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Abstract. The paper concerns the study of equilibrium points, or steady states, of economic

systems arising in modeling optimal investment with vintage capital, namely, systems where

all key variables (capitals, investments, prices) are indexed not only by time but also by age.

Capital accumulation is hence described as a partial differential equation (briefly, PDE), and

equilibrium points are in fact equilibrium distributions in the variable of ages. A general method

is developed to compute and study equilibrium points of a wide range of infinite dimensional,

infinite horizon, optimal control problems. We apply the method to optimal investment with

vintage capital, for a variety of data, deriving existence and uniqueness of equilibrium distri-

bution, as well as analytic formulas for optimal controls and trajectories in the long run. The

examples suggest that the same method can be applied to other economic problems displaying

heterogeneity. This shows how effective the theoretical machinery of optimal control in infinite

dimension is in computing explicitly equilibrium distributions. To this extent, the results of

this work constitute a first crucial step towards a thorough understanding of the behavior of

optimal paths in the long run.
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1. Introduction

Computing equilibrium points, or steady states, and describing their properties is one of the

main goals in the mathematics of economic models. This task, when presuming an underlying

optimal control problem with infinite horizon, is already nontrivial with one state variable, but

it becomes harsh when the dynamics of the system are infinite dimensional, like in cases when

heterogeneity/path dependency is taken into account. This is the case, for instance, of optimal

investment with vintage capital (capital stock is heterogeneous in age, see e.g. [51, 36]), of

spatial growth models (capital stock is heterogeneous in space, see e.g. [19, 35, 20]), of growth

models with time-to-build (capital stock is path-dependent, see e.g. [6, 7, 8]), or of models

with heterogeneous agents (see e.g. [68]). In all these examples, equilibrium points are indeed

functions (of vintage, or space, or age) and may be more properly referred to as “equilibrium

distributions”. Up to now, such equilibrium distributions have been studied only when the

value function of the control problem is described by an analytic formula – a requirement which

is very seldom met – so that many interesting cases are left out of the picture.

On the contrary, this work addresses the study of equilibrium distributions in cases where no

explicit formula for the value function is available, moreover it does so under the general as-

sumptions of an infinite-horizon infinite-dimensional control problem with linear state equation

and general convex (concave, in the application) payoff, providing a theoretical tool that can be

used in a variety of applied examples. In fact, the theory is put immediately into practice for

the optimal investment model with vintage capital, obtaining analytic formulas for the equi-

librium distributions, and a complete sensitivity analysis for some instances of the problem.

Hence the paper contains a theoretical and an applied part, both of equal weight and dignity,

whose main achievements are listed below.

For the general theory (Sections 2, 3 and 4), we reprise and complete the study of the con-

trol problems analyzed in Faggian and Gozzi [45].1 There, Dynamic Programming (DP) was

employed to prove the existence and uniqueness of a regular solution v of the Hamilton-Jacobi-

Bellman (HJB) equation, as well as a verification theorem implying existence and uniqueness

of optimal feedback controls, and the fact that v coincides with the value function. Overall and

differently from most contributions to the subject, this work presents an integrated approach

between the DP and MP methods of optimal control theory. In particular:

(a) a co-state is associated to the state variable, and necessary and sufficient conditions for

the optimal path are established in the form of a Maximum Principle (MP) (Theorem

4.5);

(b) the co-state associated to an optimal state is shown to coincide with the spatial gradient

of the value function evaluated at that optimal state (Theorem 4.6);

1Note that in this theoretical context, since equilibrium distributions can be seen as points in a suitable

infinite dimensional vector space, a space of functions, they will be still named “equilibrium points”.
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(c) the definition of two types of equilibrium points is introduced: the stationary solutions

of the state-costate system, called MP-equilibrium points, and the stationary solutions

of the closed loop equation (CLE) arising in the DP approach (Definition 4.8), called

CLE-equilibrium points;

(d) the relationship between the two types of equilibrium points is explained, and sufficient

(and necessary) conditions for existence of such equilibria are provided (Theorem 4.10);

(e) two results on the stability of CLE-equilibrium points are given by using or adapting

the existing literature (Propositions 4.15 and 4.16).

It is important noting that the theory cannot be used straightforwardly to treat applied prob-

lems in a satisfactory way. This happens on the one hand because the results in infinite

dimension need to be translated into terms of the application under analysis, and on the other

hand as it may be necessary to exploit the particular structure of the applied problem to specify

formulas for practical use. One example is worked out through Theorem 5.5, in the case of the

model of optimal investment with vintage capital.

In the applied part of this work (Sections 5 and 6), the theoretical results are used on the

optimal investment model with vintage capital deriving:

(e) the existence of MP- or CLE-equilibrium points, which is proven equivalent to the

existence of solutions of a numerical equation explicitly derived from the data;

(f) analytic formulas for MP- or CLE-equilibrium points in some relevant examples;

(g) a sensitivity analysis for some particular sets of data.

In particular, the sensitivity analysis enables the development of new economic results while

analyzing the vintage capital stock model in which revenue is a strictly concave and linear

quadratic function of output, where the strict concavity is caused by market power on the

output market. As is standard in this literature (Feichtinger et al. [51]), output linearly

depends on the capital goods, whereas investment costs are convex and linear quadratic. We

show that the equilibrium distribution capital stock is first increasing and then decreasing in

the age of the capital good. The increasing part is the result of investment costs being relatively

large when capital goods are relatively new. On the other hand, such investments are attractive

due to the long lifetime of new capital goods. Capital goods of older age have a shorter lifetime.

This gives an incentive to reduce investments in older capital goods, resulting in the fact that

the equilibrium distribution capital stock for old machines decreases with respect to age. We

further establish another non-monotonicity dependence of the equilibrium distribution capital

goods level, but now with respect to the productivity of the capital goods. If productivity is

relatively low, the number of capital goods increases if productivity goes up. This is because a

given capital good produces more so that the firm is more eager to invest in it. On the other

hand, if productivity is relatively large the firm decreases investments, because otherwise the

firm overproduces resulting in a too low marginal revenue. In other words, some optimal output

level exists and less capital goods are needed to produce this level when productivity is high.
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In conclusion, this work shows how successfully and effectively the theoretical machinery of

optimal control in infinite dimension is in computing explicit formulas and studying properties

for equilibrium distributions, also in absence of an explicit formula for the value function. We

believe that the theoretical tools developed in the first part of this work can be successfully

employed in examples yielding the same abstract structure (like those mentioned at the begin-

ning of this introduction) and possibly extended to more complex cases with the use of suitable

numerical approximations. One example is to consider harvesting models with age-structured

populations (see, e.g.,Anita̧ [2]). This seems to be a promising topic for future research.

The paper is organized as follows. Section 2 presents a family of optimal investment models

with vintage capital. Sections 3 presents the abstract optimal control problem and shows that

the problem contained in Section 2 falls into that wider class. Section 4 is the theoretical core of

the paper, where we recall the results obtained with the DP approach in [45] (Section 4.1), we

state and prove first order optimality conditions in terms of a Maximum Principle (Section 4.2),

and we present and discuss the general results on equilibrium points (Section 4.3). In Section

5, the general results of the previous sections are applied to the model of optimal investment

with vintage capital, providing a technique to derive analytic formulas for the equilibrium

distributions. Finally, in Section 6, a sensitivity analysis is conducted on some instances of

the problem of Section 5, i.e. where both revenues and costs are chosen linear-quadratic. This

section also contains numerical results as illustration. An appendix with proofs of the theorems

of Section 4 and 5, as well as some additional results, completes the work.

We remark that the paper is organized as to allow the reader less interested in mathematical

details to approach Sections 5 and 6 without necessarily going through the theoretical Sections

3 and 4.

1.1. Literature Review. We complete this introductory section with an overview of literature

on vintage capital, and on optimal control of infinite dynamical systems, thereby explaining

what the present paper adds to each field.

From an economic point of view, the paper contributes to the literature of vintage capital stock

models. Such models extend standard capital accumulation models, like, among many others,

Eisner and Strotz [33] and Davidson and Harris [30] where capital goods are a function of

just time. The extension is that also the age of the capital goods is taken into account. This

enables to distinguish different vintages of capital goods so that one could explicitly analyze

issues like aging (Barucci and Gozzi [15]), learning (Greenwood and Jovanovic [58]), pollution

(Xepapadeas and De Zeeuw [73]), forest management (Fabbri, Faggian and Freni [38]), and

technological progress (Feichtinger et al. [51]). We consider the kind of vintage capital stock

models where investments in older capital goods are possible. This distinguishes the framework

to be considered from works like Solow et al.[70], Malcomson [66], Benhabib and Rustichini

[17], and Boucekkine et al. [21, 22, 23, 24].
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The first contribution in vintage capital literature, which consider models where investments

in older capital goods are also possible, is Barucci and Gozzi [16]. They consider the vintage

capital stock framework where, as in Feichtinger et al. [50], revenue is linearly increasing

in output, implying that the output price is constant, and linear-quadratic investment costs.

Like in Feichtinger et al. [50], they do derive equilibrium distribution expressions for capital

goods of different ages and corresponding investments. The present paper generalizes these

contributions by obtaining the equilibrium distribution expression of the capital goods for a

model with general concave function.

Barucci and Gozzi [15] extend Barucci and Gozzi [16] by considering technological progress,

while in Xepapadeas and De Zeeuw [73] the production process produces emissions next to

products. Both papers keep the revenue linearly dependent on output. Provided an equilibrium

distribution exists, which is not the case when we have ongoing technological progress as in

Barucci and Gozzi [15], due to this linearity equilibrium distribution expressions are much easier

to obtain compared to a revenue function being concave as in the present paper.

Closer to our present paper than the works cited above is Feichtinger et al. [51], in which also

a firm with market power is considered. The difference with our work is that Feichtinger et

al. considers technological progress. In particular, the main part of their work analyzes how

the firm reacts with its investment policy to a technological breakthrough, which is a point in

time at which a new technology is invented. The implication is that productivity of the capital

goods of vintages borne after the breakthrough time jumps upwards. Our model is simpler in the

sense that we do not consider technological progress. However, our analysis goes further than in

Feichtinger et al. [51] in that we were able to derive an analytical expression for the equilibrium

distribution. This we could do for a general concave revenue function, where Feichtinger et al.

[51] just considers linear-quadratic revenue. Note that after the technological breakthrough

Feichtinger’s model turns into our model with prespecified revenue function. This implies that

also in their framework a unique equilibrium distribution exists, which can be calculated using

the results of the present paper.

From the point of view of mathematics, the main features of the optimal control problem here

considered are: (i) the linear state equation and the convex cost criterion; (ii) the presence of

a boundary control; (iii) the age structure of the driving operator A in the state equation.

Optimal control of infinite dimensional systems is the subject of many books and papers in the

recent literature. Among the books in the deterministic case we mention Lions [63] and Barbu

and Da Prato [10], and the more recent ones Li and Yong [64], and Troltzsch [72]. For the

stochastic case (concerning the dynamic programming approach) one can see the recent book

[37].

Concerning the dynamic programming approach to problems with linear state equation and

convex cost but with distributed control, we refer the reader to Barbu and Da Prato [10, 11, 12],

for some linear convex problems to Di Blasio [31, 32], for the case of constrained control to
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Cannarsa and Di Blasio [25], and for the case of state constraints to Barbu, Da Prato and Popa

[13] (see also Gozzi [52, 53, 54] for a generalization of this approach to the case of semilinear state

equations). For boundary control problems we recall, in the case of linear systems and quadratic

costs (where the HJB equation reduces to the operator Riccati equation) e.g. the books by

Lasiecka and Triggiani [61, 62], the book by Bensoussan, Da Prato, Delfour and Mitter [18],

and, for nonautonomous systems, the papers by Acquistapace, Flandoli and Terreni [1, 3, 4, 5].

For the case of a linear system and a general convex cost function, we mention the papers

by Faggian [39, 40, 41, 42, 43], and by Faggian and Gozzi [44, 45] (in particular, the theory

developed in the last two works is the starting point for theory in the present paper, and is

recalled in Section 4.1). On the Pontryagin maximum principle for boundary control problems

we mention again, in the linear quadratic case, the books [61, 62, 63] and [18]; in the case of

linear systems with convex cost, e.g., the book by Barbu and Precupanu (Chapter 4 in [14]),

and the papers [9], [59]; for general nonlinear boundary control problems, e.g., [28], [46], [47],

[71] [56] [57]. None of them covers the class of problems treated here.

The main contributions of the present paper with respect to the mathematical literature quoted

above are: (1) the proof of the Maximum Principle for infinite dimensional, infinite horizon

optimal control problems with features (i)−(iii); (2) the co-state inclusion which reconnects the

value function with the co-state; (3) the analysis of equilibrium points of the control problem.

2. The optimal investment model with vintage capital

We now describe the model of optimal investment with vintage capital, in the setting introduced

by Barucci and Gozzi [16][15], and later reprised and generalized by Feichtinger et al. [49, 50,

51], and by Faggian [41, 42] and Faggian and Gozzi [44].

The capital accumulation process is given by the following system

(2.1)


∂K(τ,s)
∂τ

+ ∂K(τ,s)
∂s

+ µK(τ, s) = u1(τ, s), (τ, s) ∈]t,+∞[×]0, s̄]

K(τ, 0) = u0(τ), τ ∈]t,+∞[

K(t, s) = x(s), s ∈ [0, s̄]

with t > 0 the initial time, s̄ ∈ [0,+∞] the maximal allowed age, and τ ∈ [0, T [ with horizon

T = +∞. The unknown K(τ, s) represents the amount of capital goods of age s accumulated

at time τ , the initial datum is a function x ∈ L2(0, s̄) (the space of square integrable functions

on (0, s̄)), µ > 0 is a depreciation factor. Moreover, u0 : [t,+∞[→ R is the investment in

new capital goods (u0 is the boundary control) while u1 : [t,+∞[×[0, s̄]→ R is the investment

at time τ in capital goods of age s (hence, the distributed control). Investments are jointly

referred to as the control u = (u0, u1). The output rate is

(2.2) Q(K(τ)) : =

∫ s̄

0

α(s)K(τ, s)ds,

where α(s) is a productivity parameter. Selling the output to consumers results in an instan-

taneous revenue, R (Q) , where R is a concave function. Capital stock can be increased by
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investing, and investment costs are given by

(2.3) C(u(τ)) ≡ C0(u0(τ)) + C1(u1(τ)) ≡ C0(u0(τ)) +

∫ s̄

0

c1(s, u1(τ,s))ds,

with C1 indicating the investment cost rate for technologies of age s, C0 the investment cost

in new technologies, including adjustment costs, C0, C1 convex in the control variables. The

firm’s payoff is then represented by the functional

(2.4) I(t, x;u0, u1) =

∫ +∞

t

e−λτ [R(Q(K(τ))− C(u(τ))]dτ,

where λ ∈ R is the discount rate. Note that λ is usually assumed positive, but here we leave the

possibility of choosing a negative λ (corresponding, for example, to a negative interest rate).

The entrepreneur’s problem is that of maximizing I(t, x;u0, u1) over all state–control pairs

{K, (u0, u1)} which are solutions (in a suitable sense) of equation (2.1) and keep the capital

stock K(τ, s) nonnegative at all times. Such a problem is known as vintage capital problem, for

the capital goods depend jointly on time τ and on age s, which is equivalent to their dependence

on time and vintage τ − s.
We finally recall the definition of the value function of the problem

(2.5) V (t, x) := inf
u∈Uadm(t)

I(t, x;u0, u1).

Where Uadm(t) is the set of the admissible controls later specified in (3.3). With that choice,

since R and C are not time dependent, it is true that

(2.6) V (t, x) = e−λtV (0, x) =: e−λtV0(x).

Remark 2.1. As a matter of fact, we treat the above problem without the state constraints

K(τ, s) ≥ 0 for all s and τ , and check that constraints are satisfied a posteriori by the optimal

trajectories of the unconstrained problem. In such a case, those trajectories are also optimal

for the problem with state constraints.

2.1. Revenues and costs. In order to be able to treat optimal investment with vintage capital

into the wider class of abstract problems described in Sections 3 and 4, we specify the assump-

tions on revenues R and costs C which ensure that the basic assumptions of the abstract

problem (Assumptions 3.2, (3)-(6)) are fulfilled.

Assumptions 2.2. (i) R ∈ C1(R), R concave, R′ Lipschitz continuous. Moreover α ∈
H1(0, s̄)2 and α(s̄) = 0.

(ii) C0(r) and r 7→ c1(s, r) are convex, lower semi–continuous functions, with injective3

subdifferential at all r ∈ R.

2H1(0, s̄) is the space of square integrable functions which admit a square integrable derivative in weak sense.

Continuous functions with piecewise continuous derivatives are included in this space.
3A multivalued function ρ : U → R is injective when ρ(u1) ∩ ρ(u2) = ∅ for every u1, u2 ∈ U , u1 6= u2.
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(iii) C∗0(r), r 7→ c1(s, ·)∗(r) (are Fréchet differentiable and) have Lipschitz continuous deriva-

tives, for all s ∈ [0, s̄].

(iv) C0(r) and r 7→ c1(s, r) are bounded below by a function of type a|r|p+b, for some a > 0,

b ∈ R, p > 1.

In the above statement, we denoted by f ∗ the convex conjugate of a convex function f , in

particular C∗0(r) = supw∈R{wr − C0(w)}, c1(s, ·)∗(r) = supw∈R{wr − c1(s, w)}. Note that no

strong regularity of C is required.

For example, suitable choices for the revenues are the following:

(a) Linear-quadratic: R(Q) = −aQ2 + bQ;

(b) Logarithmic: R(Q) = ln(1 +Q), for Q ≥ 0 and R(Q) = Q for Q < 0;

(c) Power γ ∈ (0, 1): R(Q) = b[(ν + Q)γ − νγ],with b, ν > 0 (ν arbitrary small), for Q ≥ 0

and R(Q) = bγνγ−1Q for Q < 0. Note in particular that this R converges as ν tends to 0 to

R(Q) = bQγ, for Q ≥ 0 and R(Q) = −∞ for Q < 04.

Suitable choices for the costs are, once set β = (β0, β1) ∈ R× L∞(0, s̄), with β1(s), β0 ≥ ε ≥ 0,

q = (q0, q1) ∈ R+ × L2(0, s̄), the following:

(A) Linear-quadratic:

(2.7) C(u) =

∫ s̄

0

[β1(s)u2
1(s) + q1(s)u1(s)]ds+ β0u

2
0 + q0u0

(B) Linear+quadratic with constrained control:

C(u0, u1) = C0(u0) + C1(u1)(2.8)

= q0u0 + gβ0,M0(u0) +

∫ s̄

0

[
α1(s)u1(s) + gβ1(s),M1(u1(s))

]
ds(2.9)

where

gβ,M(u) =

{
βu2

+∞
|u| ≤M

|u| > M

Such a cost can be easily generalized to a case where u belongs to any compact interval and

not necessarily u ∈ [−M,M ].

(C) Linear+Power costs :

C(u0, u1) = C0(u0) + C1(u1)(2.10)

= q0u0 + fβ0(u0) +

∫ s̄

0

[
q1(s)u1(s) + fβ1(s)(u1(s))

]
ds(2.11)

4The definition of R for negative values of Q is needed in order to apply the general theory, although negative

values of Q will never emerge in our calculations. Note also that setting R (Q) = −∞ for Q < 0 is equivalent

to require Q ≥ 0 in optimal solutions.
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where, for p > 2,

fβ(u) =

{
β [(u+ θ)p − θp]

+∞
u ≥ 0

u < 0

which implies also positivity constraints of the controls.

We treat all of these cases in Section 5. Moreover, in Section 6 we treat the case of linear–

quadratic revenues and costs for which we derive analytic formulas for the long run optimal

couples, and perform a complete sensitivity analysis.

The reader is advised that Sections 3, 4, and the Appendix are devoted to the mathematics of

the general problem and require a good knowledge of functional analysis to be fully understood.

Nonetheless, they may be skipped at a first reading, as the reader will find in Section 5 the

theoretical results translated in terms of the problem of optimal investment with vintage capital.

3. The theoretical framework

Here we introduce an abstract class of infinite dimensional optimal control problems with linear

evolution equation and convex payoff, in which the control may also act on the boundary, and

address it as (P). Then, in Section 3.3 we show that the optimal investment model with vintage

capital described in the previous section is of type (P).

3.1. Notation. The expression a ∨ b means the maximum of the real numbers a and b. If X

is a Banach space, we indicate its norm with | · |X , its dual with X ′, with 〈·, ·〉X′,X the duality

pairing. When X = V ′ we use for simplicity 〈·, ·〉 in place of 〈·, ·〉V ′,V . If X is also a Hilbert

space, we indicate with (·|·)X the inner product in X.

If X and Y are Banach spaces, then C1(X) denotes all Fréchet differentiable functions from X

to R, and L(X, Y ) the set of all linear and continuous operators from X to Y , with associated

norm ‖ · ‖L(X,Y ). Moreover we set

Lip(X;Y ) = {f : X → Y : [f ]
L

:= sup
x,y∈X, x6=y

|f(x)− f(y)|Y
|x− y|X

< +∞}

C1
Lip(X) := {f ∈ C1(X) : [f ′]

L
< +∞}

and, for p ≥ 1,

Bp(X, Y ) := {f : X → R : |f |Bp := sup
x∈X

|f(x)|Y
1 + |x|pX

< +∞}, Bp(X) := Bp(X,R),

C([0, T ],Bp(X, Y )) := {f : [0, T ]→ Bp(X, Y ) : f continuous}

Note that Bp are Banach spaces if endowed with the norm | · |Bp , so that continuity is intended

with respect to such norms. Furthermore, we set

Σ0(X) := {w ∈ C1
Lip(X) : w is convex}.
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Finally, if X is a Hilbert space and h : X → R is a convex function, then h∗ will denote its

convex conjugate, namely h∗ : X → R, h∗(x) = sup
y∈X
{〈x, y〉 − h(y)}.

3.2. The abstract optimal control problem (P). We consider two real separable Hilbert

spaces V and H with V continuously embedded in H. We identify H with its dual and we

call V ′ the topological dual of V , which we do not identify with V for the reasons explained in

Section 3.3. We then get a so-called Gelfand triple

V ↪→ H ↪→ V ′

We choose V ′ as state space. The control space is the real separable Hilbert space U (which we

identify with its dual U ′). We consider the control system with state space V ′, control space

U , and varying initial time t ≥ 0, described by

(3.1)

y′(τ) = Ay(τ) +Bu(τ), τ > t

y(t) = x ∈ V ′,

where A and B are linear operators, possibly unbounded. Moreover, we take a convex functional

of the following type

(3.2) J(t, x, u) =

∫ +∞

t

e−λτ [g0 (y(τ)) + h0 (u(τ))] dτ

where the function g0 and h0 are convex functions. The problem (P) is that of minimizing

J∞(t, x, u) with respect to u, over the set of admissible controls

(3.3) Lpλ(t,+∞;U) = {u : [t,+∞)→ U ; τ 7→ u(τ)e−
λτ
p ∈ Lp(t,+∞;U)},

which is a Banach space with the norm

|u|Lpλ(t,+∞;U) =

∫ +∞

t

|u(τ)|pUe
−λτdτ = |e−

λ
p

(·)u(·)|Lp(t,+∞;U).

Remark 3.1. In the above problem no constraints on controls or on states are assumed al-

though, in economic applications, the state represents capital stock, usually assumed nonneg-

ative. Here we proceed along with the frequently used idea (see e.g.[36]) to check ex post that

the constraints are satisfied by the optimal trajectories of the unconstrained problem, so those

trajectories are optimal also for the constrained problem.

The basic assumptions on the data are stated below and will hold throughout the paper.

Assumptions 3.2. (1) A : D(A) ⊂ V ′ → V ′ is the infinitesimal generator of a strongly

continuous semigroup {eτA}τ≥0 on V ′. Moreover there exists ω ∈ R such that5

|eτAx|
V ′
≤ eωτ |x|

V ′
, ∀τ ≥ 0;

5When ω > 0, a semigroup S(t) with this property is usually called a pseudo-contraction semigroup, as

e−ωtS(t) is a contraction semigroup with generator A− ωI.
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(2) B ∈ L(U, V ′);

(3) g0 ∈ Σ0(V ′)

(4) h0 : U → R is convex and lower semi–continuous, ∂h0 is injective.

(5) h∗0(0) = 0, h∗0 ∈ Σ0(U);

(6) ∃a > 0, ∃b ∈ R, ∃p > 1 : h0(u) ≥ a|u|pU + b, ∀u ∈ U ;

(7) λ > ω.

In proving some results we will need to specify the assumption (7) above as follows.

Assumptions 3.3. In addition to Assumption 3.2, we require that either

(1) p > 2, λ > (2ω) ∨ ω
or

(2) g0 ∈ B1(V ′).

The adjoint of A in the inner product of V ′ is denoted by A∗, while the adjoint of A with

respect to the duality 〈·, ·〉 in V, V ′ is the unbounded operator A∗1 on V , A∗1 : D(A∗1) ⊂ V → V.

Remark 3.4. We recall that, if a function h : U → R ∪ {+∞} is lower semicontinuous

and convex (and not identically +∞), then the subgradient ∂h is defined as ∂h(u) = {u∗ ∈
U : h(v) − h(u) ≥ 〈u∗, v − u〉U , ∀v ∈ U}. Moreover if ∂h is injective then h∗ is Fréchet

differentiable with (h∗)′(u) = (∂h)−1(u) for all u ∈ U .

3.3. Optimal investment with vintage capital is of type (P) . We end the section by

showing that the problem of optimal investment with vintage capital described in Section 2

falls in the general class (P) described above and refer interested readers to [42] for full detail.6

We at first formulate an intermediate abstract problem in H = L2(0, s), the space of square

integrable functions of variable s, using the modified translation semigroup {eA0t}t≥0 on H,

namely the linear operators eA0t : H → H such that

[eA0tf ](s) = f (s− t) e−µt, if s ∈ [t, s], and [eA0tf ](s) = 0 otherwise.

If H1(0, s̄) = {f ∈ L2(0, s) : f ′ ∈ L2(0, s)}, then the generator of {eA0t}t≥0 is the operator

A0 : D(A0) ⊂ H → H, with

D(A0) = {f ∈ H1(0, s̄) : f(0) = 0}, A0f(s) = −f ′(s)− µf(s).

The adjoint of A0 is then A∗0 : D(A∗0)→ H with

D(A∗0) = {f ∈ H1(0, s̄) : f(s̄) = 0}, [A∗0f ](s) = f ′(s)− µf(s),

generating itself a modified translation semigroup {eA∗0t}t≥0 on H, given by[
eA
∗
0tf
]

(s) = f (s+ t) e−µt, if s ∈ [0, s− t], and
[
eA
∗
0tf
]

(s) = 0 otherwise.

6See also [34], [18] or [69] for the general theory of strongly continuous semigroups and evolution equations.
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The control space is U = R×H, the control function is a couple

u ≡ (u0, u1) : [t,+∞)→ R×H,

and the control operator is given by

Bu ≡ B(u0, u1) = u1 + u0δ0, for all (u0, u1) ∈ R×H,

δ0 being the Dirac delta at the point 0. With this notation, the original state equation (2.1)

can be written as

(3.4)

K ′(τ) = A0K(τ) +Bu(τ), τ > t

K(t) = x,

Note that H and U are Hilbert spaces, and that B is unbounded, meaning that it is not a

continuous operator from U to H (unless u0 = 0, corresponding to identically null boundary

control u0(τ)), for the Dirac delta does not lie in H. Then (3.4) needs to be interpreted in a

suitable way, for instance in an extended state space.

Then we generalize all previous notions to a wider space. We set V ≡ D(A∗0), and assume V ′

as state space of the abstract problem. Indeed by standard arguments (see e.g. [34, Section

II.5]) – and in particular by replacing the scalar product in L2 with the duality pairing 〈φ, ψ〉
with φ ∈ V ′, ψ ∈ V (coinciding with the inner product in L2 when φ ∈ L2) – the semigroup

{eA0t}t≥0 can be extended to a strongly continuous semigroup {eAt}t≥0 on V ′, by setting

(3.5) 〈eAtφ, f〉 = 〈φ, eA∗0tf〉 for every f ∈ V, φ ∈ V ′,

The generator of {eAt}t≥0 is the operator A : D(A) ⊂ V ′ → V ′, with D(A) = H. Moreover the

semigroup {eA∗0t}t≥0 can be restricted to a strongly continuous semigroup on V , with generator

the restriction of A∗0 to D ((A∗0)2). Such restriction is exactly the adjoint of A in the duality

〈·, ·〉 and is then denoted, as in the previous subsection, by A∗1.

The role of H is that of pivot space between V and V ′, namely V ⊂ H ⊂ V ′, with continuous

inclusions. The control operator B is then in L(U, V ′). Its adjoint is given by

(3.6) B∗ : V → U, with B∗v = (v(0), v).

It is also useful to note that A−1 is well defined and that

(3.7) [−A−1δ0](s) = eµs, while [−A−1f ](s) =

∫ s

0

e−µ(s−σ)f(σ)dσ, for all f ∈ H

The target functional is also interpreted on extended spaces once the production function is

described as

(3.8) Q(K(τ)) = 〈α,K(τ)〉
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where, the duality pairing 〈·, ·〉 between V and V ′ has replaced the scalar product in L2 in the

original definition (2.2) of Q, and c : U → U . Then (2.4) becomes

I(t, x;u0, u1) =

∫ +∞

t

e−λτ [R(〈α,K(τ)〉)− C(u0(τ), u1(τ))]dτ

The firm’s optimal investment problem falls into the wider class described in the next theoretical

sections, provided it is reformulated as a minimization problem, where the functions g0 and h0

there described are chosen as

(3.9) g0(x) := −R(〈α, x〉), h0(u0, u1) := C(u0, u1).

Indeed the following Lemma holds true.

Lemma 3.5. Assumptions 2.2 imply, along with the above definitions of A and B and (3.9),

that Assumptions 3.2 are satisfied with ω = −µ. Furthermore if p > 2, then Assumption 3.3

(1) is satisfied. If instead if p > 1 and R has at most linear growth, Assumption 3.3 (2) is

satisfied.

Proof. Assumption 3.2-(1) is satisfied with ω = −µ since, for every φ ∈ V ′ we have, by definition

of V ′

|eτAφ|V ′ = sup
|f |V =1

〈eτAφ, f〉 = sup
|f |V =1

〈φ, eτA∗0f〉 ≤ sup
|f |V =1

|φ|V ′ |eτA
∗
0f |V ≤ e−µt|φ|V ′ .

Assumption 3.2-(2) is trivially satisfied as pointed out above in the definition of B. By As-

sumption 2.2, α ∈ V and g0 is a Fréchet differentiable convex function of x ∈ V ′, with Fréchet

differential g′0(x) defined by g′0(x)[s] = −R′(〈α, x〉)α(s) . Such differential is a Lipschitz contin-

uous function of x, with Lipschitz constant Lip(g′0) = Lip(R′)|α|2V , as

(3.10) |g′0(x)− g′0(y)|V ≤ |R′(〈α, x〉)−R′(〈α, y〉)||α|V ≤ Lip(R′)|〈α, x− y〉||α|V
≤ Lip(R′)|α|2V |x− y|V ′ .

so that Assumption 3.2-(3) holds true. Assumptions 2.2(ii) coupled with Remark 3.4 implies

both Assumptions 3.2 (4) and that h∗0 is convex and Fréchet differentiable. The fact that h∗0
has Lipschitz differential is implied by (iii), so that also (5) holds true. Clearly (iv) implies

(6). The last statement is straightforward. 2

Remark 3.6. It is important to note that, in the case when the functions R and C are both

quadratic, neither (1) nor (2) are satisfied in Assumption 3.3. Nonetheless necessary and

sufficient conditions of optimality (see Theorem 4.5) hold true, and the value function results

regular (see Remark 4.4 and Section 5.2.1 for details).

Remark 3.7. As we briefly mentioned in the introduction, our theoretical framework can be

adapted to other applications which display a similar structure, in particular to harvesting

models with age-structured populations. As an example we mention the problem in Aniţa

[2], Section 1.1. In this case, our theorems cannot be applied as they are for the following
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technical reasons: (a) the presence of different boundary conditions, which call for a different

space where the state variable lives; (b) nonlinearities in the state -control couple; (c) a current

reward function not separating the state and the control. Nonetheless we believe that our

technique can be shaped also for such cases. This is left for future research.

4. Equilibrium points

Although the core of the section is the definition of equilibrium points of the abstract prob-

lem (P) and the investigation of their properties, some results are needed beforehand. Those

obtained via Dynamic Programming, and contained in [45], are recalled for the reader’s conve-

nience in Section 4.1. On the other hand, Section 4.2 contains new material, and in particular

a version of the Maximum Principle for problem (P). Finally Section 4.3 contains the analysis

of equilibrium points.

4.1. Dynamic Programming for problem (P). We here recall the main results contained

in [45]. If the value function is defined as

(4.1) Z(t, x) = inf
u∈Lpλ(t,+∞;U)

J(t, x, u),

and, if one sets Z0(x) := Z(0, x), then Z(t, x) = e−λtZ0(x), so that the Hamilton–Jacobi–

Bellman equation associated to the problem by means of Dynamic Programming reduces to

that with initial time t = 0, that is

(4.2) −λψ(x) + 〈ψ′(x) , Ax〉 − h∗0(−B∗ψ′(x)) + g0(x) = 0, x ∈ H

(with ψ the unknown) whose candidate solution is Z0(x). We refer to p 7→ h∗0(−B∗p) as to the

Hamiltonian function.7

Definition 4.1. A function ψ is a classical solution of the stationary HJB equation (4.2) if it

belongs to Σ0(V ′) and satisfies (4.2) for every x ∈ D(A).

Theorem 4.2. Let Assumptions 3.2 and 3.3 hold. Then there exists a unique classical solution

Ψ to (4.2) and it is given by the value function of the optimal control problem, that is

Ψ(x) = Z0(x) = inf
u∈Lpλ(0,+∞;U)

J(0, x, u).

Once we have established that Ψ is the unique classical solution to the stationary HJB equation,

and since Ψ is Fréchet differentiable with Lipschitz derivative, we can build optimal feedbacks

and prove the following theorem.

Theorem 4.3. Let Assumptions 3.2 and 3.3 hold. Let t ≥ 0 and x ∈ V ′ be fixed. Then there

exists a unique optimal pair (u∗, y∗) at (t, x). The optimal state y∗ is the unique solution of the

Closed Loop Equation

7Note that the function usually called Hamiltonian would be (p, x) 7→ 〈p,Ax〉 − h∗0(−B∗p) + g0(x).
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(4.3)

y′(τ) = Ay(τ) +B(h∗0)′(−B∗Ψ′(y(τ))), τ > t

y(t) = x ∈ V ′,

while the optimal control u∗ is given by the feedback formula

u∗(s) = (h∗0)′(−B∗Ψ′(y∗(s))).

where the optimal feedback map x 7→ (h∗0)′(−B∗Ψ′(x)) is Lipschitz continuous.

Remark 4.4. There are relevant cases when Assumption 3.3 is not satisfied. One such example

is the case, important for the applications, when costs g0 and h0 are quadratic (or linear +

quadratic). Nonetheless Theorems 4.3 remains true, with identical proof to that provided in

[45], if the value function Z0 is in C1
Lip(V

′). Indeed the regularity of Z0 implies that Z0 is

a classical solution of the associated HJB equation (4.2) (to this extent see e.g. [64], ch. 6,

Proposition 1.2, p. 225). In the case of quadratic costs, for instance, one proves that Z0 is itself

quadratic, and hence in C1
Lip(V

′). Note also that if Z0 is not differentiable, then the closed loop

equation (4.3) holds in the weaker sense of (4.8), as specified in the next section.

4.2. Maximum Principle for Problem (P). The results contained in this section, namely

Theorems 4.5 and 4.6, are new to literature and add to the theory developed in [39, 41, 42, 44,

45]. They establish a Maximum Principle for the problem at hand, and connect it to the results

on Dynamic Programming contained in those papers. The reader may find all of the proofs

in the Appendix, as well as some additional results. We advise the reader that, differently

from [45] and in view of Remark 4.4, the new results are proved avoiding Assumption 3.3.

As a consequence, if on the one hand the regularity of the value function Z0 of (P) does not

necessarily hold true, on the other hand we are able to treat the case of the limit exponent

p = 2, and hence of quadratic costs g0 and h0, so important for the applications.

In order to establish a maximum principle, we first need to define a dual system associated to

the mimimization problem. For all fixed x ∈ V ′ and t ≥ 0, we consider the equation

(4.4) π′(τ) = (λ− A∗1)π(τ)− g′0(y(τ)), τ ∈ [t,+∞)

where π : [t,+∞) → V (the dual variable, or co-state of the system) is the unknown, and

y = y(·; t, x, u) is the trajectory starting at x at time t and driven by control u, given by (3.1).

We assume such equation is also subject to the following transversality condition

(4.5) lim
T→+∞

e(ω−λ)Tπ(T ) = 0.

When necessary, we denote any solution of (4.4)(4.5) also by π(·; t, x, u) or by π(·; t, x) to remark

its dependence on the data.

Heuristically speaking, the candidate conditions of optimality associated to the problem are

the following:
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(4.6)



y′(τ) = Ay(τ) +Bu(τ), τ ≥ t

y(t) = x

π′(τ) = (λ− A∗1)π(τ)− g′0(y(τ)), τ ≥ t

lim
T→+∞

e(λ−ω)Tπ(T ) = 0,

−B∗π(τ) ∈ ∂h0(u(τ)), τ ≥ t.

The ODEs for y and π appearing in (4.6) are intended, as it is usual in these cases, in mild

sense, see Definition A.1 in Appendix A. Moreover, by conjugation formula, we have

(4.7) −B∗π(τ) ∈ ∂h0(u(τ)) ⇐⇒ u(τ) = (h∗0)′(−B∗π(τ)).

We refer to (4.7) as to maximum condition. It has to be satisfied for a.a. τ ≥ t.

The conditions listed in (4.6) prove to be necessary and sufficient for optimality for all p ≥ 2,

in the sense specified next.

Theorem 4.5. (Maximum Principle). Let Assumptions 3.2 be satisfied. Let p ≥ 2, q = p
p−1

and λ > (2ω) ∨ ω. Let t ≥ 0, x ∈ V ′.
(i) Let (u, y) ∈ Lpλ(t,+∞;U)× L1

loc(t,+∞;V ′) be a given admissible pair at (t, x). If there

exists a function π ∈ Lqλ(t,+∞;V ) satisfying, along with u and y, the system (4.6), then

(u, y) is optimal at (t, x) for the problem of minimizing (3.1)(3.2).

(ii) Assume further that, either p > 2 and λ > 0, or p = 2, λ > 0 and ω < 0. Then

the viceversa of (i) holds, i.e., any couple (u∗, y∗) optimal at (t, x) necessarily admits a

costate π ∈ Lqλ(t,+∞;V ) satisfying, along with u∗ and y∗, system (4.6).

The next theorem containes the so-called co-state inclusion. Note that the case of p = 2

is discussed separately, as the value function is not necessarily Fréchet differentiable (unless

Assumption 3.3 holds or ad hoc regularity results are given).

Theorem 4.6. (Co-state inclusion). In Assumptions 3.2, for λ > max{0, ω, 2ω}, suppose

that either p > 2, or p = 2 and ω < 0. Let (u∗, y∗) be optimal at (t, x) ∈ [0,+∞) × V ′, and

let π∗(·; t, x) ∈ Lqλ(t,+∞;V ) be the associated co-state. Let also Z0 be the value function of

problem (P). Then

π∗(τ ; t, x) = π∗(τ ; τ, y∗(τ)) ∈ ∂Z0(y∗(τ)), ∀τ ≥ t.

where ∂Z0 is the subdifferential of the convex function Z0. If in addition p > 2, then Z0 ∈ Σ0(V ′)

and Z0 coincides with Ψ, so that

π∗(τ ; t, x) = π∗(τ ; τ, y∗(τ)) = Ψ′(y∗(τ)), ∀τ ≥ t.

Remark 4.7. Note that, for p ≥ 2 and λ > 0, and by making use of Theorem 4.5, and of

equations (4.6) and (4.7), one obtains

y′(τ) = Ay(τ) +B(h∗0)′(−B∗π(τ)), τ ≥ t
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so that the general version of the closed loop equation (4.3) becomes a differential inclusion

(4.8) y′(τ) ∈ Ay(τ) +B(h∗0)′(−B∗∂Z0(y(τ))), τ ≥ t.

also to be intended in mild sense.

4.3. Equilibrium points. We give two different definitions of equilibrium points for problems

(P), and later show to which extent they are equivalent.

Definition 4.8. A MP-equilibrium point of problem (P ) is any stationary solution (x̄, π̄, ū) ∈
V ′ × V × U of (4.6). This is equivalent to require that(x̄, π̄, ū) belongs to D(A) × D(A∗1) × U
and satisfies

(4.9)


Ax̄+Bū = 0

(λ− A∗1)π̄ − g′0(x̄) = 0,

ū = (h∗0)′(−B∗π̄)).

A CLE-equilibrium point of problem (P ) is any x̄ ∈ V ′ that is a stationary solution of the

closed loop equation (4.8). This is equivalent to require x̄ ∈ D(A) and

(4.10) Ax̄+B(h∗0)′(−B∗∂Z0(x̄)) 3 0.

Remark 4.9. When 0 ∈ ρ(A) and λ ∈ ρ(A∗1), then (4.9) is equivalent to

(4.11)


x̄ = −A−1Bū

π̄ = (λ− A∗1)−1g′0(x̄),

ū = (h∗0)′(−B∗π̄)).

and (4.10) is equivalent to

(4.12) x̄ ∈ −A−1B(h∗0)′(−B∗∂Z0(x̄)).

As a consequence of Remark 4.4, the equations (4.8), (4.10) and (4.12) hold as equalities with

Ψ′(x̄) in place of ∂Z0(x̄) when Z0 Fréchet differentiable in V ′ (e.g. when p > 2, or when

regularity can be proven separately).

The proof of the equivalences in the above definition is straightforward as they are based on

standard regularity of convolutions of semigroups. We omit them for brevity.

We have the following result.

Theorem 4.10. Let Assumptions 3.2 be satisfied, p ≥ 2, λ > (2ω) ∨ ω.

(i) Let (x̄, π̄, ū) ∈ D(A) × D(A∗1) × U be any MP-equilibrium point. Then the constant

control ū is optimal at (0, x̄) and

(4.13) Ax̄+B(h∗0)′(−B∗(λ− A∗1)−1g′0(x̄)) = 0,
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moreover x̄ is a CLE-equilibrium point and

(4.14) ∂Z0(x̄) 3 (λ− A∗1)−1g′0(x̄).

(ii) Let x̂ ∈ D(A) be a CLE-equilibrium point, λ > 0. Let either p > 2, or p = 2 and ω < 0.

Assume that Z0 is Fréchet differentiable in V ′. Then (x̂, π̂, û), where

π̂ := (λ− A∗1)−1g′0(x̂) and û := (h∗0)′(−B∗π̂),

is an MP-equilibrium point, the control û is optimal at (0, x̂) and Z ′0(x̂) = π̂ = (λ −
A∗1)−1g′0(x̂).

One important consequence of the above theorem is that it provides the following equation for

a CLE-equilibrium point (or for the first component of an MP-equilibrium point)

(4.15) Ax̄+B(h∗0)′(−B∗(λ− A∗1)−1g′0(x̄)) = 0.

In addition, whenever 0 ∈ ρ(A) (this assumption is satisfied in the optimal investment problem

with vintage capital described in Section 2) solutions of (4.15) can be regarded as fixed points

of the operator T : V ′ → V ′, defined by

(4.16) Tx := −A−1B(h∗0)′(−B∗(λ− A∗1)−1g′0(x)).

For the applications, the most efficient way of making use of such relations is to rewrite them

in terms of the specific sets of data, and compute when possible the optimal equilibrium distri-

butions. In particular, in Section 5 we will see how (4.16) is interpreted in terms of the data of

optimal investment with vintage capital, so that fixed points of T may be directly computed

by solving a numeric equation.

However, in the general case, it is possible to provide sufficient conditions for the existence and

uniqueness of a fixed point of the operator T using well known fixed point theorems although,

as one expects, such conditions may hardly be very sharp. To this extent, we provide here only

Lemma 4.11, which is a straightforward application of the contraction mapping principle.

Lemma 4.11. Let Assumptions of Theorem 4.10 be satisfied. Assume moreover that

λ− ω > ‖(A)−1‖L(V ′)‖B‖2
L(U,V ′)[(h

∗
0)′][g′0].

Then there exists a unique solution x̄ ∈ D(A) to the equation (4.16).

Remark 4.12. The operator T above is considered as an operator from V ′ to itself. Since its

image is contained in D(A), when looking for fixed points, it is also equivalent to look at it as

an operator from D(A) to itself, considered as a subspace of V ′, as done in Lemma 5.4.

Remark 4.13. All above results could be generalized to the case in which we have state

constraints and the function g0 is convex but not necessarily Fréchet differentiable. This could

be done using the results of [43] and generalizing them to the infinite horizon case, using the

same arguments in [54]. Clearly, at points where g0 is not Fréchet differentiable, one would

have to choose an element of the subdifferential of g0.
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4.4. Stability. Once existence (and possibly uniqueness) of equilibrium points is proven, it is

possible to study their stability properties adapting known results such as those in [60] or in

chapter 9 in [65], or by direct proof, as we see next. In all cases, stability will be proven with

respect to the topology of V ′. For the reader’s convenience we recall the definition here below.

Definition 4.14. A CLE-equilibrim point x̄ ∈ D(A) is stable in the topology of V ′ if, ∀ε >
0,∃δ > 0 such that, if x ∈ V ′ and x∗(·) is the optimal trajectory starting at x, then |x− x̄|V ′ <
δ ⇒ |x∗(t) − x̄|V ′ < ε. If in addition limt→∞ |x∗(t) − x̄|V ′ = 0 then x̄ is asymptotically stable.

Finally, if the same property hold true for all x ∈ V ′, then x̄ is globally asymptotically stable.

The first criterium to establish stability is contained in the following proposition and makes

use of the linearization method. The proof follows from Corollary 2.2 in [60].

Proposition 4.15. (Stability by linearization) Let Assumption 3.2 be satisfied and Ψ ∈ C1
Lip.

For x ∈ V ′ set f(x) := B(h∗0)′(−B∗Ψ′(x)), and assume that x̄ ∈ D(A) is a CLE-equilibrium

point for (P), that f is continuously Fréchet differentiable at a neighborhood of x̄, and denote

by σx̄ the spectrum of the operator A+ f ′(x̄). If sup(Reσx̄) < 0, then x̄ is stable in the topology

of V ′. Moreover, it is also asymptotically stable in the topology of V ′. If sup(Reσx̄) > 0, x̄ is

unstable in the topology of V ′.

Another result that can be used is the following. Recall that 〈·, ·〉V ′ indicates the inner product

in V ′.

Proposition 4.16. (Stability by dissipativity) Let Assumption 3.2 be satisfied and let Ψ ∈
C1
Lip(V

′). For x ∈ V ′, and f(x) = B(h∗0)′(−B∗Ψ′0(x)), and assume that, when x ∈ D(A), the

solution of the closed loop equation

(4.17)

y′(t) = Ay(t) + f(y(t)), t > 0

y(0) = x,

belongs to D(A) for all t ≥ 0. Let x̄ ∈ D(A) be a CLE-equilibrium point for (P). Assume that

A + f is dissipative near x̄, i.e. there exists an open ball I(x̄) in V ′ centered at x̄, and ξ ≤ 0

such that, for every x ∈ I(x̄) ∩D(A),

(4.18)
(
A(x− x̄) + f(x)− f(x̄)

∣∣x− x̄)
V ′
≤ ξ|x− x̄|2V ′ .

Then x̄ is stable in the topology of V ′. If ξ < 0 then x̄ is asymptotically stable in the topology

of V ′. If A+ f is dissipative on the whole V ′ and ξ < 0 then x̄ is globally asymptotically stable.

Corollary 4.17. Let the assumptions of Proposition 4.16 be verified, except (4.18). Let the

operator A satisfy (Ax|x)V ′ ≤ −θ|x|2V ′, for all x in V ′, with θ > 0 a fixed constant. If there exists

a neighborhood I of x̄ where f is Lipschitz continuous (in the topology of V ′) with Lipschitz

constant strictly smaller than θ, then x̄ is asymptotically stable in the topology of V ′. If f is

Lipschitz continuous in V ′ with Lipschitz constant strictly smaller than θ then x̄ is globally

asymptotically stable.
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In particular, the above corollary may be applied to the examples in Section 5, see e.g. subsec-

tion 5.2.1.

5. Application to Optimal Investment with Vintage Capital

The aim of this section is to show how valuable our general theory can be when analyzing

specific applications, and in particular when trying to derive analytic formulas for equilibrium

distributions. This process unfolds by computing MP-equilibrium/CLE-equilibrium points for

that problem rephrased in abstract form as in Section 3.3.

We begin by noting that the value function V (t, x) = e−λtV (0, x) = e−λtV0(x) of the optimal

control problem described in Section 2 (see (2.5)), satisfies, as a consequence of (2.4), (3.9) and

(4.1),

V0(x) = −Z0(x)

where Z0 is the value function, defined in Section 4.1, of the abstract problem (P) for t = 0. Note

that V0 is a concave function, as Z0 is convex. Note also that, under additional assumptions

(e.g. Assumption 3.3, or regularity assumptions on Z0), Z0 is the unique classical solution of

HJB equation (4.2) in the sense of Definition 4.1. As a consequence, the natural co-state for

the maximization problem would be

ζ(τ, s) = −π(τ)[s],

with π the co-state of the abstract problem whose properties are described in Theorem 4.5

and 4.6. Then the optimality conditions (4.6) for a triplet (K∗, ζ∗, u∗) can be written as the

following set of equations

(5.1) u∗0(τ) = (C∗0)′(ζ∗(τ, 0)), u∗1(τ, s) =
(
(C∗1)′(ζ∗(τ, ·))

)
[s] = [c1(s, ·)∗]′(ζ∗(τ, s))

(5.2) ζ∗(τ, s) =

∫ s

s

e−(λ+µ)(ξ−s) R′
(∫ s

0

α(θ)K∗(τ + ξ − s, θ)dθ
)
α(ξ)dξ;

(5.3) lim
T→+∞

e(λ−ω)T ζ(T, s) = 0, a.a. s ∈ [0, s̄].

(5.4)

K̄(τ, s) =


e−µ(τ−s)x(s− τ + t) +

∫ τ−t
0

e−µσu∗1(τ − σ, s− σ)dσ s ∈ [τ − t, s], τ ∈ [t, s+ t]

e−µ(τ−s)u∗0(τ − s) +
∫ s

0
e−µσu∗1(τ − σ, s− σ)dσ s ∈ [0, τ − t], τ ∈ [t, s+ t]

0 s ∈ [0, s], τ ∈ (s+ t,+∞)

Note that (5.1) and (5.2) are derived from (4.6) by making use of (4.7) and (A.15), while (5.4)

is well known and can be obtained by means of characteristics method (see e.g. [15]).

The following proposition is an immediate consequence of Theorem 4.5 and of Lemma 3.5.

Proposition 5.1. Under Assumptions 2.2, with p ≥ 2 and λ > 0, the optimality conditions

(5.1)(5.2)(5.4) are necessary and sufficient for a couple (u∗, K∗) to be optimal at x for the

problem of optimal investment with vintage capital described in Section 2.
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5.1. Characterization of Equilibrium Points. It is natural to define an equilibrium point

for the problem consistently with Section 4.3. For the reader’s convenience, Definition 4.8 is

reformulated below in terms of the problem of optimal investment with vintage capital.

It is important to note that an equilibrium point is actually a function of the variable s (although

independent of t), hence an equilibrium distribution.

Definition 5.2. In reference to the the optimal investment problem with vintage capital:

(i) a MP-equilibrium point is a stationary solution (x̄, ζ̄, (ū0, ū1)) ∈ L2(0, s̄) × H2(0, s̄) ×
(R× L2(0, s̄)) of the system of equations (5.1)(5.2)(5.4);

(ii) for V0 Fréchet differentiable, a CLE-equilibrium point is any x̄ ∈ L2(0, s̄) which is a

stationary solution of equation (5.4) when

u∗0(τ) = [(C∗0)′(V ′0(K∗(τ, ·))][0], u∗1(τ, s) = [(C∗1)′(V ′0(K∗(τ, ·)))] [s].

Remark 5.3. Several remarks are here due.

(1) Theorem 4.10 implies, in the assumptions of Proposition 5.1 that (i) and (ii) are

equivalent in the following sense: the first component x̄ of a MP-equilibrium point

(x̄, p̄, (ū0, ū1)) is also a CLE-equilibrium point; conversely, when V0 is Fréchet differ-

entiable, a CLE-equilibrium point x̄ can be used to build a MP-equilibrium point by

means of (5.1)(5.2)(5.4), having x̄ as first component.

(2) If V0 is not Fréchet differentiable, the closed loop equation (as well as the definition

above) may be generalized to a differential inclusion in the sense of (4.8), where V ′0 is

replaced by the superdifferential ∂V0.

(3) Definition 5.2 is consistent with Definition 4.8 as here D(A) = L2(0, s̄) and D(A∗1) ⊆
H2(0, s̄).

We further characterize MP-equilibrium/CLE-equilibrium points as fixed points of a suitable

operator. To this extent we define

(5.5) ᾱ(s) =

∫ s̄

s

e−(µ+λ)(σ−s)α(σ)dσ

i.e. ᾱ(s) is the discounted return associated with a unit of capital of vintage s.

Lemma 5.4. Under Assumptions 2.2, x̄ is a CLE-equilibrium point if and only if it is a fixed

point of the operator T : L2(0, s̄)→ L2(0, s̄) defined by

(5.6) (Tx)[s] = (C∗0)′ (R′(〈α, x〉)ᾱ(0)) e−µs +

∫ s

0

e−µ(s−σ)[c1(σ, ·)∗]′ (R′(〈α, x〉)ᾱ(σ)) dσ,

that is, if and only if (T x̄)[s] = x̄(s) for a.e. s in [0, s̄]. Moreover (x̄, ζ̄, (ū0, ū1)) where

(5.7) ζ̄(s) = R′(〈α, x̄〉)ᾱ(s), ū(s) = (h∗0)′(B∗ζ̄)(s), for a.e. s ∈ [0, s̄]

is a MP-equilibrium point.
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The proof of the lemma is contained in Appendix C.

Note that solving the equation Tx = x within a space of functions is not particularly handy.

Nonetheless solving such functional equation is equivalent - and in the generality of cases - to

solving a numeric equation. In this sense, the following theorem contains the most interesting

result of the section.

Theorem 5.5. Let Assumptions 2.2 be satisfied, and let T be given by (5.6). Moreover, for

any η ∈ R and s ∈ [0, s̄], consider the function

(5.8) F (η)[s] = (C∗0)′ (ηᾱ(0)) e−µs +

∫ s

0

e−µ(s−σ)[c1(σ, ·)∗]′ (ηᾱ(σ)) dσ.

Then x̄ ∈ L2(0, s̄) is a solution of Tx = x, if and only if

(5.9) x̄(s) = F (η̄)[s]

with η̄ a solution in R of

(5.10) η = R′(〈α, F (η)〉).

The proof of the theorem is contained in Appendix C.

Remark 5.6. Note that the solution of (5.10) is unique and nonnegative when, for instance,

R′(〈α, F (0)〉) ≥ 0. Indeed R′ is decreasing and C∗0 and c1(σ, ·)∗ are convex functions, then the

right hand side of (5.10) is a positive decreasing function of η. Hence the function

(5.11) θ(η) := η −R′(〈α, F (η)〉)

satisfies θ(0) ≤ 0, is strictly increasing to +∞, and hence has exactly one nonnegative zero.

Note that (5.6) and (5.9) are general formulas, holding for any choice of costs and revenues,

as long as they satisfy Assumptions 2.2. More explicit formulas for the optimal equilibrium

distribution may be derived once costs and revenues are further specified.

5.2. Linear-quadratic costs. Now we make formulas more explicit in the case of cost func-

tions satisfying (2.7). We derive

(5.12) C∗0(p0) =
(p0 − q0)2

4β0

, C∗1(p1) =

∫ s̄

0

(p1(s)− q1(s))2

4β1(s)
ds

so that

(C∗0)′ (p0) =
p0 − q0

2β0

, (C∗1)′ (p1)(s) =
p1(s)− q1(s)

2β1(s)

In this case, (5.6) becomes

(Tx)[s] =
R′(〈α, x〉)α(0)− q0

2β0

e−µs +

∫ s

0

e−µ(s−σ)R
′(〈α, x〉)α(σ)− q1(σ)

2β1(σ)
dσ

= R′(〈α, x〉)w1(s)− w2(s)(5.13)
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where w1 and w2 are the positive functions

(5.14) w1(s) =
ᾱ(0)

2β0

e−µs +

∫ s

0

e−µ(s−σ) ᾱ(σ)

2β1(σ)
dσ

(5.15) w2(s) =
q0

2β0

e−µs +

∫ s

0

e−µ(s−σ) q1(σ)

2β1(σ)
dσ.

If in addition we define the positive coefficients

(5.16) c1 = 〈w1, α〉 =

∫ s̄

0

α(s)w1(s)ds, c2 = 〈w2, α〉 =

∫ s̄

0

α(s)w2(s)ds.

then the following result follows as a consequence of Theorem 5.5.

Corollary 5.7. Let Assumption 2.2 and (2.7) be satisfied. Let w1, w2, c1, and c2 be defined

respectively by (5.14), (5.15) and (5.16). Then (x̄, ζ̄, ū) is a MP-equilibrium point if and only

if η̄ ∈ R is a solution of

(5.17) η = R′(ηc1 − c2).

and

x̄(s) = −w2(s) + η̄w1(s).

and moreover ζ̄ and ū are given by (5.7). The constant control ū is optimal at x̄, x̄ is also

a CLE-equilibrium point and, if V0 is Fréchet differentiable, then it is also the unique CLE-

equilibrium point.

Remark 5.8. If the CLE-equilibrium point x̄ identified by Corollary 5.7 is such that x̄(s) ≥ 0 at

all s, then x̄ is also a CLE-equilibrium point for the problem with state constraints K(τ, s) ≥ 0

for all s and τ (see also Remarks 2.1 and 3.1).

Remark 5.9. Note that Assumptions 2.2 are satisfied here with p = 2, so that V0 is not

necessarily Fréchet differentiable. That implies that, although the first component x̄ of a MP-

equilibrium point (x̄, ζ̄, ū) is also a CLE-equilibrium point, the viceversa may fail: there may

be CLE-equilibrium points which do not derive as first components of a MP- equilibrium point,

i.e. solutions of the stationary closed loop equation which fail to be optimal. For a further

discussion on regularity of V0, the reader is referrred to Section 5.2.1.

Once R is chosen, the results in Corollary 5.7 leads to an explicit formula for that CLE-

equilibrium point, as illustrated in the next lemma.

Lemma 5.10. In the assumptions of Corollary 5.7, there exists a unique CLE-equilibrium point

x̄, described by the formuals below, for the associated choices of the revenue R:

(i) If R(Q) = −aQ2 + bQ, then

x̄ = −w2 +
2ac2 + b

1 + 2ac1

w1;
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(ii) If R(Q) = ln(1 +Q), for Q ≥ 0 and R(Q) = Q for Q < 0, then

x̄ = −w2 +

√
(1− c2)2 + 4c1 − (1− c2)

2c1

w1

(iii) If R(Q) = b[(ν +Q)γ − ν], with γ ∈ (0, 1), b, ν > 0, for Q ≥ 0 and R(Q) = γνγ−1Q for

Q < 0, then x̄ = −w2 + η̄w1 where η̄ is the unique positive solution of

η =
bγ

(ν + c1η − c2)1−γ .

(iv) If R(Q) = bQγ, with γ ∈ (0, 1), b > 0, for Q ≥ 0, and R(Q) = −∞ for Q < 0 (case

with state constraints) then x̄ = −w2 + η̄w1 where η̄ is the unique positive solution of

η =
bγ

(c1η − c2)1−γ .

Proof. The proof follows from straightforward computations. �

5.2.1. Stability of Equilibrium Distributions. We close the section on linear-quadratic costs (2.7)

by briefly discussing stability of equilibrium distributions and, in some subcases, the regularity

of the value function, by applying the results contained in Section 4.4. The concept of stability

here used is that of Definition 4.14, which is natural in this context. We remark though that

the convergence of functions there mentioned (i.e. in the topology of V ′) is not a convergence in

the space L2(0, s̄) but, roughly speaking, the (weaker) convergence of their primitive functions.

Lemma 5.11. In the assumptions of Corollary 5.7, suppose in addition that the value func-

tion V0 is Fréchet differentiable, and set ξ = −µ + [V0]L|δ0|2V ′/(4β0), where [V0]L indicates the

Lipschitz constant of the gradient V ′0 . If ξ ≤ 0 (respectively, ξ < 0) then x̄ is stable (resp.,

asimptotically stable) in the sense of Definition 4.14.

The proof of the lemma is contained in Appendix C.

Remark 5.12. In particular, the previous Lemma applies when R is of the type described in

Lemma 5.10 (i). Indeed with some extra work one shows that in this case the value function

of the abstract problem is of type

Ψ(x) = 〈Cx, x〉+ 〈d, x〉+ e,

for a suitable linear operator C : V ′ → V , d ∈ V and e ∈ R, where V and V ′ are the spaces

introduced in Subsection 3.3. Hence Ψ is differentiable with Fréchet differential Ψ′(x) = Cx+d,

and [Ψ]L = ‖C‖L(V ′,V ) (for a proof, we refer the reader to [61], vol 1, ch.2). This applies in

particular to the linear-quadratic examples of Section 6.
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5.3. Linear-quadratic costs, constrained control. We now choose costs as in (2.8). We

then derive

g∗β,M(v) = sup
|u|≤M

{
vu− βu2

}
=

{
v2

4β

M |v| − βM2

|v| ≤ 2β M

otherwise

Note that g∗β,M is a C1 function, with Lipschitz derivative

(
g∗β,M

)′
(v) =


v

2β

M

−M

|v| ≤ 2β M

v > 2β M

v < 2β M

As a consequence, the Legendre transform of C is

C∗(v) = g∗β0,M0
(β0 − q0) +

∫ s̄

0

g∗β1(s),M1
(v1(s)− q1(s))ds

which is Fréchet differentiable with differential

(C∗)′ (v)(s) =
((
g∗β0,M0

)′
(v0 − q0);

(
g∗β1(s),M1

)′
(v1(s)− q1(s))

)
while the operator (5.6) is given by

TMx(s) =
(
g∗β0,M0

)′
(R′(〈α, x〉)α(0)−q0)e−µs+

∫ s

0

e−µ(s−σ)
(
g∗β1(σ),M1

)′
(R′(〈α, x〉)α(σ)−q1(σ))dσ

Remark 5.13. Note that, with this choice of costs C, Assumptions 2.2 are satisfied with p > 2

so that, by Theorem 4.2, the value function V0 is in C1
Lip. By Lemma 5.4 and Theorem 5.5 we

then get that there exists a unique CLE-equilibrium point, coinciding with the first component

of the unique MP-equilibrium point.

From this point on, one may procede as in the proof of Theorem 5.5 and Lemma 5.10 and

compute CLE-equilibrium points, once the data α, q1, q0 are further specified.

5.4. Power costs. We now choose costs as in (2.10) and set q = p
p−1

. Note that p > 2 implies

q ∈ (1, 2). The convex conjugate of the costs are then

(5.18) f ∗β(v) =

{
(βp)1−qq−1vq − θv + βθp

0

v ≥ βpθp−1

v < βpθp−1

with Lipschitz derivative

(5.19)
(
f ∗β
)′

(v) =

{
(βp)1−qvq−1 − θ

0

v ≥ βpθp−1

v < βpθp−1.

As a consequence the Legendre transform of C is

C∗(v) = f ∗β0(v0 − q0) +

∫ s

0

f ∗β1(s)(v1(s)− q1(s))ds,

which is a C1 function with Lipschitz differential

(C∗)′ (v)(s) =
((
f ∗β0
)′

(v0 − q0);
(
f ∗β1(s)

)′
(v1(s)− q1(s))

)
.
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Moreover

T θx(s) =
(
f ∗β0
)′

(R′(〈α, x〉)α(0)− q0)e−µs +

∫ s

0

e−µ(s−σ)
(
f ∗β1(σ)

)′
(R′(〈α, x〉)α(σ)− q1(σ))dσ.

Remark 5.14. Note that Remark 5.13 applies also to this case.

5.5. Only investments in the newest capital goods. In many cases, firms cannot invest

in past vintages, but can only buy new machines (either because second-hand markets do not

exist, or it does not pay to buy used machines when to process changeover is too costly).

Our general framework applies also to this case, namely when investment is possible in only

new capital goods, corresponding to a null distributed control u1 and the only boundary control

u0 active.

(5.20)


∂K(τ,s)
∂τ

+ ∂K(τ,s)
∂s

+ µK(τ, s) = 0, (τ, s) ∈]t,+∞[×]0, s̄]

K(τ, 0) = u0(τ), τ ∈]t,+∞[

K(t, s) = x(s), s ∈ [0, s̄]

In reference to Section 3.2, the problem is of type (P) with a few changes with respect to

the general model, namely: (a) the control operator is B : R → V ′, u0 7→ u0δ0, with adjoint

B∗ : V → R, v 7→ 〈δ0, v〉 = v(0); (b) costs are stripped down to C0(u0), with C0 and C∗0
convex-conjugate functions on R ∪ {+∞}.
With those data, Theorem 5.5 holds true with F (η)[s] = (C∗0)′(ηᾱ(0))e−µs) so that

〈F (η), α〉 = (C∗0)′(ηᾱ(0))

∫ s̄

0

α(s)e−µsds = (C∗0)′(ηᾱ(0))γ

where we defined γ ≡
∫ s̄

0
α(s)e−µsds. Then equilibrium distributions are characterized by

(5.21) x̄(s) = (C∗0)′(η̄ᾱ(0))e−µs, where η̄ solves η = R′
(

(C∗0)′(ηᾱ(0))γ

)
Specifying even further for linear-quadratic costs in new capitals, namely C0(u0) = q0u0 +β0u

2
0,

one has

(5.22) x̄(s) =
1

2β0

(
η̄ᾱ(0)− q0

)
, where η̄ solves η = R′

(
γ

2β0

(
η̄ᾱ(0)− q0

))
Specifying also the revenues as R(Q) = bQ− aQ2 in (5.22), we obtain η̄ = β0b+aq0γ

aβ0+aᾱ(0)γ
so that

x̄(s) =
bᾱ(0)− q0

2(aᾱ(0)γ + β0)
e−µs.

Similar calculations can be performed for different choices of costs and revenues.

Remark 5.15. Using a delayed differential equation framework, the existing literature in this

field already analyzed models where it is only possible to invest in the newest generation of

capital goods (see, e.g. Solow et al. [70], Malcomson [66], Benhabib et al.[17] and Boucekkine

et al. ([21] - [24]).



28 S. Faggian, F. Gozzi, P.Kort

6. Sensitivity analysis in two special cases

We here analyze further the case of linear-quadratic costs discussed in Section 5.2, and develop

sensitivity analysis accordingly. In particular we assume

(6.1) α(s) ≡ α, β1(s) ≡ β0, q1(s) = q0e
−ws.

Summing up, the objective functional of the profit maximizing firm is∫ ∞
0

e−λt
(
R (Q (K(t)))−

∫ s̄

0

(
q0e
−wsu1 (t, s) +

1

2
β0u

2
1 (t, s)

)
ds

)
dt(6.2)

−
∫ ∞

0

e−λt
(
q0u0 (t) +

1

2
β0u

2
0 (t)

)
dt.

We study separately the cases of linear-quadratic and power revenues, depicted respectively

in Lemma 5.10 (i) and (iii). Please note that, in this section, the equilibrium distribution is

denoted by K̄ rather than by x̄.

6.1. Linear-Quadratic Revenues. We here assume

(6.3) R(Q) = bQ− aQ2

as in Lemma 5.10 (i), so that the equilibrium distribution there described equals

(6.4) K̄ (s) = −w2 (s) + η w1 (s) ,

Given that by (5.5) one has

ᾱ(s) =

∫ s̄

s

e−(µ+λ)(σ−s)αdσ =
α

µ+ λ
(1− e−(µ+λ)(s̄−s))

one obtains by means of (5.14)(5.15)

w1 (s) =
α

2β0 (µ+ λ)

(
e−µs − e−µse−(µ+λ)s̄ +

1− e−µs

µ
+(6.5)

−e
−(µ+λ)s̄

2µ+ λ

(
e(µ+λ)s − e−µs

))
,

w2 (s) =
q0

2β0 (µ− w)

(
e−ws − e−µs (1− µ+ w)

)
.(6.6)

and

η =
b+ 2ac2

1 + 2ac1

where

(6.7) c1 =
α2

2β0 (µ+ λ)

(
1− µ
µ2

(
e−µs̄ − 1

)
+

2µ+ λ− 1

µ (2µ+ λ)
e−(2µ+λ)s̄

+
s̄

µ
− 1

(2µ+ λ) (µ+ λ)
+

1− (µ+ λ)

µ (µ+ λ)
e−(µ+λ)s̄

)
,
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Figure 1. Capital stock in equilibrium distribution for all ages, s ∈ [0, s̄] , based on the parameter

values α = 3, β0 = 0.5, µ = 0.2, λ = 0.1, s̄ = 10, q0 = 5, w = 0.25, b = 1, a = 0.00004.

Figure 2. Investment in equilibrium distribution for all ages, s ∈ [0, s̄] , based on the parameter values

α = 3, β0 = 0.5, µ = 0.2, λ = 0.1, s̄ = 10, q0 = 5, w = 0.25, b = 1, a = 0.00004.

(6.8) c2 =
αq0

2β0 (µ− w)

(
µ− w − 1

µ

(
1− e−µs̄

)
+

1

w

(
1− e−ws̄

))
.

The explicit expression for the equilibrium distribution capital stock for every age, K̄ (s) ,

allows us to obtain interesting economic implications. To illustrate, we establish some numerical

results, which mostly are analytically proved as well. We start out from the following parameter

values:

(6.9) α = 3, β0 = 0.5, µ = 0.2, λ = 0.1, s̄ = 10, q0 = 5, w = 0.25, b = 1, a = 0.00004.

The equilibrium distribution capital stock is depicted in Figure 1.

We see that capital goods are non-monotonic with respect to age. To understand this, Figure

2 depicts equilibrium distribution investment behavior, where investment is given by

ū1 (s) =
1

2β0

(∫ s̄

s

e−(λ+µ)(j−s) (b− 2aQ∗)αdj − q0e
−ws
)
,

with Q∗ being the production quantity in the equilibrium distribution.
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Acquiring capital goods of older age is more attractive because they are cheaper (see (6.1)).

On the other hand their lifetime is shorter, so they generate less revenue, which makes older

capital goods less attractive. Figure 2 shows that the last effect dominates.

At first sight it is strange that K̄ (s̄) > 0, because s̄ is the age capital goods are scrapped.

However, the presence of the adjustment costs, 1
2
β0 [u1 (t, s)]2, makes that it is not optimal to

sell all capital goods of age s̄. In fact, convex adjustment costs make investments continuous

over time, and thus also over age since age and time go together. Therefore, some of the capital

goods of older age are still left. This is confirmed in the investment graph of Figure 2, where

we also see that ū1 (s̄) is negative.

If we leave out the effect that older capital goods are less costly, the effect of having a shorter

lifetime when capital goods get older remains, and steady state investments decrease with age.

This holds when we put

(6.10) q0 = q1 (s) = 0,

and, combining this with (6.4), (6.5), and (6.6), we obtain, when revenue is not specified, that

K̄ (s) = ηw1 (s)(6.11)

=
ηα

2β0 (µ+ λ)

(
e−µs − e−µse−(µ+λ)s̄ +

1

µ

(
1− e−µs

))
− ηα

2β0 (µ+ λ)

(
e−(µ+λ)s̄ 1

2µ+ λ

(
e(µ+λ)s − e−µs

))
.

In the specific case of a quadratic revenue function we get

(6.12)

K̄ (s) =
bw1 (s)

1 + 2ac1

=
b
((
e−µs − e−µse−(µ+λ)s̄ + 1

µ
(1− e−µs)− e−(µ+λ)s̄ 1

2µ+λ

(
e(µ+λ)s − e−µs

)))
2β0(µ+λ)

α
+ 2aα

(
1−µ
µ2

(e−µs̄ − 1) + 2µ+λ−1
µ(2µ+λ)

e−(2µ+λ)s̄ + 1
µ
s̄− 1

(2µ+λ)(µ+λ)
+ 1−µ−λ

µ(µ+λ)
e−(µ+λ)s̄

) .
Equilibrium distribution investments being decreasing with age, also result in a hump-shaped

structure of the steady state capital stock, like in Figure 1. The following proposition proves

this analytically for a general revenue function, thus based on the equilibrium distribution

capital stock specified in (6.11).

Proposition 6.1. Consider the vintage capital stock model (2.1), (2.2), ((6.2)-(6.3)) with

purely quadratic investment costs, i.e. we have (6.10) that partly replaces (6.1). Then equi-

librium distribution capital stock K̄ (s) is positive for all s ∈ [0, s̄] , is increasing in age for

s ∈ [0, s∗] and decreasing in age for s ∈ [s∗, s̄] , where

(6.13) s∗ =
1

2µ+ λ
ln

(
2µ+ λ

µ+ λ

(
(1− µ) e(µ+λ)s̄ + µ

(
1− 1

2µ+ λ

)))
> 0.
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Furthermore, it holds that

(6.14) K̄ (0) =
ηv

2β0 (µ+ λ)

(
1− e−(µ+λ)s̄

)
> 0,

(6.15)

K̄ (s̄) =
ηα

2β0 (µ+ λ)

(
−e−µs̄

(
−1 +

1

µ

)
+ e−µs̄e−(µ+λ)s̄

(
1

2µ+ λ
− 1

)
+

1

µ
− 1

2µ+ λ

)
> 0.

Proof. From (6.12) we obtain that

K̄ ′ (s) =
ηα

2β0 (µ+ λ)
e−µs

((
1− µ+ µ

(
1− 1

2µ+ λ

)
e−(µ+λ)s̄ − µ+ λ

2µ+ λ
e−(µ+λ)(s̄−s)eµs

))
,

from which it is straightforwardly concluded that K̄ ′ (s) > 0 for s < s∗, with s∗ given by (6.13)

and vice versa.

To check whether s∗ is positive we need to show that

2µ+ λ

µ+ λ

(
(1− µ) e(µ+λ)s̄ + µ

(
1− 1

2µ+ λ

))
> 1,

which holds because

2µ+ λ

µ+ λ

(
(1− µ) e(µ+λ)s̄ + µ

(
1− 1

2µ+ λ

))
>

2µ+ λ

µ+ λ

(
(1− µ) + µ

(
1− 1

2µ+ λ

))
= 1.

From (6.11) we straightforwardly obtain the expressions (6.14) and (6.15). To prove that

K̄ (s̄) > 0 we have to show that

−e−µs̄
(
−1 +

1

µ

)
+ e−µs̄e−(µ+λ)s̄

(
1

2µ+ λ
− 1

)
+

1

µ
− 1

2µ+ λ
> 0,

which is true since

−e−µs̄
(
−1 +

1

µ

)
+ e−µs̄e−(µ+λ)s̄

(
1

2µ+ λ
− 1

)
+

1

µ
− 1

2µ+ λ

> 1− 1

µ
+

1

2µ+ λ
− 1 +

1

µ
− 1

2µ+ λ
= 0.

�

As a final illustration of the interesting economic results that can be obtained, let us focus on the

impact of the productivity parameter α. Figure 3 displays the equilibrium distribution capital

stock for different values of α. If we increase α from its original value 3, as in (6.9), to α = 12,

we see that the equilibrium distribution capital stock is still hump-shaped, but the difference

is that the firm buys more capital goods. Higher productivity makes investing in capital goods

more worthwhile. If we increase α even further to α = 24, we obtain an equilibrium capital

stock where the capital stock is smaller for all ages. Concavity of the revenue function results in

some bounded optimal quantity level, which, due to the increased productivity, can be produced

by less capital goods.
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Figure 3. Capital stock in equilibrium distribution for every age s ∈ [0, s̄] with parameter values

β0 = 0.5, µ = 0.2, λ = 0.1, s̄ = 10, q0 = 5, w = 0.25, b = 1, a = 0.00004, for α = 3 (solid), α = 12

(dashed), and α = 24 (dotted).

The non-monotonic behavior of the capital stock that is obtained when productivity parameter

α goes up, is an interesting result, from which an expected outcome of including technological

progress in the form of process innovation can be predicted. Increased productivity first re-

sults in more investments, but when productivity increases even further, investments go down

because the optimal quantity in this market can be produced by less capital stock. The latter

feature is new, and was for instance not derived in Feichtinger et al. (2006).

The non-monotonicity dependence of the equilibrium distribution capital stock on the pro-

ductivity parameter can also be analytically proved in the special case of purely quadratic

investment costs, as we do in the next proposition.

Proposition 6.2. In case of quadratic revenue (see (6.3)) and purely quadratic investment

costs, the equilibrium distribution capital stock, K̄ (s) is increasing with the productivity param-

eter α for α ∈ [0, α̂] and decreasing with α for α ∈ [α̂,∞), where

α̂ =
1

c1b

(√
c2 +

c1b2

2a
− c2

)
> 0,

in which

c1 =
1

2β0 (µ+ λ)

(
1− µ
µ2

(
e−µs̄ − 1

)
+

2µ+ λ− 1

µ (2µ+ λ)
e−(2µ+λ)s̄

)
(6.16)

+
1

2β0 (µ+ λ)

(
s̄

µ
− 1

(2µ+ λ) (µ+ λ)
+

1− (µ+ λ)

µ (µ+ λ)
e−(µ+λ)s̄

)
,

(6.17) c2 =
q0

2β0 (µ− w)

(
µ− w − 1

µ

(
1− e−µs̄

)
+

1

w

(
1− e−ws̄

))
Proof. From (6.4)-(6.8), (6.16) and (6.17) we obtain that

∂K̄

∂α
=

∂

∂α

(
bα− 2ac2α

2

1 + 2ac1α2

)
ϕ1 (s) ,
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in which

ϕ1 (s) =
1

2β0 (µ+ λ)

(
e−µs − e−µse−(µ+λ)s̄ +

1

µ

(
1− e−µs

)
− e−(µ+λ)s̄ 1

2µ+ λ

(
e(µ+λ)s − e−µs

))
> 0.

It follows that

∂K̄

∂α
=
−2ac1bα

2 − 4ac2α + b

(1 + 2ac1α2)2 ϕ1 (s) .

Recognizing that the concave second order polynomial

−2ac1bα
2 − 4ac2α + b

has a negative root and a positive root being equal to α̂, gives the result of the proposition. �

Remark 6.3. Concerning the stability of the equilibrium distribution K̄, we observe that

Remark 5.12 applies here and may imply, depending on the value of the parameters, that K̄ is

locally, or even globally, stable.

6.2. Power Revenues. In this section we derive that the same result as that in Section 6.1, i.e.

equilibrium distribution capital stock is hump-shaped in α, can be established for an alternative

revenue function based on the iso-elastic inverse demand function

p = bQ−
1
ε ,

in which ε > 1 is the demand elasticity. Then the revenue function is

R (Q) = bQγ

with γ = 1 − 1/ε. Since this revenue function has infinite derivative for Q = 0, it is not a C1

function. Therefore, instead we employ the revenue function

(6.18) R (Q) = b ((θ +Q)γ − θ) ,

which approximates R (Q) = bQγ for θ small. We obtain from Lemma 5.10 (iii) that for the

revenue function as defined in (6.18) and the investment costs being purely quadratic, which

implies that c2 = 0, the η from (6.4) is implicitly determined by

(6.19) η (θ + ηc1)1−γ − bγ = 0.

To establish the effect of the productivity parameter α on K̄ (s) in the case of iso-elastic demand,

we first determine how η depends on α. To do so, we first obtain from (6.7) that c1 is a quadratic

function of α :

c1 = fα2
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with

f =
1

2β0 (µ+ λ)

(
1− µ
µ2

(
e−µs̄ − 1

)
+

2µ+ λ− 1

µ (2µ+ λ)
e−(2µ+λ)s̄

)
+

1

2β0 (µ+ λ)

(
1

µ
s̄− 1

(2µ+ λ) (µ+ λ)
+

1− (µ+ λ)

µ (µ+ λ)
e−(µ+λ)s̄

)
> 0.

This implies that we can rewrite (6.19) into

(6.20) η
(
θ + ηfα2

)1−γ − bγ = 0.

From the implicit function theorem we obtain that

∂η

∂α
= − 2 (1− γ) fηα

η (1− γ) + fα2η + θ
< 0,

whereas we also conclude from (6.20) that

(6.21) lim
α→∞

η (α) = 0.

Now we are ready to establish how K̄ (s) depends on α. From (6.5) and (6.11) we get

K̄ (s) = ηαϕ (s) ,

with

ϕ (s) =
1

2β0 (µ+ λ)

(
(1− e−(µ+λ)s̄)e−µs +

1− e−µs

µ
− e−(µ+λ)s̄

2µ+ λ

(
e(µ+λ)s − e−µs

))
> 0.

Hence, we obtain

∂K̄ (s)

∂α
= ϕ (s)

(
∂η

∂α
α + η

)
= ϕ (s) η

(
− 2 (1− γ) fα2

η (1− γ) + fα2η + θ
+ 1

)
= ϕ (s) η

(
− 2 (1− γ) f

η
α2 (1− γ) + fη + θ

α2

+ 1

)
.

Since η
α2 (1− γ) + fη + θ

α2 is decreasing in α, and, due to (6.21), it also holds that

− 2 (1− γ) f
η
α2 (1− γ) + fη + θ

α2

+ 1 > 0 for α = 0,

− 2 (1− γ) f
η
α2 (1− γ) + fη + θ

α2

+ 1 < 0 for α→∞,

we can conclude that we have proved the following proposition.
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Proposition 6.4. In case of iso-elastic demand and purely quadratic investment costs, the

equilibrium distribution capital stock, K̄ (s), is increasing with the productivity parameter α for

α ∈ [0, α̂], and decreasing with α for α ∈ [α̂,∞), where α̂ is implicitly given by

− 2 (1− γ) fα̂2

η (α̂) (1− γ) + fη (α̂) + θ
+ 1 = 0,

with

f =
1

2β0 (µ+ λ)

(
1− µ
µ2

(
e−µs̄ − 1

)
+

2µ+ λ− 1

µ (2µ+ λ)
e−(2µ+λ)s̄ +

1

µ
s̄

)
− 1

2β0 (µ+ λ)

(
1

(2µ+ λ) (µ+ λ)
+

1− (µ+ λ)

µ (µ+ λ)
e−(µ+λ)s̄

)
> 0.

Remark 6.5. Concerning the stability of the equilibrium distribution K̄, we observe that

Lemma 5.11 applies here and may imply, depending on the value of the parameters, that K̄ is

locally, or even globally, stable.

Appendix A. Proofs of Subsection 4.2

We here present a detailed description of the material in Subsection 4.2 as well as all the proofs

of the results there stated. Firstly we note that solutions of the ODEs in (4.6) have to be

intended in mild form. That is expressed in the following definitions.

Definition A.1. Let Assumptions 3.2 be satisfied. Let t ≥ 0 and let u ∈ Lpλ(t,+∞;U). The

mild solution of (3.1) is the function y ∈ L1
loc(t,+∞;V ′) given by

(A.1) y(τ) = e(τ−t)Ax+

∫ τ

t

e(τ−σ)ABu(σ)dσ, τ ∈ [t,+∞[.

The mild solution of (4.4)-(4.5) is the function π : [t,+∞[→ V given by

(A.2) π(τ) =

∫ +∞

τ

e(A∗1−λ)(σ−τ)g′0(y(σ))dσ.

A mild solution to the closed loop equation (4.3) is a function y ∈ L1
loc(t,+∞;V ′) satisfying

(A.3) y(τ) = e(τ−t)Ax+

∫ τ

t

e(τ−σ)AB(h∗0)′(−B∗Ψ′(y(s)))dσ, τ ∈ [t,+∞[.

Lemma A.2. Let Assumption 3.2 hold, assume p ≥ 2, q = p
p−1

and λ > (2ω) ∨ ω. Let also

u ∈ Lpλ(t,+∞;U). Then:

(i) π given by (A.2) is well defined and belongs to C0([t,+∞[;V );

(ii) if p > 2 and λ > 0, then π ∈ Lqλ(t,+∞;V );

(iii) if p = 2 and λ > 0, then π ∈ L2
λ+ε(t,+∞;V ) ∩ L2(t, T ;V ), ∀ T < +∞, ε > 0;

(iv) if p = 2, λ > 0 and ω < 0, then π ∈ L2
λ(t,+∞;V ).
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Proof. We first prove (i). Note that by assumptions on g′0, the integrand in (A.2) can be

estimated as follows

|e(A∗1−λ)(σ−τ)g′0(y(σ))|V ≤ |g′0|B1e−(λ−ω)(σ−τ)(1 + |y(σ)|
V ′

).

Since λ > ω, to prove the first assertion, i.e. that π(·) is well defined, it is enough to show that,

for every τ ≥ t, the map σ 7→ e−(λ−ω)(σ−τ)|y(σ)|
V ′

is in L1(τ,+∞).

By Assumption 3.2 (see also [45, Lemma 4.5]) one has

|y(σ)|
V ′
≤ eω(σ−t)|x|

V ′
+

∫ σ

t

eω(σ−r)‖B‖L(U,V ′)|u(r)|Udr

≤ Ceωσ
(
|x|

V ′
+

∫ σ

t

e−ωr|u(r)|Udr
)

≤ C1e
ωσ(1 + ρ(t, σ)

1
q )

(A.4)

for suitable constants C (depending only on t) and C1 (depending on t, x, and u), where

ρ(t, σ) =

|e
q(λp−ω)t − eq(

λ
p
−ω)σ| λ 6= ωp

|t− σ| λ = ωp.

Hence

e−(λ−ω)σ|y(σ)|
V ′
≤ C1e

−(λ−2ω)σ(1 + ρ(t, σ)
1
q ),

so that in the case λ 6= ωp one obtains

(A.5) e−(λ−2ω)σρ(t, σ)
1
q = |e−q(λ−2ω)σeq(

λ
p
−ω)t − e−(λ−qω)σ|

1
q ≤ C2

[
e−(λ−2ω)σ ∨ e−

1
q

(λ−qω)σ
]

for a suitable constant C2, whereas in the case λ = ωp one has

(A.6) e−(λ−2ω)σρ(t, σ)
1
q = e−(λ−2ω)σ|t− σ|

1
q .

Since λ > (2ω) ∨ ω then also λ > qω since q = p/(p − 1) ∈ (1, 2]. Hence, for each τ ≥ t, the

integrand in (A.2) is in L1(τ,+∞;V ).

The proof that π ∈ C0([t,+∞);V ) follows from the dominated convergence theorem and the

fact that the above estimates does not depend on τ , when τ is taken in any bounded interval.

Now we prove (ii). We start by showing that p > 2 implies π ∈ Lqλ(t,+∞;V ). From the

estimates above, one has

|π(τ)|V ≤
|g′0|B1
λ− ω

+
|g′0|B1C1e

ωτ

λ− 2ω
+ |g′0|B1C1e

(λ−ω)τ

∫ +∞

τ

e−(λ−2ω)σρ(t, σ)
1
q dσ

≡ γ1(τ) + γ2(τ) + γ3(τ).

(A.7)

The function γ1 is trivially in Lqλ(t,+∞;R), since λ > 0. The function γ2 is in Lqλ(t,+∞;R)

since, as observed above, it must be λ > qω as q ∈ (1, 2]. Regarding γ3, in the case λ = ωp, it
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must be necessarily ω > 0 (if not we cannot have λ > ω). Let then δ > 0 such that λ > 2ω+2δ.

Since, by simple computations, (σ − t)1/qe−δσ ≤ σ1/qe−δσ ≤ (qeδ)−1/q, we then have∫ +∞

τ

e−(λ−2ω)σ|t− σ|
1
q dσ ≤ (qeδ)−1/q

∫ +∞

τ

e−(λ−2ω−δ)σdσ ≤ (qeδ)−1/q e
−(λ−2ω−δ)τ

λ− 2ω − δ
Hence, in this case, for a suitable constant C3 one has

(A.8) e−λτγ3(t)q ≤ C3e
−λτeq(λ−ω)τe−q(λ−2ω−δ)τ = C3e

−[λ−(ω+δ)q]τ ;

the last is an integrable function in [t,+∞) by the choice of δ. In the case λ 6= ωp, by means

of (A.5) one has

(A.9)

∫ +∞

τ

e−(λ−2ω)σρ(t, σ)
1
q dσ ≤ C2

∫ +∞

τ

[
e−(λ−2ω)σ ∨ e−

1
q

(λ−qω)σ
]
dσ.

By (A.7) we then have, for a suitable constant C4 > 0,

e−λτγ3(τ)q ≤ C4e
−λτeq(λ−ω)τ

[
e−(λ−2ω)τ ∨ e−

1
q

(λ−qω)τ
]q
≤ C4

[
e−(λ−qω)τ ∨ e−λ(2−q)τ] ,(A.10)

which implies γ3 ∈ Lqλ(t,+∞;R) also in this case.

To prove (iii) it sufficies to observe that p = 2 then (A.8)-(A.10) computed with q = 2 and

λ+ ε in place of λ imply promptly π ∈ L2
λ+ε(t,+∞;V ), ∀ε > 0.

Finally we prove (iv). Let p = 2. Observe that, for τ ≥ t,

|π(τ)|V =

∣∣∣∣∫ +∞

τ

e(A∗1−λ)(σ−τ)g′0(y(σ))dσ

∣∣∣∣
V

≤ |g′0|B1
∫ +∞

τ

e−(λ−ω)(σ−τ)(1 + |y(σ)|
V ′

)dσ.

which implies

e−λτ |π(τ)|2V ≤ e−λτ2|g′0|2B1

[
1

(λ− ω)2
+

(∫ +∞

τ

e−(λ−ω)(σ−τ)|y(σ)|
V ′
dσ

)2
]
.

Since λ > 0, the first term is integrable on [t,+∞[. Concerning the second term we exploit

Jensen’s inequality to get

(A.11)

(∫ +∞

τ

e−(λ−ω)(σ−τ)|y(σ)|
V ′
dσ

)2

≤ 1

λ− ω

∫ +∞

τ

e−(λ−ω)(σ−τ)|y(σ)|2
V ′
dσ

Hence

(A.12)∫ +∞

t

e−λτ |π(τ)|2V dτ ≤
∫ +∞

t

e−λτ2|g′0|2B1

[
1

(λ− ω)2
+

1

λ− ω

∫ +∞

τ

e−(λ−ω)(σ−τ)|y(σ)|2
V ′
dσ

]
dτ.

The first term of the right hand side is 2|g′0|2B1e
−λt/(λ − ω)2. To estimate the second we use

Fubini-Tonelli Theorem (see e.g. [37, Theorem 1.33]), recalling that the integrand here is

positive. Indeed∫ +∞

t

e−λτ
∫ +∞

τ

e−(λ−ω)(σ−τ)|y(σ)|2
V ′
dσdτ =

∫ +∞

t

|y(σ)|2
V ′
e−(λ−ω)σ

∫ σ

t

e−λτe(λ−ω)τdτdσ
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=

∫ +∞

t

|y(σ)|2
V ′
e−(λ−ω)σ e

−ωt − e−ωσ

ω
dσ =: I0

where, in the last step, we use that ω 6= 0. To prove the claim it is now enough to prove that

the last integral I0 is finite. First of all, by (A.4), we have

(A.13) |y(σ)|2
V ′
≤ C5e

2ωσ

[
1 +

(∫ σ

t

e−ωr|u(r)|U dr
)2
]

for a suitable constant C5 (depending on t, x, and u). We apply again Jensen’s inequality

getting (∫ σ

t

e−ωr|u(r)|U dr
)2

≤ e−ωt − e−ωσ

ω

∫ σ

t

e−ωr|u(r)|2U dr

Then we have

I0 ≤ C5

[∫ +∞

t

e−(λ−3ω)σ e
−ωt − e−ωσ

ω
dσ

+

∫ +∞

t

e−(λ−3ω)σ

(
e−ωt − e−ωσ

ω

)2 ∫ σ

t

e−ωr|u(r)|2U dr dσ

](A.14)

Since λ > 0 and ω < 0 the first integral of the right hand side of (A.14) is finite, positive, and,

its value is

e−(λ−2ω)t 1

ω

[
1

λ− 3ω
− 1

λ− 2ω

]
> 0.

Concerning the second integral of the right hand side of (A.14) (recalling that the integrand is

positive) we apply Fubini-Tonelli Theorem again, to get that it is equal to

I1 :=

∫ +∞

t

e−ωr|u(r)|2U
∫ +∞

r

e−(λ−3ω)σ

(
e−ωt − e−ωσ

ω

)2

dσdr

At this point we really need to use that ω < 08. This implies that the squared fraction above

is smaller than e−2ωσ/(ω2). Hence we have

I1 ≤
1

ω2

∫ +∞

t

e−ωr|u(r)|2U
∫ +∞

r

e−(λ−ω)σdσdr ≤ 1

ω2(λ− ω)

∫ +∞

t

e−λr|u(r)|2U dr

Since u ∈ L2
λ(t,+∞;U) the above imply the finiteness of I1 and, consequently, of I0, which

proves the claim. �

Theorem A.3. Let Assumption 3.2 hold, let p ≥ 2, q = p
p−1

and λ > (2ω) ∨ ω. Let also

u ∈ Lpλ(t,+∞;U). If π ∈ W 1,1(t,+∞;V ) satisfies (4.4) almost everywhere in [t,+∞) and

the transversality condition (4.5), then π is given by (A.2), that is π is the mild solution of

(4.4)-(4.5).

8This was not needed up to now. Above we only used the fact that λ > 3ω and, to simplify computations,

ω 6= 0.
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Proof. By variation of constants formula, any π satisfying (4.4) a.e. must also satisfy

(A.15) π(τ) = e(A∗1−λ)(T−τ)π(T ) +

∫ T

τ

e(A∗1−λ)(σ−τ)g′0(y(σ))dσ, ∀T > t, ∀τ ∈ [t, T ].

Note that (4.5) implies

lim
T→+∞

|e(A∗1−λ)(T−τ)π(T )|V ≤ lim
T→+∞

e(ω−λ)(T−τ)|π(T )|V = 0.

hence by passing to limits as T → +∞ in (A.15) one derives

π(τ) = lim
T→+∞

∫ T

τ

e(A∗1−λ)(σ−τ)g′0(y(σ))dσ =

∫ +∞

τ

e(A∗1−λ)(σ−τ)g′0(y(σ))dσ

where the last equality follows from estimates (A.5)-(A.6). �

We are now ready to prove the Maximum Principle.

Proof of Theorem 4.5 (Maximum Principle)

Let K : Lpλ(t,+∞;U)→ R ∪ {+∞}, and G : Lpλ(t,+∞;U)→ R ∪ {+∞} be defined by

K(u) :=

∫ +∞

t

e−λτh0(u(τ))dτ, G(u) :=

∫ +∞

t

e−λτg0(y(τ ; t, x, u))dτ

so that for all u ∈ dom(K) ∩ dom(G) we have

(A.16) J(u) = K(u) +G(u), and ∂J(u) ⊇ ∂K(u) + ∂G(u).

Claim 1: For u ∈ int dom(K) we have

∂K(u) = S, where

S ≡ {ϕ ∈ Lqλ(t,+∞;U) : ϕ(τ) ∈ ∂h0(u(τ)), for a.e. τ ∈ [t,+∞)}
(A.17)

Indeed

∂K(u) =

{
ϕ ∈ Lqλ(t,+∞;U) :∫ +∞

t

e−λτ
[
h0(w(τ))− h0(u(τ))− (ϕ(τ)|w(τ)− u(τ))U

]
dτ ≥ 0, ∀w ∈ Lpλ(t,+∞;U)

}
,

(A.18)

so that S ⊂ ∂K(u) is straightforward. To show the reverse inclusion, we let ϕ be any fixed

element of ∂K(u), E any measurable subset of [t,+∞), and we set, for any w ∈ Lpλ(t,+∞;U),

(A.19) w̃(τ) =

u(τ), τ 6∈ E
w(τ), τ ∈ E

Clearly we still have w̃ ∈ Lpλ(t,+∞;U), hence we derive∫
E

e−λτ
[
h0(w(τ))− h0(u(τ))− (ϕ(τ)|w(τ)− u(τ))U

]
dτ ≥ 0, ∀w ∈ Lpλ(t,+∞;U).
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Since E and w where arbitrarily chosen, the above implies

h0(w(τ))− h0(u(τ))− (ϕ(τ)|w(τ)− u(τ))U ≥ 0, for a.e. τ ∈ [0,+∞)

that is, ϕ(τ) ∈ ∂h0(τ) for almost every τ ≥ 0.

Claim 2: Let (u, y) be admissible at (t, x). Assume that there exists π ∈ Lqλ(t,+∞;V ) such that

(π, u, y) satisfies (4.6). Then (u, y) is optimal at (t, x).

Let v be any control in dom(G). Then

G(v)−G(u) =

∫ +∞

t

[g0(y(τ ; v))− g0(y(τ ;u))] e−λτdτ

≥
∫ +∞

t

〈g′0(y(τ ;u)),

∫ τ

t

e(τ−σ)AB(v(σ)− u(σ))dσ〉e−λτdτ

=

∫ +∞

t

∫ +∞

σ

(
B∗e(τ−σ)A∗1g′0(y(τ ;u))

∣∣v(σ)− u(σ)
)
U
e−λτdτdσ

=

∫ +∞

t

( ∫ +∞

σ

B∗e(τ−σ)(A∗1−λ)g′0(y(τ ;u))dτ
∣∣v(σ)− u(σ)

)
U
e−λσdσ

=

∫ +∞

t

(
B∗π(σ)

∣∣v(σ)− u(σ)
)
U
e−λσdσ

= 〈B∗π, v − u〉Lqλ(t,+∞;U),Lpλ(t,+∞;U)

(A.20)

where we could exchange the order of integration since π is in Lqλ(t,+∞;V ) by assumption.

Then we proved that

B∗π ∈ ∂G(u).

Now, by (4.6) we also know that −B∗π(σ) ∈ ∂h0(u(σ)) almost everywhere in [t,+∞[; hence,

by Claim 1, we get −B∗π ∈ ∂K(u). By (A.16) it follows that ∂J(u) 3 0, that is, u is optimal

and (i) is proved.

Claim 3. Assume that, either p > 2 and λ > 0, or p = 2, λ > 0 and ω < 0. Assume that

(u∗, y∗) is optimal at (t, x), and let π∗ be the associated solution of (A.2). Then G is Gâteaux

differentiable in u∗ with G′(u∗) = B∗π∗. Consequently ∂J(u∗) = B∗π∗ + S.

First of all we recall that, by assumption and by Lemma A.2, we have π∗ ∈ Lqλ(t,+∞;V ).

Moreover, for any fixed v in Lpλ(t,+∞;U), and any ε > 0, there exists 0 < ε0 ≤ ε such that

G(u∗ + εv)−G(u∗)

ε
=

∫ +∞

t

g0(y(τ ;u∗ + εv))− g0(y∗(τ))

ε
e−λτdτ =

=

∫ +∞

t

〈g′0(y(τ ;u∗ + ε0v)), y(τ ;u∗ + ε0v)− y∗(τ)〉 e−λτdτ

=

∫ +∞

t

〈
g′0(y(τ ;u∗ + ε0v)),

∫ τ

t

e(τ−σ)ABv(σ)dσ

〉
e−λτdτ
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Hence, arguing as in (A.20) to rewrite the term 〈B∗π∗, v〉Lqλ,Lpλ , we get

∣∣∣∣G(u∗ + εv)−G(u∗)

ε
− 〈B∗π∗, v〉Lqλ,Lpλ

∣∣∣∣ =

=

∣∣∣∣∫ +∞

t

g0(y(τ ;u∗ + εv))− g0(y∗(τ))

ε
e−λτdτ − 〈B∗π∗, v〉Lqλ,Lpλ

∣∣∣∣ =

=

∣∣∣∣∫ +∞

t

〈g′0(y(τ ;u∗ + ε0v))− g′0(y∗(τ)),

∫ τ

t

e(τ−σ)ABv(σ)dσ〉e−λτdτ
∣∣∣∣

≤ [g′0]ε0

∫ +∞

t

∣∣∣∣∫ τ

t

e(τ−σ)ABv(σ)dσ

∣∣∣∣2
V ′

e−λτdτ =: I

We estimate now the right hand side in the case when p > 2 and λ 6= ωp. By Hölder inequality

one has ∣∣∣∣∫ τ

t

e(τ−σ)ABv(σ)dσ

∣∣∣∣
V ′

≤ eωτ
[∫ τ

t

e(
λ
p
−ω)qσdσ

] 1
q

‖B‖L(U,V ′)|v|Lpλ(t,+∞;U)

= eωτ

∣∣∣∣∣∣e
(λp−ω)qτ − e(

λ
p
−ω)qt

q
(
λ
p
− ω

)
∣∣∣∣∣∣
1
q

‖B‖L(U,V ′)|v|Lpλ(t,+∞;U)

Then, for a suitable constant C5, depending on g, B and v, we have

I ≤ [g′0]ε0

∫ +∞

t

∣∣∣∣∣∣∣eωτ
∣∣∣∣∣∣e

(λp−ω)qτ − e(
λ
p
−ω)qt

q
(
λ
p
− ω

)
∣∣∣∣∣∣
1
q

‖B‖L(U,V ′)|v|Lpλ(t,+∞;U)

∣∣∣∣∣∣∣
2

e−λτdτ

≤ C5ε0

∫ +∞

t

∣∣∣e(λp−ω)qτ − e(
λ
p
−ω)qt

∣∣∣ 2q e−(λ−2ω)τdτ

≤ C5ε0

∫ +∞

t

(
e(

λ
p
−ω)qτ ∨ 1

) 2
q
e−(λ−2ω)τdτ

= C5ε0

∫ +∞

t

eλ(
2
p
−1)τ ∨ e−(λ−2ω)τdτ.

(A.21)

Since p > 2⇒ λ
(

2
p
− 1
)
< 0, then one may let ε→ 0 and obtains that the right hand side in

(A.21) goes to 0.

Let now p > 2 and λ = ωp. By Hölder inequality one has∣∣∣∣∫ τ

t

e(τ−σ)ABv(σ)dσ

∣∣∣∣
V ′

≤ ‖B‖L(U,V ′)e
ωτ

∫ τ

t

e−
λ
p
σ|v(σ)|Udσ

≤ ‖B‖L(U,V ′)e
ωτ |τ − t|

1
q |v|Lpλ(t,+∞;U)
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Then, for suitable C6 > 0 we get

I ≤ [g′0]ε0

∫ +∞

t

∣∣∣‖B‖L(U,V ′)e
ωτ |τ − t|

1
q |v|Lpλ(t,+∞;U)

∣∣∣ v2e−λτdτ

≤ C6ε0

∫ +∞

t

|τ − t|
2
q e−(λ−2ω)τdτ

and by letting ε→ 0 the right hand side goes to 0.

Let now p = 2, λ > 0 and ω < 0. Then we have∣∣∣∣∫ τ

t

e(τ−σ)ABv(σ)dσ

∣∣∣∣2
V ′

≤ ‖B‖2
L(U,V ′)

[∫ τ

t

eω(τ−σ)|v(σ)|dσ
]2

≤ ‖B‖2
L(U,V ′)

1

ω

[
eω(τ−t) − 1

] ∫ τ

t

eω(τ−σ)|v(σ)|2dσ

where in the last step we used the Jensen’s inequality. Hence, by using Fubini-Tonelli Theorem,

we get ∫ +∞

t

∣∣∣∣∫ τ

t

e(τ−σ)ABv(σ)dσ

∣∣∣∣2
V ′

e−λτdτ ≤

≤ ‖B‖2
L(U,V ′)

∫ +∞

t

1

ω

[
eω(τ−t) − 1

]
e−λτ

∫ τ

t

eω(τ−σ)|v(σ)|2dσdτ =

= ‖B‖2
L(U,V ′)e

−λt
∫ +∞

t

eω(σ−t)|v(σ)|2
∫ +∞

σ

1

ω

[
eω(τ−t) − 1

]
e−(λ−ω)(τ−t)dτdσ =

= ‖B‖2
L(U,V ′)e

−λt
∫ +∞

t

|v(σ)|2 1

ω

[
e−(λ−ω)(σ−t)

λ− 2ω
− e−λ(σ−t)

λ− ω

]
dσ ≤

≤ ‖B‖2
L(U,V ′)

1

(−ω)(λ− ω)

∫ +∞

t

|v(σ)|2e−λσdσ

where, in the last inequality, we used that ω < 0. This immediately implies that

I ≤ [g′0]ε0‖B‖2
L(U,V ′)

1

(−ω)(λ− ω)
|v|L2

λ(t,+∞;U)

which immediately gives the claim.

Claim 4. Assume that, either p > 2 and λ > 0, or p = 2, λ > 0 and ω < 0. Assume that

(u∗, y∗) is optimal at (t, x), and let π∗ be the associated solution of (A.2). Then (π∗, u∗, y∗) is

a mild solution of (4.6).

We only need to prove that the last line of (4.6). From optimality of u∗ we have ∂J(u∗) 3 0.

Then Claim 1 and Claim 3 imply (4.7) and Claim 4 follows.

2

Proof of Theorem 4.6 Firstly we prove that π∗(t; t, x) ∈ ∂Z0(x). We recall that in Theorem

4.5 we showed that −B∗π∗(τ ; t, x) ∈ ∂h0(u∗(τ)) almost everywhere in [0,+∞). Then, for all
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x̄ ∈ V ′, and an associated control ū, optimal at (t, x̄), we have

Z0(x̄)− Z0(x) = eλt [J(t, x̄, ū)− J(t, x, u∗)]

≥
∫ +∞

t

[
〈g′0(y∗(τ)), ȳ(τ)− y∗(τ)〉 − (B∗π∗(τ ; t, x))|ū(τ)− u∗(τ))U

]
e−λ(τ−t)dτ.

Note that∫ +∞

t

〈g′0(y∗(τ)), ȳ(τ)− y∗(τ)〉V,V ′ e
−λ(τ−t)dτ =

=

∫ +∞

t

〈
g′0(y∗(τ)), eA(τ−t)(x̄− x) +

∫ τ

t

eA(τ−σ)B(ū(σ)− u∗(σ))dσ

〉
e−λ(τ−t)dτ =

=

∫ +∞

t

〈
e(A∗1−λ)(τ−t)g′0(y∗(τ)), x̄− x

〉
dτ+

+

∫ +∞

t

∫ τ

t

〈
g′0(y∗(τ)), eA(τ−σ) (B(ū(σ)− u∗(σ))

〉
e−λ(τ−t)dσdτ.

The last term can be rewritten exchanging the integrals as∫ +∞

t

∫ +∞

σ

(
B∗e(A∗1−λ)(τ−σ)g′0(y∗(τ))|ū(σ)− u∗(σ)

)
U
e−λ(σ−t)dτdσ =

=

∫ +∞

t

(B∗π∗(σ; t, x)|ū(σ)− u∗(σ))U e
−λ(σ−t)dσ.

Hence we get

Z0(x̄)− Z0(x) ≥
〈∫ +∞

t

e(A∗1−λ)(τ−t)g′0(y∗(τ))dτ, x̄− x
〉

= 〈π∗(t; t, x), x̄− x〉,

and the assertion is proven. The proof that π∗(τ ; τ, y∗(τ)) ∈ ∂Z0(y∗(τ)) for every τ ≥ t is

standard but we write it here for the sake of completeness. Let τ > t and observe that, by the

dynamic programming principle, the control defined by

u0,y∗(τ)(σ) ≡ u∗(σ + τ)

is optimal at (0, y∗(τ)). Consequently the associated trajectory satisfies

y(σ; 0, y∗(τ), u0,y∗(τ)) = y(σ + τ ; τ, y∗(τ), u∗) = y∗(σ + τ).

Then by the first part of the proof we have

∂Z0(y∗(τ)) 3 π∗(0; 0, y∗(τ)) =

=

∫ +∞

0

e(A∗1−λ)σg′0(y(r; 0, y∗(τ), u0,y∗(τ)))dσ

=

∫ +∞

0

e(A∗1−λ)σg′0(y∗(σ + τ))dσ

=

∫ +∞

τ

e(A∗1−λ)(r−τ)g′0(y∗(r))dr

= π∗(τ ; τ, y∗(τ))
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which gives the claim. It finally suffices to note that, when p > 2, one has by Theorem 4.2,

that Z0 = Ψ and ∂Ψ(x) = {Ψ′(x)} to complete the proof. 2

Appendix B. Proofs of Subsection 4.3

We here work out the proofs of the results stated in Subsection 4.3.

Proof of Theorem 4.10. We first prove (i). Assume (x̄, π̄, ū) is a MP-equilibrium point for

problem (P). Since λ > ω, then λ ∈ ρ(A∗1), and the second of (4.11) applies, implying

(B.1) π̄ = (λ− A∗1)−1g′0(x̄).

Then, plugging (B.1) into the third equation of (4.9) and then ū so obtained into the first, we

derive (4.13). Moreover, using (B.1) in Theorem 4.6, we get (4.14).

We now prove (ii). We consider a CLE-equilibrium point x̂ and set û := (h∗0)′(−B∗Ψ′0(x̂)). By

Theorem 4.3 and Remark 4.4 we know that the couple (x̂, û) is optimal.

By Theorem 4.5-(ii) we can associate, to such optimal couple, a costate π̂ which is the (mild)

solution of the costate equation in (4.6). Such mild solution is then necessarily stationary (see

Definition A.1) and, since λ > ω, given by

π̂ ≡ (λ− A∗0)−1g′0(x̂).

Moreover, by Theorem 4.6 it is also true that π̂ = Ψ′(x̂). As a consequence, (x̂, π̂, û) solves

(4.9) and is then a MP-equilibrium point. 2

Before demonstrating Lemma 4.11 we need to state and prove the following result.

Proposition B.1. Assume that 0 ∈ ρ(A∗1) (that is, (A∗1)−1 is well defined and bounded in H).

Then A−1 has bounded inverse on V ′, defined by the position

〈A−1f, ϕ〉 = 〈f, (A∗1)−1ϕ〉, for all f ∈ V ′ and ϕ ∈ V.

Moreover

‖A−1‖L(V ′) ≤ ‖(A∗1)−1‖L(H).

Proof. For all f ∈ V ′ and ϕ ∈ V we have

|〈A−1f, ϕ〉| = |〈f, (A∗1)−1ϕ〉|

≤ |f |
V ′
|(A∗1)−1ϕ|V

= |f |
V ′

(|(A∗1)−1ϕ|H + |A∗1(A∗1)−1ϕ|H)

= |f |
V ′

(|(A∗1)−1ϕ|H + |(A∗1)−1A∗1ϕ|H)

≤ |f |
V ′
‖(A∗1)−1‖L(H)|ϕ|V

(B.2)

�



Equilibrium Distributions for Optimal Investment 45

Proof of Lemma 4.11.

Define T : V ′ → V ′ as as in (4.16). By its definition, T satisfies

|Tx− Ty|
V ′
≤ ‖(A)−1‖L(V ′)‖B‖2

L(U,V ′)[(h
∗
0)′][g′0]

1

λ− ω
|x− y|

V ′
.(B.3)

implying the claim. Since T (V ′) ⊆ D(A), then fixed points of T lie in D(A). 2

Proof of Proposition 4.16 Let x ∈ I(x̄) and let x∗(t) be the associated optimal trajectory,

i.e. the solution of the closed loop equation

(B.4)

y′(t) = Ay(t) + f(y(t)), t > 0

y(0) = x,

Let xn ∈ I(x̄) ∩ D(A) be such that xn → x in V ′ as n → +∞. Let y∗n(t) be the associated

optimal trajectory. Since y∗n is continuous, then it must remain in I(x̄) at least for a sufficiently

small t. For such t we must have (recall that y∗n(t) ∈ D(A) by assumption)

1

2

d

dt
|y∗n(t)− x̄|2V ′ =

(
(y∗n(t))′|y∗n(t)− x̄

)
V ′

=
(
A(y∗n(t)− x̄) + f(y∗n(t))− f(x̄)|y∗n(t)− x̄

)
V ′
≤ ξ|y∗n(t)− x̄|2V ′ .

This implies that

(B.5) |y∗n(t)− x̄|2V ′ ≤ e2ξt|xn − x̄|2V ′

Next we take the limits as n→ +∞. Note that zn(t) := y∗n(t)− x∗(t) solves

(B.6)

z′n(t) = Azn(t) + f(y∗n(t))− f(x∗(t)), t > 0

z(0) = xn − x.

By Theorem 4.3 f is Lipschitz continuous so with Lipschitz constant [f ]0,1, a standard Gronwall

inequality implies

|y∗n(t)− x∗(t)|V ′ ≤ |xn − x|V ′e(ω+[f ]0,1)t,

hence |y∗n(t)− x∗(t)|V ′ converges to 0 for every t ≥ 0. Consequently, from (B.5) one has

|x∗(t)− x̄|2V ′ ≤ e2ξt|x− x̄|2V ′ , for every t ≥ 0,

implying the claims. 2

Proof of Corollary 4.17. It is enough to check that (4.18) is verified, either in I, or in V ′. If

f is Lipschitz continuous on I (in the topology of V ′), with Lipschitz constant θ̄ < θ then we

have

(f(x)− f(x̄)|x− x̄)V ′ ≤ θ̄|x− x̄|2V ′ , ∀x ∈ I.
This immediately implies that (4.18) holds in I with ξ = θ̄ − θ.
Similarly, if f is globally Lipschitz continuous in V ′, we get that (4.18) is verified in the whole

V ′.

2
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Appendix C. Proofs of Section 5

Proof of Lemma 5.4. Note that if A∗0 and A are the operators described in Section 3.3, then

the following two facts hold true. First, by definition of A∗0, we have ᾱ = (λ−A∗0)−1α. Second,

A is invertible, so that equation (4.13) may be rewritten as Tx = x by means of the operator

T defined in (4.16). Now (3.9) holds, so that one has

g′0(x) = −R′(〈α, x〉)α, and (λ− A∗0)−1g′0(x) = −R′(〈α, x〉)α

Moreover, since h0(u) = C(u0, u1) = C0(u0) + C1(u1), then the convex conjugate C∗ of C is

also of type C∗(u0, u1) = C∗0(u0) +C∗1(u1). Then, recalling the definition of B,B∗ in Section 2,

and by means of (5.5), the operator T defined in (4.16) can be rewritten as follows:

Tx = −A−1B(C∗)′ (B∗R′(〈α, x〉)α)

= −A−1B(C∗)′ (R′(〈α, x〉)α(0), R′(〈α, x〉)α)

= −A−1B
(
(C∗0)′ (R′(〈α, x〉)α(0)) , (C∗1)′ (R′(〈α, x〉)α)

)
= −A−1

[
(C∗0)′ (R′(〈α, x〉)α(0)) δ0 + (C∗1)′ (R′(〈α, x〉)α)

]
= (C∗0)′ (R′(〈α, x〉)α(0)) [−A−1δ0] + [−A−1] (C∗1)′ (R′(〈α, x〉)α)

which by (3.7) implies (5.6). By Theorem 4.10 we derive the remaining statements. 2

Proof of Theorem 5.5. Set η : V ′ → R, η(x) = R′(〈α, x〉) and note that, by (5.6), we get

Tx(s) = F (η(x))(s). Then the equation Tx = x is rewritten as

F (η(x))[s] = x(s), ∀s ∈ [0, s̄].

Applying η on both sides of such equation we get

R′(〈α, F (η(x))〉) = η(x).

Hence, if x̄ is a solution of Tx = x, then η(x̄) is a solution of (5.10). Viceversa, let η̄ be a solution

to (5.10). Then, substituting into (5.8) and (5.6), we get that F (η̄) solves F (η̄) = TF (η̄), so

F (η̄) solves Tx = x. 2

Proof of Theorem 5.11. Note that when the value function V0 is differentiable, then Propo-

sition 4.15 applies with Ψ = −V0. Indeed by Lemma 3.5 and the Lumer-Philips Theorem (see

e.g. [69, Theorem 1.4.3]), the operator A is dissipative in V ′ with (Ax|x)V ′ ≤ −µ|x|2V ′ , and the

function f defined in Proposition 4.15 can be rewritten by means of (3.6) (5.12) as

f(x) = −B
(

1

4β0

(Ψ′(x)[0]− q0) ,
1

4β1 (·)
(Ψ′(x)− q1)

)
= −〈δ0,Ψ

′(x)〉 − q0

4β0

δ0 −
1

4β1 (·)
(Ψ′(x)− q1) .
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Hence, if x̄ is a CLE-equilibrium point, for all x ∈ V ′, we have

(f(x)− f(x̄)|x− x̄)V ′ = −〈δ0,Ψ
′(x)−Ψ′(x̄)〉

4β0

(δ0|x−x̄)V ′−
(

1

4β1 (·)
(Ψ′(x)−Ψ′(x̄))

∣∣∣∣x− x̄)
V ′
.

Note that the second term in the above inequality satisfies(
1

4β1 (·)
(Ψ′(x)−Ψ′(x̄))

∣∣∣∣x− x̄)
V ′
≥ 1

4|β1|L∞(0,s̄)

(Ψ′(x)−Ψ′(x̄)|x− x̄)V ′ ≥ 0

since β1 ∈ L∞(0, s̄), and Ψ′ is a monotone operator (as a consequence of the convexity of Ψ).

That in particular implies

(C.1) (f(x)− f(x̄)|x− x̄)V ′ ≤ −
〈δ0,Ψ

′(x)−Ψ′(x̄)〉
4β0

(δ0|x− x̄)V ′ ≤
[Ψ]L|δ0|2V ′

4β0

|x− x̄|2V ′ ,

so that (4.18) is satisfied with ξ = −µ+ [Ψ]L|δ0|2V ′/(4β0). 2
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