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Abstract

There has been growing interest on forecasting mortality. In this article, we propose a novel

dynamic Bayesian approach for modeling and forecasting the age-at-death distribution, focusing

on a three-components mixture of a Dirac mass, a Gaussian distribution and a Skew-Normal distri-

bution. According to the specified model, the age-at-death distribution is characterized via seven

parameters corresponding to the main aspects of infant, adult and old-age mortality. The proposed

approach focuses on coherent modeling of multiple countries, and following a Bayesian approach

to inference we allow to borrow information across populations and to shrink parameters towards

a common mean level, implicitly penalizing diverging scenarios. Dynamic modeling across years is

induced trough an hierarchical dynamic prior distribution that allows to characterize the temporal

evolution of each mortality component and to forecast the age-at-death distribution. Empirical

results on multiple countries indicate that the proposed approach outperforms popular methods for

forecasting mortality, providing interpretable insights on the evolution of mortality.

Keywords: Bayesian inference; Dynamic modeling; Mixture model; Mortality forecast; Skew-Normal dis-

tribution.

1 INTRODUCTION

In the last decades, changes in life expectancy and population growths have stimulated growing inter-

est in sophisticated models for mortality (e.g., Booth, 2020; Zanotto et al., 2020). These approaches

characterize the observed age-specific regularities of the mortality function and their trends over time,

providing a parsimonious representation of the components of mortality and allowing to provide fore-

casts. Estimates of past mortality trends provide insights on the global health of a population, describe
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Figure 1: Age-at-death distribution across Italy, France, Sweden and Norway from 1970 to 2015.

relevant aspects of its demographic structure and facilitate comparisons across countries. Similarly,

probabilistic forecasts are routinely employed by researchers, practitioners and organizations to aid

and support welfare planning strategies such as pension funds, insurances and health systems, among

many others (e.g., Lutz and Samir, 2010).

Human mortality has been generally characterized by several quantities, with the hazard function,

the survival function and the probability density function being the most popular ones (e.g., Klein

and Moeschberger, 2006). Although each representation can be directly obtained from the others,

their interpretations are complementary and highlight more clearly different aspects of mortality (e.g.,

Basellini and Camarda, 2019). In this article we will focus on modeling the distribution of the ages at

death, generally referred to as “age-at-death distribution” and corresponding to the density function

that characterizes mortality (Keyfitz, 2005). In the literature on modeling and forecasting mortality,

this quantity has received significantly less attention than other quantities such as mortality rates

(e.g., Lee and Carter, 1992; Li and Lee, 2005). However, as outlined in Basellini and Camarda (2020);

Pascariu et al. (2019), analysis of the age-at-death distribution can be incredibly useful, since it provides

a direct evaluation of longevity and lifespan variability that cannot be directly inferred from other

quantities (see also Canudas-Romo, 2010; Cheung et al., 2005).

To further see that, Figure 1 illustrates the age-specific distribution of deaths from four illustrative

countries, over a time period that ranges from 1970 to 2015. These data highlight crucial aspects of

the temporal evolution of mortality, such as the global shift of the curve to older ages—due to the

increase in life expectancy—and the drop of perinatal and infant mortality. Figure 1 also suggests that
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such an evolution has characterized countries differently, resulting in faster changes in some countries

(e.g., Italy) and slower in others (e.g., Sweden). Furthermore, the age-specific distribution of deaths

illustrates that several mortality trends are converging, resulting in similar patterns in terms of modal

age at death, infant mortality and compression of old age mortality.

The first approaches for modeling the distribution of deaths date back to the 19-th century (e.g.,

Gompertz, 1825; Makeham, 1860; Pearson, 1897), and have been generalized in the following years

(Heligman and Pollard, 1980; Siler, 1983). The main interest of such methods has been on character-

izing mortality patterns across ages, focusing on a given country during a specific year. According to

these approaches, the mortality curve can be characterized using different parametric specifications,

accounting for distinct aspects of the mortality curve; see also Dellaportas et al. (2001) and Mazzuco

et al. (2018). One notable limitation of these approaches is the focus on single-country modeling;

when interest is on forecasting mortality for multiple countries, independent country-specific analysis

are required. This strategy ignores the fact that in most developed nations similar trends are ob-

served, and this abundance of information can be appropriately included in the model to improve

the quality of the estimates. Joint modeling of multiple nations, in fact, is expected to improve the

estimation of country-specific parameters and temporal trends, allowing to share information across

different countries.

More recently, researchers have focused on explicitly modeling the temporal evolution of the age-at-

death distribution, forecasting the parameters using time-series specifications (Basellini and Camarda,

2019; Pascariu et al., 2019). These methods borrow ideas from death-rates forecasting, such as the

milestone approach introduced by Lee and Carter (1992) and sequent developments (e.g., Hyndman

and Ullah, 2007). Potentially, these models can be both used to describe the evolution of mortality

in the past years and to provide forecasts, although the focus of applications is more frequently on

forecasting only. However, separate forecasts often lead to unreasonable results, with country-specific

or sex-specific predictions that diverge substantially across groups. Such divergent forecasts across

sub-populations are implausible, since industrialized countries have been showing global convergence

trends in terms of mortality levels, and this tendency is expected to endure (Bergeron-Boucher et al.,

2017; Oeppen, 2008; Wilson, 2001).

Following the breakthrough approach of Li and Lee (2005), different authors have focused on

“coherent” mortality forecasts, defined as predictions that do not diverge across groups. Such a strategy

has constantly received attention in the past years, being successfully implemented in several models for

death rates; for example, generalizing compositional-data techniques (Bergeron-Boucher et al., 2017)

and functional-data models (Hyndman et al., 2013) for mortality. However, a critical issue with these
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methods concerns with the choice of a population standard to be used as a reference. This choice

is substantially arbitrary, and a common consensus on which sub-population should be used is still

lacking, since results are often sensitive to different references (Booth, 2020; Kjærgaard et al., 2016).

Motivated by the above discussion, in this article we propose a novel approach for modeling and

forecasting the age-at-death distributions of multiple countries. We will focus on the age-distribution

of deaths, combining the life tables quantities with the total number of deaths. This procedure allows

to naturally take into account the population size of each country and its age-structure, which are

important determinants of the age-at-death distribution. The proposed methods can also be applied,

without modifications, directly to the life table quantities, where we can assume that data are provided

on artificial populations with a total number of deaths equal to 105. However, this would discard an

important source of uncertainty, which corresponds to the population size of a specific nation. Indeed,

imposing a fixed same sample size would weight each nation equally, implying that a relatively small

country (e.g. Sweden) would have the same influence as a much bigger country (e.g., Germany or

United Kingdom). Therefore, we prefer to use the actual sample size of each county to have a proper

quantification of uncertainty and genuinely account for different population structures.

We propose a method based on a mixture distribution function of a Dirac mass, a Gaussian dis-

tribution and a Skew-Normal distribution, in order to characterize infant, adult and old-age mortality

with an interpretable set of parameters. Following a Bayesian approach to inference, we specify hi-

erarchical priors for the dynamic parameters and the country-specific coefficients, relying on common

prior specifications to improve the borrowing of information across nations. Compared to the avail-

able techniques, our method allows to model directly the temporal evolution and the country-specific

variations across multiple sub-populations, avoiding sequential procedures and providing estimates

shrunk towards common levels. Under the proposed methods, coherent predictions are naturally ob-

tained without selecting a reference population or an external standard, but instead estimating these

quantities from the available data. We will refer to the proposed dynamic model based on a skewed

distribution function as dysm in the sequel.

2 METHODS

2.1 Model specification

Our interest is on providing a flexible representation of the age-at-death distribution in multiple coun-

tries, dynamically across different years or time periods. We will characterize this quantity trough

a continuous probability density function (pdf) f(x;ϑjt) which parametrizes the probability of dy-

ing at age x, in country j during year t via a set of country- and time-specific parameters ϑjt, with
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x = 0, . . . , 110, j = 1, . . . , p countries and t = 1, . . . , T years. Although f(x; ·) is often specified as a

continuous function, in practice we focus on characterizing the age-at-death distribution on a discrete

grid, corresponding to the probability px jt of dying at a specific age x = 0, . . . , 110. Such an aim can

be addressed discretizing f(x;ϑjt) over a set of disjoint intervals (x− 1/2, x+ 1/2] as

px jt =

∫ x+1/2

x−1/2
f(z;ϑjt) dz = F (x+ 1/2;ϑjt)− F (x− 1/2;ϑjt), x = 0, . . . , 110, (1)

where F denotes the cumulative distribution function (cdf) associated with f . This characterization

of probabilities via a discretization of an underlying pdf automatically guarantees that the vector

pjt = pjt(ϑjt) = [p0 jt, . . . , p110 jt] with elements as in Equation 1 is a proper probability vector with

px jt ∈ [0, 1] and
∑

x px jt = 1, therefore avoiding further restrictions (e.g., Oeppen, 2008); see the left

panel of Figure 1 for a graphical representation of the discretization process.

We denote as Djt = [D0 jt, . . . , D110 jt] the number of deaths and as pjt = [p0 jt, . . . , p110 jt] the

death probabilities, where the elements Dx jt and px jt denote, respectively, the number of deaths

and the probability of dying at age x, in country j during year t. Given the total number of deaths

njt =
∑

xDx jt and the probabilities outlined in Equation (1), we model the vectorDjt as a multinomial

distribution with

(Djt | njt,pjt) ∼ multinom(njt,pjt), j = 1, . . . , p, t = 1, . . . , T. (2)

A crucial aspect of this approach involves the specification f(x; ·), which induces a model on the

vector of probabilities pjt. In practice, different parametric models for f(x; ·) are available in the

literature, with the Gompertz (1825) and Siler (1983) models being popular options. The age-at-death

distribution f(x; ·) could be also modeled semi-parametrically, using for example splines or other basis

functions (Basellini and Camarda, 2020; Hyndman et al., 2013). However, when interest is explicitly

on characterizing relevant aspects of mortality – such as the impact of infant mortality or the shape

of old-age mortality – parametric models provide a much clearer interpretation and deeper insights on

the structure of the populations under investigation.

In this work, we draw inspiration from Mazzuco et al. (2018) and Zanotto et al. (2020) and rely

on a mixture of three components to characterize mortality. Specifically, in order to facilitate model’s

interpretation, we decompose mortality as the contribution of infant mortality, adult mortality and old-

age mortality. Infant mortality is accounted trough a single Dirac mass at age 0, while adult mortality

is modeled via a Gaussian distribution with mean µjt ∈ R and standard deviation σjt ∈ R+. Old-age

mortality, instead, is characterized using a Skew-Normal distribution (e.g., Azzalini and Capitanio,
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Figure 2: Proposed mixture density function. Panel (a) provides a sketch of the discretization of the pdf into a set of
probabilities pj , with j = 56, . . . , 59. Panel (b) highlights the three components of the mixture density function.

2013) with location parameter ξjt ∈ R, scale parameter ωjt ∈ R+ and shape parameter αjt ∈ R. The

impact of each component to the overall mortality function is accounted assigning mixture weights

πh jt ∈ [0, 1] such that π0 jt + π1 jt + π2 jt = 1 in order to guarantee that the resulting expression remains

a proper pdf. This choice leads to the following characterization of f(x;ϑjt)

f(x;ϑjt) = π0 jt1[x = 0]+π1 jtφ

(
x− µjt
σjt

)
+ (3)

π2j t
2

ωjt
φ

(
x− ξjt
ωjt

)
Φ

(
αjt

x− ξjt
ωjt

)
,

with ϑjt = (π1 jt, π2 jt, µjt, σjt, ξjt, ωjt, αjt), 1[·] denoting the indicator function and φ(·), Φ(·) denoting

the pdf and the cdf of a standard Gaussian, respectively; we omit the parameter π0 jt from ϑjt since

π0 jt = 1− π1 jt− π2 jt due to the constraint on the mixture weights; see the right panel of Figure 1 for

a graphical representation of the proposed model for the age-at-death distribution.

Equation (3) allows to characterize the age-at-death distribution with flexibility, while also retaining

interpretability of the mortality structure. The first component of Equation (3) accounts for infant

and perinatal mortality, characterizing deaths in the first year of life. As outlined, for example, in

Figure 1, perinatal mortality is notably decreased during recent years, mainly due to technological

advances (e.g., Wilson, 2001; Zanotto et al., 2020); the mixture weight π0 jt characterizes the impact of

this component in the overall mortality. The use of a Dirac mass is particularly adequate for developed

countries, where infant mortality occurs during the first year of life and can be properly modeled with a

single mass, avoiding more elaborate specifications and additional parameters. However, dysm can be

naturally adapted to countries with high infant-mortality levels, replacing the Dirac mass with an half-

normal distribution and leveraging on the same model architecture. The Gaussian component, instead,

is assigned to a relative weight π1 jt and characterizes adult mortality via the location parameter µjt
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and the scale parameters σjt. In addition, these quantities correspond also to the moments of the

Gaussian component, and therefore can be interpreted directly as the mean and standard deviation of

the age at adult mortality.

The Skew-Normal component, lastly, accounts for the asymmetric shape of old-age mortality, which

has been frequently observed in developed countries (e.g., Mazzuco et al., 2018; Pascariu et al., 2019).

Since most deaths occur at old ages, this component is expected to be associated to the largest mixture

weight π2 jt. Inference on the structure of old-age mortality rely on such mixture weight and on the

Skew-Normal parameters ξjt, ωjt and αjt, providing insights on the evolution of old-age mortality in

terms of location, scale and shape of such a component. In practice, it can be convenient to focus on

the mean and standard deviation of old-age mortality, which are more interpretable measures of the

shift and compression of the age-at-death distribution. According to the proposed parametrization,

these quantities can be conveniently expressed as

µ̃ SN
jt = ξjt + ωjtδjt

√
2/π, σ̃ SN

jt = ωjt

√
1− 2δ2jt/π (4)

with δij = αjt/
√

1 + αjt (e.g., Azzalini and Capitanio, 2013, sec. 2.1.4). Alternatively, it is also possible

to parameterize directly the Skew-Normal distribution in terms of its cumulants (e.g., Azzalini and

Capitanio, 2013, sec. 3.1.4). However, for simplicity in implementation and exposition, we prefer to

focus on the outlined parameters, and eventually post-process the estimates to focus on the functionals

of interest.

2.2 Hierarchical dynamic model

The Multinomial model outlined in Expression 2, with probabilities given by Equations (1) and (3),

provides a flexible specification for the distribution of the number of deaths occurred in a single country

j during a specific year t. In order to account for the temporal variation of the age-at-death distribution,

we model explicitly the dynamic evolution of the parameters ϑjt trough an hierarchical dynamic model.

This strategy will allow us to highlight what aspects of mortality have changed in the past years,

characterizing the rates of such changes and facilitating comparison across different countries. In

addition, the inclusion of a dynamic component facilitates the developments of mortality forecasts

extrapolating parameters in time, obtaining predictions for the future age-at-death distributions.

We specify the hierarchical model in an unconstrained domain, transforming the parameters of

Equation (3). This choice facilitates computation and implementations, allowing to rely on Gaussian

dynamic models in the transformed space and avoiding restrictions on the support of the parame-

ters. For this purpose, we introduce the reparametrized vector ϑ̃jt, with elements (ϑ̃jt 1, . . . , ϑ̃jt 7)
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corresponding to

ϑ̃jt = (ϑ̃jt 1, . . . , ϑ̃jt 7) :=

(
log

(
π1 jt

1− π1 jt

)
, log

(
π2 jt

1− π1 jt − π2 jt

)
, µjt, log(σjt), ξjt, log(ωjt), αjt

)
.

(5)

In Equation (5), the mixture weights (π1 jt, π2 jt) are mapped into (ϑ̃jt 1, ϑ̃jt 2) leveraging a cumu-

lative logit transformation, while σjt and ωjt – corresponding to adult and old-age mortality scale

parameters – are transformed into ϑ̃jt 4 and ϑ̃jt 6, respectively, via a logarithmic transformations. Note

that each ϑ̃jt k ∈ R for k = 1, . . . , 7, and that the vector ϑ̃jt effectively corresponds to a one-to-one

reparametrization of ϑjt.

We model the dynamic evolution of the elements ϑ̃jt k leveraging a random-walk model with drift.

This choice leads to the following specification.

ϑ̃j0 k ∼ N (mk, s
2
k)

(ϑ̃jt k | ϑ̃j t−1 k, βj k, η
2
j k) ∼ N (βj k + ϑ̃j t−1 k, η

2
j k), t = 1, . . . , T,

(6)

In Equation (6), ϑ̃j0 k ∈ R denotes the initial condition of ϑ̃jt k, and is assigned to a Gaussian distri-

bution with mean mk ∈ R and standard deviation sk ∈ R+. These values correspond to the initial

information for the dynamic hierarchical model, and characterize a probabilistic representation of our

beliefs before the data are observed (e.g., West and Harrison, 1997). The drift parameter βj k ∈ R

measures the expected difference across consecutive values of ϑ̃jt k and accounts for possible increas-

ing or decreasing linear trends in the evolution of the parameters. The inclusion of this component

is particularly relevant in our problem, where we expected to observe clear and important trends in

the evolution of mortality, accounted by the parameters charactering the age-at-death distribution.

Conditionally on the value at time (t− 1), each ϑ̃jt k is recursively distributed as a Gaussian distri-

bution with mean βj k + ϑ̃j t−1 k, and standard deviation ηj k ∈ R+. Overall, we can interpret dysm

as a Multinomial state-space model, where Equation (6) controls the evolution of the latent states via

random-walks with Gaussian innovations and, conditional on the states, the observed vectors of deaths

are modeled as independent Multinomial variables with probabilities given by Equations (1) and (3);

see Figure 3 for a graphical representation of the proposed hierarchical dynamic model.

Although this dynamic model might seem oversimplistic, we found that such a specification leads

to good results in a large variety of applications involving developed countries; see Section 3 for further

details. More elaborate extensions are possible, for example including a moving-average component,

increasing the lag of the autoregressive terms or joint modeling multiple components of ϑ̃jt k via multi-

variate random-walks. However, a random walk with drift on the latent states often characterizes well
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ϑ̃j1 ϑ̃j2 · · · ϑ̃jt · · · ϑ̃jT−1 ϑ̃jT

pj1 pj2 · · · pjt · · · pjT−1
pjT

Dj1 Dj2 · · · Djt · · · DjT−1
DjT

for country j = 1, . . . , p

Figure 3: Graphical illustration of the dynamic component of dysm. Solid circles, white squares and gray squares
denote vectors of dynamic parameters, probabilities characterizing the age-at-death distribution and observed number
of deaths, respectively.

many phenomena without over-parameterizing the dynamic component, and is also general enough to

be directly used, without further modifications, in a large variety of settings; see Durbin and Koopman

(2012) and West and Harrison (1997) for related arguments.

Additionally, we highlight that Equation (6) is valid for any equally-spaced time grid, and therefore

the proposed approach can be also applied to different time scales. In fact, our description focuses

on yearly data for simplicity in exposition, but this requirement is not necessary for developing the

proposed model in practice. Several important settings involve analysis of mortality across different

time scales, such as monthly data or five-year periods; for example, when interest is on modeling

short-term variations due to extraordinary events (e.g., covid-19 pandemic) or large-scale trends,

respectively. The purposely general specification of dysm facilitate its use in these different settings,

without modifying the model specification.

2.3 Bayesian inference

As discussed in the Introduction, a crucial aspect of mortality forecasting involves the penalization

of diverging scenarios via coherent modeling. This can be obtained explicitly including a common

trend across countries (e.g., Li, 2013; Li and Lee, 2005), or choosing a reference population (e.g.,

Basellini and Camarda, 2019; Hyndman et al., 2013); see also Booth (2020) for a recent discussion.

However, these choices are arbitrary and significantly affect the final results (e.g., Kjærgaard et al.,

2016). Therefore, we follow a different path and induce coherent predictions via a Bayesian approach

to inference, regularizing estimates toward a common mean trend. More specifically, we introduce a

common prior specification for the country-specific dynamic hierarchical model defined in Equation (6),
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β1 k, η
2
1 k,
(
ϑ̃1t k

)T
t=0

· · · βp k, η
2
p k,
(
ϑ̃pt k

)T
t=0

mk, sk,mβk , sβk , ak, bk

k = 1, . . . , 7

Figure 4: Graphical illustration of the hierarchical component of dysm, inducing borrowing of information and coherent
predictions across countries, with j = 1, . . . , p. Top level block denotes fixed hyper-parameters.

letting for each coefficient k = 1, . . . , 7,

βj k
iid∼ N (mβk , sβk), η2j k

iid∼ Inv-Gamma(ak, bk) for j = 1, . . . , p, (7)

where mβk , sβk , ak and bk denote fixed hyper-parameters; see Figure 4 for an illustration of the hier-

archical dependence structure induced by the common prior specification.

The specification of a common prior distribution for the country-specific parameters allows to

share information across different nations, improving estimates for the age-at-death distributions. In

addition, the introduction of a common prior shrinks estimates toward a common mean, providing an

implicit regularization on the parameters. Such a shrinkage is what makes dysm a “coherent” model ,

using a data-driven reference mortality level without the need of a user-defined benchmark.

2.4 Prior elicitation and posterior computation

The large abundance of research on the evolution of mortality, and the clear interpretation of the

parameters in Equation (3), facilitate informative elicitation for the initial conditions of the dynamic

hierarchical model in Equation (6) and the hyper-parameters of Equation (7). For example, European

adult morality is expected to lie between 30 and 70 years with high probability (e.g., Lewer et al.,

2020); therefore, we can assume ϑ̃j0 3 ∼ N (50, 100) for the initial condition of ϑ̃jt 3, independently for

j = 1, . . . , p. Similarly, informative specifications for the prior distribution on the drift parameter βj k

allow to include information on the direction and intensity of the temporal trends. For instance, we

could center the trend βj 3 around mβ3 = 2, resulting in an expected increasing trend for the age at

adult mortality of 2 years between consecutive time points.

When such information is not available or is not reliable, we recommend choosing weakly- or non-
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informative priors and diffuse initializations. This aim can be achieved, for example, setting a very

large variance for ϑ̃j0 k (e.g., s2k = 100), centering the drift parameters around zero with substantial

variability, and choosing non-informative priors for the state variances setting small values for ak and

bk; for example, ak = bk = 0.001.

There is a large literature on simulation methods for non-Gaussian state-space models; see, for

example, Durbin and Koopman (2012, Chapter 13.3), Prado and West (2010, Chapter 6) or Chopin

and Papaspiliopoulos (2020) for recent developments. A major complexity in our methods derive from

the computation of the age-at-death distribution, which links ϑjt to pjt via Equation (1). Therefore,

we conduct posterior inference relying on the r package nimble (de Valpine et al., 2020), that allows

to specify the main structure of dysm, compile it in c++, and implement an adaptive Metropolis-

within-Gibbs mcmc algorithm to simulate from the posterior distribution of the model’s parameters.

Specifically, the parameters of Equation (7) are updated using Gibbs steps, while the remaining are

updated with multivariate Metropolis steps, due to the lack of conjugacy induced by Equation (1).

In order to improve the computational performance, we included further modifications to efficiently

compute the cdf of the mixture density function in Expression (3) using c++. This operation is non

trivial since it requires to compute the cdf of the Skew-Normal component, which relies on the Owen

(1956) T-function; see also Azzalini and Capitanio (2013, Appendix B) for the details and Patefield

and Tandy (2000) for practical considerations. Overall, posterior computations in a setting with p = 12

countries and T = 20 time points requires roughly 2 minutes per 1000 iterations on an 8-core intel I7-

7700HQ, 2.8 ghz processor running Linux, which is satisfactory for our purposes. Code implementing

the method is publicly available at github.com/emanuelealiverti/dysm.

3 EUROPEAN COUNTRIES MORTALITY

3.1 Data description

The focus of this Section is to evaluate the ability of dysm to characterize the age-at-death distribu-

tions of different European countries. In Section 3.2, we are interested in comparing its performance

with some state-of-the-art methods for mortality forecast, focusing on rolling windows scenarios. In

Section 3.3 we use the proposed method to estimate mortality and to forecasts for future years, illus-

trating in details how dysm can be used to draw thoughtful inferential conclusions by making inference

on different quantities. Analysis will focus on the time range 1960− 2016, and on joint modeling the

following p = 12 countries: Austria (aus), Switzerland (che), England & Wales (gbr), West-Germany

(deu), Denmark (dnk), Finland (fin), France (fra), Italy (ita), Netherlands (nld), Norway (nor),

Spain (esp) and Sweden (swe), separately for the male and female populations. These countries were
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selected according to the European countries analyzed in other approaches, such as Li and Lee (2005).

Mortality data are retrieved from the Human Mortality Database (2020), and the year- and country-

specific number of deaths are obtained with the utilities of the r package demograpy (Hyndman et al.,

2019).

3.2 Performance evaluation via rolling widow

In order to quantitatively evaluate the performance of dysm in estimating and forecasting mortality,

we rely on rolling window scenarios. Specifically, analysis focus on sub-periods of 20 years of data to fit

the models, and subsequent periods of 10 years of data to provide forecasts. Performance is evaluated

both in terms of in-sample accuracy—comparing the model fit with the 20 observed years—and in

terms of forecasts ability—comparing forecasts with the out-of-sample block for the subsequent 10

years. Multiple scenarios are obtained rolling the window forward of steps of 1 years, thereby dividing

the range 1960− 2016 in 30 consecutive scenarios.

We compare dysm with different popular approaches for mortality forecasting: the Lee-Carter

model (Lee and Carter, 1992), the coherent Li-Lee model (Li and Lee, 2005), the functional mortality

model of Hyndman–Ullah (Hyndman and Ullah, 2007), the compositional Oeppen model (Oeppen,

2008), and the mem5 model (Pascariu et al., 2019). All methods are conveniently available in a

common interface within the r package MortalityForecast (Pascariu, 2020). Since these methods

focus on modeling single population data, we perform the analysis on each country separately. In

order to compare the approaches on the same basis, results are evaluated in terms of the quality of

the fitted and predicted age-at-death distributions. Under dysm, such estimates are obtained post-

processing the mcmc output, computing the expectation of Equation (1) with respect to the posterior

distribution via Monte Carlo integration. Oeppen (2008) and Pascariu et al. (2019) provides instead

direct estimates of the age-at-death distribution, while for the remaining approaches we follow standard

practices and transform predictions for the death rates into predictions for the age-at-death distribution

(e.g., Pascariu, 2020).

Posterior inference proceeds separately for the female and male populations. We centered the initial

conditions ϑ̃j0 k for the hierarchical dynamic component considering the expected level of mortality in

the temporal window under investigation, centering old-age mortality around 70 years (m5 = 70),

adult mortality around 50 years (m3 = 50) and setting the remaining values of mk to 0. We also let

sk = 10 for all k to induce sufficient variability in such initial prior guesses and cover the temporal

window under investigation. Lastly, we specified a shared standard Gaussian for the drift parameters

βj k and a non-informative Inverse-Gamma on the variances of the dynamic innovations η2j k, setting

12



female male

mae mse mae mse

dysm 1.00 1.00 1.00 1.00
Hyndman–Ullah 1.41 [1.17, 1.64] 2.73 [1.91, 3.80] 1.92 [1.39, 2.40] 5.37 [2.76, 7.79]
Lee-Carter 1.40 [1.17, 1.62] 2.74 [1.90, 3.79] 1.93 [1.39, 2.36] 5.34 [2.77, 7.77]
Li-Lee 1.23 [0.94, 1.45] 2.19 [1.22, 2.97] 1.75 [1.30, 2.28] 4.71 [2.53, 6.99]
mem5 1.22 [1.07, 1.31] 2.01 [1.55, 2.55] 1.86 [1.56, 2.19] 4.20 [3.01, 6.61]
Oeppen 1.13 [0.92, 1.36] 1.88 [1.31, 2.66] 1.61 [1.24, 2.14] 3.79 [2.24, 6.37]

Table 1: In-sample relative performance. Median across rolling windows and countries. Second and third quartiles are
reported in squared brackets.

ak = 0.01, bk = 0.01 for all k. In each scenario, posterior inference for dysm relies on 100000 iterations

collected after a burn-in of 5000, thinning one iteration every 5. Convergence was assessed in terms

of mixing, autocorrelation of the chains and Geweke diagnostics, which resulted satisfactory in all the

windows considered, with an Effective Sample Size larger than 18000 out of 20000 stored iterations for

all the parameters.

Performance is evaluated in terms of Mean-Squared-Error (mse) and Mean-Absolute-Error (mae)

between the fitted and predicted age-at-death distribution and the ground truth. Since the elements

of age-at-death distribution are generally very small numbers, we report results in relative terms,

dividing the performance of each approach by the performance obtained by dysm in each scenario and

country. Recalling that both mse and mae are measure of discrepancy, results larger than 1 indicate

that predictions under dysm achieve an error which is lower than the competitor, and therefore we

can conclude that dysm performs better; the opposite holds for values lower than 1.

Results referring to in-sample evaluation are reported in Table 1, computing the median, first and

third quartiles of the relative performances across countries and rolling windows scenarios. Current

results suggest that dysm outperforms the competitors both for the male and female populations, with

a performance that is better than the competitors in all settings. These results confirm the ability

of dysm to characterize with flexibility age-at-death distributions across multiple countries and time

females males

mae mse mae mse

dysm 1.00 1.00 1.00 1.00
Hyndman–Ullah 1.38 [1.14, 1.69] 1.99 [1.39, 2.88] 1.91 [1.12, 2.48] 3.64 [1.42, 6.36]
Lee-Carter 1.30 [1.03, 1.62] 1.75 [1.12, 2.65] 1.73 [1.06, 2.37] 3.23 [1.25, 5.54]
Li-Lee 1.28 [0.91, 1.56] 1.66 [0.93, 2.54] 1.73 [1.06, 2.36] 3.23 [1.25, 5.53]
mem5 2.44 [2.02, 3.03] 5.67 [3.98, 8.88] 2.84 [1.70, 3.88] 7.92 [3.23, 14.96]
Oeppen 1.29 [0.94, 1.82] 2.30 [1.29, 14.34] 1.66 [1.06, 2.36] 3.86 [1.45, 8.11]

Table 2: Out-of-sample relative performance. Median across rolling windows and countries. First and third quartiles
are reported in squared brackets.
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periods, providing estimates that are consistent with the observed data and more accurate than state-of-

the art methods. Out-of sample performances are instead reported in Table 2. Results provide further

evidence in favor of the ability of dysm, which obtains out-of-sample forecasts more accurate than the

competitors in all settings. This important results suggest that, overall, dysm is the most accurate

methods for modeling and forecasting the age-at-death distribution in the 12 European countries under

investigation. Performances stratified by countries are reported in Tables A1-A2 and A3-A4, and

provide insights on the specific countries in which dysm might perform worse than the competitors.

Considering, for example, in-sample performance reported in Table A1-A2, we observe that dysm

performs slightly worse than some competitors only in the female Danish and Dutch populations. When

out-of-sample performance is considered, only results for the male Spanish and Swedish populations

indicate that dysm is slightly less accurate than some competitors in these countries.

3.3 Results for European mortality

In Section 3.2, we have demonstrated that dysm outperforms the competitors in terms of the quality

of the fitted and predicted age-at-death distributions. In this Section we argue that the proposed

method has concrete practical benefits in terms of mortality modeling also from an interpretative

point of view. Indeed, posterior inference on the parameters characterizing dysm and their functionals

provides insights on the structure of mortality and its future evolution, highlighting aspects that have

larger impact in such changes and explaining differences across countries.

To illustrate this, we focus on the same European countries as in the previous section, modeling

the more recent period 1980 − 2017 and providing forecasts until 2037. Posterior simulation for this

application relies on the same settings as in Section 3.2. Results in terms of mixing, autocorrelations,

Geweke diagnostic and effective sample size were satisfactory for all the parameters considered, with

an effective sample size larger than 19000 out of 20000 iterations for all the parameter. We conduct

inference on the set of parameters (π0 jt, π1 jt, π2 jt, µjt, σjt, αjt, µ̃
SN
jt , σ̃ SN

jt ) to further facilitate interpre-

tation. Results are reported in Figure 5, illustrating the posterior medians and 80% credible intervals

for the estimated parameters for male and female populations separately.

Current empirical findings are consistent with known aspects of the temporal evolution of mortality

of the past decades. For example, the impact of infant mortality—measured via the parameters π0j t—

is notably decreased in all countries in the past years, dropping from values close to 0.01 to 0.005.

Although both male and female populations share such decreasing trends, we also observe that infant

mortality is larger for males than females (e.g., Drevenstedt et al., 2008). Another clear aspect involves

the evolution of the mean age of old-age mortality, captured via the Skew-Normal mean µ̃ SN
jt , which

14
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Figure 5: Results for the proposed approach (posterior medians and credible intervals). The vertical dotted lines
indicate the last observed period (2017).

has constantly increased in all countries. The overall trend is similar between males and females, with

woman reporting older ages on average. Similarly, the decreasing trend of σ̃ SN
jt is consistent with the

empirical evidence on compression of old-age mortality.

Under dysm, estimates and credible intervals for any complex functional of the model’s parameters

are easily obtained. More importantly, prediction intervals are determined taking into account the

uncertainty of the entire inferential process, which is not the case for other coherent models, where

all the uncertainty related to choice of reference is generally not accounted for. Some interesting

functionals include death rates and life expectancies, which can be obtained from the age-at-death

distribution via deterministic transformations; dysm allows to conduct coherent inference also on this

quantities, rigorously characterizing uncertainty post-processing the mcmc output. As an illustrative

example, Figure 6 depicts the life-expectancy at birth and at 20, 40, 60, 70 and 80 years, considering

male and female populations in Italy and Sweden. Results are consistent with the conclusion above,
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Figure 6: Italy and Sweden, female and male population. Life expectancy at ages 0 (at birth), 20, 40, 60, 70 and 80.

confirming known trends of life-expectancy at all ages.

4 CONCLUSION

In this article we have introduced dysm, a novel approach for modeling and forecasting the age-at-

death distribution of multiple countries across time. The proposed method automatically regularize

diverging scenarios, and allows to obtain predictions which are coherent across sub-populations. In

addition, this strategy leads to a borrowing of information which improved the quality of the fit and

of the forecasts, compared with state-of-the-art methods for mortality forecasting. Another important

advantage of the proposed method is that it provides coherent forecasts without the need of choosing a

reference population, which is instead naturally derived from data. The choice of reference population,

in fact, is still an open issue of coherent forecast models and has received notable attention from

scholars in recent years (Booth, 2020; Kjærgaard et al., 2016).

We have focused directly on the age-distribution for the number of deaths, considering the total

number of deaths as a given quantity and relying on a Multinomial likelihood. This approach allows to

focus directly on the distributions of deaths across different ages, accounting for the heterogeneity in

the overall mortality trends. For future developments, it might be useful to include a further dynamic

level in the hierarchy and model the process of death counts nj t. Such an aim can be achieved, for

example, using an hierarchical Poisson or Negative-Binomial dynamic model.
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