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Federica Giummolè∗ and Laura Ventura†

We congratulate the authors for this interesting contribution to the wide world of ob-
jective priors (see Consonni et al., 2018, for a recent review). The authors tackle the
problem of providing an objective prior which is model-free and based on the sole knowl-
edge of the parameter space. We think that the main result can be a useful practical
tool for objective Bayesian analysis in many applications and can open new ideas about
objective priors.

With our discussion, we hope to shed light on some aspects of the proposed approach,
which is based on seeking a prior such that a combination of the log-score and of the
Hyvärinen scoring rule is constant. In particular, we briefly comment on the following
points:

1. extensions of the proposed approach using different scoring rules, and objective-
ness and invariance of the proposed prior densities;

2. double use of the Hyvärinen scoring rule, both for the derivation of the prior
and to replace the likelihood function in models known up to the normalization
constant.

1 Background on proper scoring rules

Consider a random sample y = (y1, . . . , yn) of size n from a parametric model with
probability density function f(y|θ), indexed by a k-dimensional parameter θ. A proper
scoring rule (SR) S(y, f) provides a way of judging the quality of a quoted model f(y|θ)
for a random variable Y in the light of its outcome y. The mathematical theory of proper
SRs has a wide range of applications in statistics; a review of the general theory, with
applications, has been given in Dawid and Musio (2014). SRs are particularly useful
when classical likelihood-based methods may be infeasible, for example in models with
complex dependency structure, or when robustness with respect to data or to model
misspecification is required.

There is a very wide variety of SRs. The most famous is the logarithmic score or
log-score, which is highly connected with likelihood inference. Proper SRs, different from
the log-score, can be used as an alternative to the full likelihood, when the interest is
in increasing robustness or simplifying computations. Examples of particular interest
include the general separable Bregman score (see e.g. Dawid, 2007, eq. 16) given by

S(y, f) = −ψ′{f(y|θ)} −
∫

[ψ{f(y|θ)} − f(y|θ)ψ′{f(y|θ)}] dy, (1)
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where the defining function ψ : IR+ → IR is convex and differentiable. Taking, respec-
tively, ψ(t) = t2 and ψ(t) = t log t the Brier score and the log-score are obtained.
Another important special case of this construction arises when ψ(t) = tγ (γ > 1). This
yields the Tsallis score (Tsallis, 1988)

S(y, f) = (γ − 1)

∫
f(y|θ)γ dy − γf(y|θ)γ−1, γ > 1, (2)

which gives in general robust procedures (see e.g. Dawid et al., 2016), where the param-
eter γ is a trade-off between efficiency and robustness. The density power divergence dα
of Basu et al. (1998) is just (2), with γ = α + 1, multiplied by 1/α.

In the case of a real sample space, the Hyvärinen scoring rule

S(y, f) = 2
∂2 log f(y|θ)

∂y2
+

∣∣∣∣
∂ log f(y|θ)

∂y

∣∣∣∣
2

(3)

satisfies the property of homogeneity, which implies that the quoted distribution need
only to be known up to the normalization constant (see Ehm and Gneiting, 2012; Parry
et al., 2012).

Proper scoring rules can also be extended to the case of a random vector. Let {Yk}
be a set of marginal or conditional variables with associated proper scoring rule Sk.
A proper scoring rule for the random vector Y is defined as S(y, f) =

∑
k Sk(yk, fk),

where Xk ∼ fk when Y ∼ f , and y and yk are the values assumed by Y and Yk,
respectively. Scoring rules of this form are called composite scoring rules; see Dawid
and Musio (2014) and Dawid et al. (2016). Note that when each Sk is the log-score,
then S(y, f) is a negative composite log-likelihood (see Varin et al., 2011).

2 Priors from the log-score and the Hyvärinen scoring
rule

Consider, for simplicity of notation, a scalar parameter θ. The method proposed by
Leisen, Villa and Walker considers to seek a prior p(θ) on θ ∈ Θ such that a combination
of the log-score and the Hyvärinen scoring rule is constant, that is

S(θ, p(θ)) = constant ∀θ ∈ Θ, (4)

where

S(θ, p(θ)) = −w log p(θ) +
p′′(θ)

p(θ)
− 1

2

(
p′(θ)

p(θ)

)2

.

Here w is a weighting factor usually taken equal 1. The resulting objective prior pu(θ),
that we will call in the following u-prior, takes the form pu(θ) ∝ exp{−u(θ)}, where the
function u(θ) is obtained by solving the differential equation

u′(θ) = ±
√

ceu(θ) − 2(1 + u(θ)), (5)

for some suitable constant c and a specified value of u(θ) at some point, e.g. u(0).
Typically the prior pu(θ) is obtained via numerical methods, even in simple cases.
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Objectiveness In the practice, the u-prior defines a class of priors, since it depends
on the constraints u(0) and c, that have to be suitably fixed. Is this in contrast with
an objective Bayes method? Indeed, as shown in the example in the next Section 3,
the choice of the constraints u(0) and c may have a great impact on the resulting
u-prior and thus on the posterior distribution. These two constraints are in practice
two hyper-parameters of the proposed prior and it seems that their choice makes the
proposed prior less “objective”. Moreover, not only for the parametric space (0,∞) but
also for the case (−∞, +∞), for some choices of u(0) and c the u-prior often lies in a
limited support, thus being very informative about the unknown parameter. When the
sample size n is small or moderate, this may have a great impact on the corresponding
posterior.

Changing the scoring rule The idea behind (4) is very appealing and can potentially
be applied to different scoring rules, such as the log-score, the Tsallis (2) or the general
Bregman scoring rules (1). Unfortunately, as also noticed by Leisen, Villa and Walker for
the log-score, in all these cases the resulting prior is constant and thus not very useful in
the practice. More interesting priors are possibly obtained by combining different SRs, as
in the paper proposal. In particular, it could be interesting to investigate combinations
of the Hyvärinen SR, which involves first and second order derivatives of p(θ), with
some SR different from the log-score.

Invariance An important point of discussion about prior distributions, and in partic-
ular objective priors, is invariance. Jeffreys’ rule to derive a prior distribution for the
parameter of a given model is based on an invariance with respect to one-to-one changes
in the parametrization. Other common objective priors, such as reference priors, have
been shown to be invariant, and the same applies to priors obtained from α-divergences
(Giummolè et al., 2019).

Let us focus on invariance with respect to one-to-one changes in the parametrization.
Let ψ(θ) be a reparametrization, with inverse θ(ψ). Then pψ(ψ) = pθ(θ(ψ))|θ′(ψ)| is
the prior for ψ obtained by transforming pθ(θ). If we seek to derive an invariant prior
from (4), we have to require that

S(θ, pθ(θ)) = constant ∀θ ⇐⇒ S(ψ, pψ(ψ)) = constant ∀ψ,

for every reparametrization ψ(θ). Fulfillment of this requirement may depend on the
particular SR considered. Anyway, it can be easily shown that the previous condition
is not satisfied for the most common SRs mentioned above, nor for the mixture of the
log-score and the Hyvärinen scoring rule proposed by Leisen, Villa and Walker. Instead,
invariance is usually satisfied with respect to the restricted class of linear transforma-
tions of the parameter, for which θ′(ψ) = constant. For this reason, we believe that the
proposed method is particularly useful for inference on scale and location models, where
the induced family of transformations in the parametric space is that of affine transfor-
mations for the location parameter and multiplicative changes for the scale parameter.
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3 Double scoring rule in the posterior

Standard Bayesian analyses can be unpleasant when robustness with respect to data or
to model misspecifications is required or in models with complex dependency structures.
To deal with these issues the use of a surrogate likelihood in the Bayes formula has re-
ceived considerable attention in the last decade (see the review by Ventura and Racugno
2016, and references therein). In particular, Bayesian inference based on scoring rules
has been considered in Ghosh and Basu (2016); Bissiri et al. (2019); Giummolè et al.
(2019), and Girardi et al. (2020); see also references therein.

Let S(θ) =
∑n

i=1 S(yi, f) be the total score for θ, and let θ̃ be the scoring rule
estimator given by arg minθS(θ). This estimator is asymptotically normal, with mean
θ and covariance matrix V (θ) = K(θ)−1J(θ)(K(θ)−1)T , where K(θ) and J(θ) are the
sensitivity and the variability matrices, respectively. The matrix G(θ) = V (θ)−1 is
known as the Godambe information matrix, and in the case of the log-score, we have that
G(θ) = K(θ) = J(θ) is the Fisher information matrix. A SR-posterior distribution can
be obtained by using the total score S(θ) instead of the full likelihood in Bayes formula.
Let p(θ) be a prior distribution for the parameter θ. The SR-posterior distribution is
defined as

p(θ|y) ∝ p(θ) exp{−S(θ∗)}, (6)

with θ∗ = θ∗(θ) = θ̃ + C(θ − θ̃), where C is a d × d fixed matrix (see Giummolè et al.,
2019, for details).

The choice of a prior distribution p(θ) to be used in (6) involves the same problems
typical of the standard Bayesian perspective. For objective Bayesian inference, a prior
can be chosen such that the expected α-divergence to the SR-posterior distribution
is maximized (Giummolè et al., 2019). The α-divergences are a well-known class of
discrepancy functions which include as a special case the Kullback-Leibler divergence.
For 0 ≤ |α| < 1, a Jeffreys-type prior is derived, that is proportional to the square
root of the determinant of the inverse of the asymptotic covariance matrix of θ̃, i.e.
pG(θ) ∝ |G(θ)|1/2. This G-prior is shown to be invariant with respect to one-to-one
changes in the parameterization.

In the next example, we explore the use of the Hyvärinen scoring rule twice in order
to derive a posterior distribution: first to construct a model-free prior as suggested by
Leisen, Villa and Walker and second to replace the likelihood function when interest
is, for instance, in simplifying computations in complex models. Note however that a
SR-posterior may be obtained also using different scoring rules than the Hyvärinen. In
particular, when using the Tsallis scoring rule a robust SR-posterior can be derived, or
the composite log-score can be usefully considered to deal with models with complex
dependency structures.

Example: Directional models Inference for directional models is difficult because typi-
cally the density function contains an intractable normalization constant, which cannot
be explicitly computed in closed form. In this setting and to avoid the issue of the
intractable normalising constant, Mardia et al. (2016) propose to use the Hyvärinen
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Figure 1: Priors p(κ) ∝ 1/κ, pG(κ) ∝ |G(κ)|1/2, pu1(κ) ∝ exp{−u1(κ)} and pu2(κ) ∝
exp{−u2(κ)}.

scoring rule. In particular, let us consider the von Mises-Fisher density, which is a di-
rectional distribution defined on the unit sphere Sq−1 ⊂ IRq given by

p(y|κ) ∝ exp{−κµT y}, y ∈ Sq−1,

with κ ∈ IR+ a scalar concentration parameter and µ the mean direction, ||µ|| = 1. In
this example we consider q = 2 and µ = (0, 1), known.

We discuss three different priors for κ: the classical non-informative prior p(κ) ∝ 1/κ,
the G-prior pG(κ) ∝

√
A2

1(κ)/(κ [2κ− 3A1(κ)]), with A1(κ) = I1(κ)/I0(κ), where I0

and I1 are the modified Bessel functions of order 0 and 1, respectively, and the u-prior
pu(κ) defined on the space (0, +∞), where u(κ) is obtained as the solution of (5). In
particular we consider two u-priors: 1. u1-prior with u(0) = 1.31 and c = 2; 2. u2-prior
with u(0) = 0.01 and c = 2(1 + u(0)) exp{−u(0)}. Both these u-priors are suggested in
Leisen, Villa and Walker (Section 5.1). The four priors are depicted in Figure 1. It can
be seen that the G-prior and the u2-prior are similar on a bounded interval, while the
u1-prior has a very limited support. The choice of the constraints u(0) and c has thus
a great impact on the u-prior, and in particular, when fixing u(0) = 1.31 and c = 2 we
obtain a very informative prior on (0, +∞).

Figure 2 shows the four SR-posteriors for different values of the sample size n and
the parameter κ. It can be noted that the SR-posterior obtained with p(κ) ∝ 1/κ may
not be proper or puts too much mass at zero. Moreover, the SR-posteriors based on
the G-prior and on the u2-prior are very similar when the true value of the parameter
is 1 or 5. The SR-posterior obtained with the u1-prior appears centred away from the
true value of the parameter. This latter prior may be completely misleading when the
true value of the parameter is larger than 1. Finally, for κ = 10, the SR-posterior based
on the G-prior still gives sensible results, while both the u-priors fail to give a useful
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Figure 2: SR-posteriors with different priors, and values of n and κ.

posterior. Indeed, since both the u-priors have a limited support, when the true value
of the parameter is big enough (larger than 6) the resulting posteriors are misleading.
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