin

STEPi ← {(m,m′, 1) : m,m′ ∈ B, Ij(Ti) =
0 and Oj(Ti) = 0⇒ mj = m′j};
for j such that Ij(Ti) 6= 0 or Oj(Ti) 6= 0 do

PROJ’← {(m,m′,m′j) : m,m′ ∈ B};
DIFF← {(m,m′,mj − Ij(Ti) +Oj(Ti)) : m,m′ ∈
B};
STEPi ← STEPi ∩ EQUAL(PROJ’,DIFF);

return STEPi;

Further, using Algorithm 3, we encode in EDEGi a function
that returns the enabling degree of transition Ti in the marking
represented by the first argument:

EDEGi(m,m′) = ei(m).

This algorithm is a straightforward calculation of the enabling
degree of a transition, performed over the entire set of possible
markings.

Algorithm 3: ENCODE EDEG(SPN,B, i)
Data: Stochastic Petri net SPN , potential reachability set B

and transition index i.
Result: Encoding of enabling degree function for transition Ti.
begin

EDEGi ← {(m,m′,∞) : m,m′ ∈ B};
for j such that Ij(Ti) > 0 do

PROJ← {(m,m′,mj) : m,m′ ∈ B};
INP← {(m,m′, Ij(Ti)) : m,m′ ∈ B};
EDEGi ← MIN(EDEGi,DIVIDE(PROJ, INP));

return EDEGi;

Now we can finally encode partial step function ψki as
a characteristic function of a relation on B, as shown in
Algorithm 4. In this algorithm we encode ψki as a union of a
step relation on markings for which the firing rate of transition
Ti is larger than rate ri(k), and an identity relation on the rest
of the markings. As decision diagrams STEPi and EDEGi
could be used multiple times in invocations of Algorithm 4



with different values of k, in the actual implementation we
generate these decision diagrams only once and cache them.

Algorithm 4: ENCODE PSI(SPN,B, i, Ei, k)

Data: Stochastic Petri net SPN , potential reachability set B,
transition index i, maximum enabling degree Ei and
enabling degree k.

Result: Encoding of partial update rule ψk
i .

begin
EDEGi ← ENCODE EDEG(SPN,B, i);
GEQ←

⋃
j ∈ {0, 1, . . . , Ei} s.t.

ri(j) ≥ ri(k)

EQUAL(EDEGi, j);

LT←
⋃

j ∈ {0, 1, . . . , Ei} s.t.
ri(j) < ri(k)

EQUAL(EDEGi, j);

STEPi ← ENCODE STEP(SPN,B, i);
NOSTEP← {(m,m, 1) : m ∈ B};
ψk

i ← (STEPi ∩ GEQ) ∪ (NOSTEP ∩ LT);
return ψk

i ;

After we generate the reachability set RS(m0) of the
stochastic Petri net and encode partial update functions ψki
with decision diagrams, we use coupling from the past to
obtain a sample from the stationary distribution of the net,
as shown in Algorithm 5.

Algorithm 5: COUPLING SPN(SPN,B, U0, U−1, . . .)

Data: Stochastic Petri net SPN , potential reachability set B,
uniform on [0, 1] i.i.d. random variables U0, U−1, . . .

Result: Sample from the stationary distribution.
begin

for i = 1 to NT do
STEPi ← ENCODE STEP(SPN,B, i);
EDEGi ← ENCODE EDEG(SPN,B, i);

RS ← DFS({m0},
NT⋃
i = 1

STEPi);

for i = 1 to NT do
Compute maximum enabling degree Ei;
for k = 1 to Ei do

ψk
i ← ENCODE PSI(SPN,B, i, Ei, k);

Compute selection functions i(U) and k(U);
m← 1;
repeat
A ← RS;
for j = −m+ 1 to 0 do
A ← POST IMAGE(A, ψk(Uj)

i(Uj)
);

m← 2m;
until |A| = 1;
return s ∈ A;

To improve locality of memory accesses during execution
of the algorithm, we partially reorder samples of random
variables Ui to first fire lower transitions—the ones with input
and output places which are encoded with variables corre-
sponding to lower levels of the decision diagram. Reordering

is only partial because we can change the ordering only of
partial update rules which involve firing of non-overlapping
transitions (ones that don’t modify a common place) without
changing the simulation. The reordering results in a more
ordered access to nodes of the decision diagram that encodes
set A and we have observed an improvement in execution time
of about 30%.

VI. PROOF OF COUPLING

In this section we prove the correctness of the coupling
scheme defined in the previous section.

Theorem: Consider a bounded and ergodic stochastic Petri
net with firing rate dependency as described in Section V-A
and let φ be an update rule defined by partial update rules
ψik and selection functions i(U) and k(U) as defined in
Section V-B.

Coupling from the past, given in Algorithm 1, terminates in
finite expected time and returns a sample from the stationary
probability distribution of the SPN.

Proof: It is enough to show that for any two markings
m,m′ ∈ RS(m0) of the SPN there exists a finite coupling
sequence of samples U0, U−1, . . . , U−m+1, for some m ∈ N,
with nonzero probability and such that the sequence of partial
update rules ψk(U−m+1)

i(U−m+1)
, ψ

k(U−m+2)
i(U−m+2)

, . . . , ψ
k(U0)
i(U0)

, when applied
to m and m′, yields the same marking. From the exis-
tence of such coupling sequence, by applying Borel-Cantelli
lemma [21] it follows that markings m,m′ couple in finite
expected time. From this, and the finiteness of the reachability
set of the SPN it follows that the reachability set will couple
into a single state in a finite expected number of steps. This
state is then a sample from the stationary distribution of the
SPN [3]. In the following, we construct the finite coupling
sequence of samples.

Let m1,m
′
1 ∈ RS(m0) be two different markings of the

Petri net. Denote with d1 = d(m1,m
′
1) the length of the

shortest directed path in the reachability graph from m1 to
m′1 and let σ1 = Ti1 , Ti2 , . . . , Tid1 be the shortest sequence of
transitions such that m1

σ1−→m′1 (if there are several shortest
sequences, select one of them). Since the reachability graph of
the Petri net is finite, the length d1 of this sequence is bounded
by the finite diameter of the reachability graph.

By construction of partial update rules, for the sequence of
transitions σ1 there exists a corresponding sequence of partial
update rules τ1 = ψk1i1 , ψ

k2
i2
, . . . , ψ

kd1
id1

such that:

τ1({m1}) := (ψ
kd1
id1
◦ · · · ◦ ψk2i2 ◦ ψ

k1
i1

)({m1}) = {m′1}.

In general, every partial update rule ψki , when applied to a
marking, either fires corresponding transition Ti, or leaves the
marking unchanged. By construction, applying sequence τ1 to
m1 fires a corresponding transition for every partial update
rule in τ1. We say that τ1 is fully fireable from marking m1.
Applying sequence τ1 to m1 yields marking m′1 = m1 + δ1
for some nonzero vector δ1 ∈ NNP . If τ1 is fully fireable
n ∈ N times from m1 (that is, sequence τn1 , obtained by
concatenating n copies of τ1, is fully fireable from m1), the



resulting marking will be equal to m1 + nδ1. Because the
reachability set is finite, τ1 is fully fireable only a finite number
of times from m1. Otherwise, we would obtain an infinite
sequence {m1 + nδ1}n∈N of different markings in the finite
reachability set RS(m0) (a contradiction). Let l1 ∈ N be the
maximum number of times that τ1 is fully fireable from m1.

We now observe what happens when τ1 is applied l1 times
to markings m1 and m′1. We denote:

{m2} := τ l11 ({m1}) and {m′2} := τ l11 ({m′1}).

Since τ1 is fully fireable l1 times from m1, we have that m2

is obtained by firing l1 times the sequence of transitions σ1
from the marking m1:

m1
σ
l1
1−−→m2.

Since {m′2} = τ l11 ({m′1}) = τ l1+1
1 ({m1}) = τ1({m2}), and

τ1 is not fully fireable from m2 we have that m′2 is obtained
by firing from m2 some strict subsequence σ′1 of the sequence
of transitions σ1:

m′1
σ
l1−1
1−−−−→m2

σ′1−→m′2, where σ′1 $ σ1.

Therefore, distance in the reachability graph between m2 and
m′2 is strictly less than d1, the length of sequence σ1. To
recapitulate, we have shown the following:

∃l1 ∈ N, ∃m2,m
′
2 ∈ RS(m0) such that

τ l11 ({m1}) = {m2}, τ l11 ({m′1}) = {m′2} and
d2 := d(m2,m

′
2) < d1.

Repeating the above argument for markings m2,m
′
2, we

obtain another sequence τ l22 of partial update rules and mark-
ings m3,m

′
3 such that d3 := d(m3,m

′
3) < d2. Continuing

in the same manner, for some t ∈ N we obtain markings
mt,m

′
t such that d(mt,m

′
t) = 0 or, equivalently, mt = m′t.

Concatenating all obtained sequences of partial update rules
we obtain a sequence τ = τ l11 τ

l2
2 . . . τ ltt of partial update rules

such that:

τ ltt ◦ · · · ◦ τ
l2
2 ◦ τ

l1
1 ({m1}) = τ ltt ◦ · · · ◦ τ

l2
2 ◦ τ

l1
1 ({m′1}).

By construction of selection functions i(U) and k(U), it is
easy to see that there exists a finite sequence of samples
corresponding to sequence τ and with nonzero probability.
This finishes the proof.

VII. EXPERIMENTS

Table V lists the models that were used for testing, along
with short descriptions. Full descriptions and figures of some
of the models can be found in the Appendix. For each
combination of a model and parameters, we have performed 10
testing runs. Rates of transitions were selected uniformly from
the segment [1, 10] for each testing run, for all models except
model bimodal, for which all transition rates were set to 1.
All tests were performed on a Linux system with a 2.40GHz
Intel Xeon E5-2665 CPU.

Results are reported in Table VI. First column specifies the
tested model and second column specifies the firing semantics

that were used. NP is number of places and NT number
of transitions of the net, and Bound is the bound on the
marking of a single place in the net. |RS| is the size of
the reachability set. Last three columns are measurements of
the performance of the proposed algorithm, taken as averages
over 10 runs. Init time is total execution time prior to the
coupling phase of the algorithm, and includes the generation of
decision diagrams that encode the reachability set and partial
update rules. Coupling time is the time needed for execution of
coupling from the past. Iterations is the number of iterations
that produces coupling (the value of m for which the coupling
occurs in Algorithm 5). For model bimodal, we also report the
coupling time and number of iterations needed for coupling to
two states (in this case, we stop Algorithm 5 when cardinality
of set A drops to 2, instead of 1).

Algorithm is very efficient for models phil, rphil and con-
tention, allowing sampling despite very large reachability sets.
Performance of the algorithm on these models is comparable
when one takes into account size of the reachability set and
number of iterations needed for coupling. We note that these
models are somewhat similar, as they are all composed of a
number of small components that share resources.

For models slot and loop performance of the algorithm is
worse. In case of model slot this is mainly due to explosion
of decision diagrams during the execution of the algorithm.
Investigation shows that during execution of the coupling
phase on model slot, number of nodes of decision diagram
encoding set A is up to 100 times higher than when the
algorithm executes on models phil, rphil and contention with
comparable size of the reachability set. Further research is
needed to establish the exact cause of this behaviour, but we
conjecture it is likely due to the setA becoming less regular for
model slot during coupling, due to model components having
more internal states and more complex interactions compared
to the above models.

Our conclusions are similar for model loop 10 with single
server semantics. While performance is somewhat better than
for model slot, this is mainly due to a smaller number of
iterations. For model loop 100 with single server semantics
efficiency drops in comparison to model loop 10 mainly due
to the increased number of iterations.

Finally, we compare performance for single server seman-
tics and infinite server semantics for the model loop. Figures
1 and 2 show number of states in set A and number of nodes
in decision diagram encoding of set A during execution of
the algorithm. We see that for the model with infinite server
semantics more iterations are needed to couple all states, and
that the number of nodes in the decision diagram is much
higher than in the case of single server semantics, resulting in
longer execution time of the algorithm.

A. Detection of bimodality

We include model bimodal, shown in Figure 6, in the
paper to illustrate another use of the proposed algorithm.
The underlying CTMC of this model is nearly completely
decomposable, resulting in a very long warm-up period during
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TABLE V
TESTED MODELS.

Model Description

phil N N dining philosophers (take both forks at once)

rphil N N dining philosophers (take one fork at a time)

slot N slotted protocol model with N nodes

contention N M N CPUs, M tasks per CPU compete for a resource

loop N M simple loop of N places with M tokens

bimodal M bimodal SPN with M tokens in marked places

simulation. If this is unknown to the analyst, it is likely that a
significant portion of the reachability set will be missed during
simulation due to a very low probability of firing transition T .
Incomplete coupling (where coupling is performed until all
states couple into two states) for this model can be performed
in much shorter time than the full coupling, as shown in the
last row of Table VI. This could be very useful in the detection
of bimodality (or multimodality) of the underlying CTMC for
similar models, even if the full coupling is not feasible.

VIII. CONCLUSION

In this paper we have proposed an algorithm for sampling
from the stationary probability distribution of stochastic Petri
nets. Our approach is based on coupling from the past [3] and
decision diagrams [12] which we use to efficiently encode
the reachability set and update rule for the coupling scheme.
In contrast to previous approaches [7] which require some
constraints on the structure of the Petri net, the proposed
algorithm can be applied to more general stochastic Petri nets.
Testing of the algorithm on several nets has shown that the
algorithm performs generally well, in some cases allowing
sampling from reachability sets with more than 10200 states
in reasonable time. Finally, we identified a further use of
the algorithm: detection of multimodality of the stationary
distribution.

There are several avenues for further research. First, the
class of stochastic Petri nets to which the method can be
applied can be generalized by including inhibitor arcs in the
model, and by relaxing the type of rate dependency. In this
paper, rate of a transition can be different for different subsets
of the reachability set, which are obtained by partitioning
the reachability set according to the enabling degree of the
transition. These partitions of the reachability set could be
defined by an arbitrary rule, as long as the number of sets in
the partitions is not exceedingly high, to keep the number
of partial update rules manageable. Second, in this paper
we have encoded subsets of the reachability set and the
partial update rules using decision diagrams in which each
variable corresponds to a single Petri net place. However, it
is known [12] that there are more efficient encodings, at least
for reachability set generation. We expect that these alternative
encodings may also be more efficient for the perfect sampling
method proposed in this paper. Finally, the method could
be applied to other formalisms for modelling discrete event
dynamic systems whose underlying stochastic process is a
CTMC.
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APPENDIX

TEST MODELS

A. Model phil N

Model phil N is a stochastic Petri net for the dining philoso-
phers problem. In this model the starvation is avoided by the
atomic taking of the two forks placed near the philosopher.
The whole net comprises N philosophers. In Figure 3 we show
the SPN associated with philosopher i, with 1 ≤ i ≤ N . The
initial marking has one token for each place Idlei and one
token for each place Forki, with 1 ≤ i ≤ N .

B. Model rphil N

Analogously to model phil N , also rphil N is a SPN
modelling a solution for avoiding the starvation in the prob-
lem of the dining philosophers. In this case we allow the
philosopher to take the two forks separately. However, when
a philosopher is in state HasLeft (HasRight) he may either
take the other fork and eat or return to the state Hungry thus
avoiding the starvation. The SPN consists of N models of
dining philosophers as the one shown in Figure 4.

C. Model slot N

Model slot N is an SPN with 10N places and 10N
transitions, modelling a slotted ring protocol with N nodes.
The model was taken from [22].

D. Model contention N M

This model is an SPN modelling N CPUs with M processes
each. All processes compete for a single global resource. One
of the CPUs for this model is shown in Figure 5.

Philosopher i

Idlei

Forki Fork(i+1)modN

HasLefti HasRighti

Eati

Hungry
i

2

Fig. 4. Model for the i-th philosopher in the dining philosophers net rphil
N .

shared resource

M

Fig. 5. Model of a single CPU for net contention N M .

E. Model loop N M

The SPN for test model loop consists of N nodes and
N transitions forming a loop and the initial marking has M
tokens in one of the places.

F. Model bimodal M
The last model, shown in Figure 6, is an SPN whose

underlying continuous time Markov chain is nearly completely
decomposable into two subsets. One of these subsets corre-
sponds to net markings in which all 3M tokens are on the left
side of transition T , and the other to markings in which all
tokens are on the right side.
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Fig. 6. Model bimodal with M tokens in marked places.


