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VOLATILITY, JUMPS, AND PREDICTABILITY
OF RETURNS: A SEQUENTIAL ANALYSIS

Davide Raggi1 and Silvano Bordignon2
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! In this article we propose a Monte Carlo algorithm for sequential parameter learning for
a stochastic volatility model with leverage, nonconstant conditional mean and jumps. We are
interested in estimating the time invariant parameters and the nonobservable dynamics involved
in the model. Our simple but effective idea relies on the auxiliary particle filter algorithm
mixed together with the Markov Chain Monte Carlo (MCMC) methodology. Adding an MCMC
step to the auxiliary particle filter prevents numerical degeneracies in the sequential algorithm
and allows sequential evaluation of the fixed parameters and the latent processes. Empirical
evaluation on simulated and real data is presented to assess the performance of the algorithm.
A numerical comparison with a full MCMC procedure is also provided. We also extend our
methodology to superposition models in which volatility is obtained by a linear combination of
independent processes.

Keywords Auxiliary particle filters; Bayesian estimation; Leverage; MCMC; Return’s
predictability; Stochastic volatility with jumps.

JEL Classification C11; C15; C32; C58.

1. INTRODUCTION

In this article we propose a methodology to analyze the sequential
parameter learning problem for a stochastic volatility model with jumps
and a predictable conditional mean. We aim at updating the estimates of
the parameters of interest together with the states continuously, following
the flow of information arriving in the markets. There are various reasons,
both from a practical and a theoretical point of view why we think
sequential methods are appealing. Sequential procedures seem suitable
when we are interested in real time applications where we need to update

Address correspondence to Davide Raggi, Department of Economics, University of Bologna,
Piazza Scaravilli, no. 2, Bologna 40126, Italy; E-mail: davide.raggi@unibo.it
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670 D. Raggi and S. Bordignon

our estimates regularly. For example, economic agents need to produce
estimates and forecasts in real time, meaning that they need to adapt
their estimates every time a new observation is available. One of the most
compelling advantages of sequential Monte Carlo methods is their reduced
computational burden compared with other Monte Carlo procedures such
as the Markov Chain Monte Carlo (MCMC), which requires us to restart
the inferential procedure from scratch.

Our procedure builds on the particle filtering algorithm of Liu and
West (2001) in which we include an MCMC step to prevent the algorithm
from degenerating after a number of iterations. A direct application of
the Liu and West (2001) algorithm to our model and long time series, in
fact, evidences some occasional pitfalls, since a null posterior covariance
matrix of the parameters is estimated. The use of MCMC together with
particle filters has been proposed in Gilks and Berzuini (2001) and
has proved to be an effective combination between the computational
advantages of sequential algorithms and the statistical efficiency of MCMC
methods. The introduction of the MCMC step in the Liu and West (2001)
setup is particularly useful when dealing with long time series since it
sensibly reduces the degeneration difficulties connected with sequential
Monte Carlo methods. We also found that the sequential algorithm is
more precise at detecting jump times and sizes than the standard MCMC
approach.

We focus our analysis on stochastic volatility models (SV), a central
topic in financial applications. A review of univariate models is shown
by Ghysels et al. (1996), and for the multivariate context see Asai et al.
(2006). Several variants of Autoregressive Conditional Heteroskedastic
(ARCH) and SV models have been proposed to account for the empirical
regularities of financial time series. In particular, in this article we deal
with three such regularities within an SV framework. First, we consider
the leverage effect between returns and conditional variances; second,
we model the conditional mean, that is, the predictable component of
the returns; finally, we take into account a jump’s dynamics to describe
extreme and rare events such as market crashes.

The introduction of a jump process in a volatility model has been
proved to give an improved fit to data, both in relation to the model’s
ability to describe the return’s behavior (Eraker et al., 2003), as well as
for the pricing of financial derivatives (see Bakshi et al., 1997; Pan, 2002;
and Eraker, 2004, amongst others). In the recent literature, there is in
fact evidence in favor of jumps in returns and volatilities, since a diffusive
behavior of these two processes seems to be inadequate to describe the
underlying dynamics. Furthermore, if we consider the asset allocation
problem in which the risky asset follows a jump diffusion process, there is
some evidence that an extreme and rare event influences the conditional
mean and the volatility, thus implying a modification on the optimal
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Volatility, Jumps, and Predictability of Returns 671

portfolio weights (Liu et al., 2003). Leverage describes the relationship
between returns and conditional variances. It is in fact reasonable to think
that bad news in the markets (e.g., the price decreases), leads to an
increase in the variance, which is a measure of the financial risks. On the
other hand, episodes of high volatility induce expectations of lower future
returns, hence, the negative correlation between these shocks. In the
stochastic volatility literature leverage has been modelled by introducing a
non-null correlation between returns and volatilities as suggested in Harvey
and Shephard (1996), Yu (2005), and Omori et al. (2007), amongst others.
This issue has also been extensively investigated in Asai and McAleer
(2005), by introducing a dynamic asymmetric leverage model, in which
volatility and returns are directly related to properly describe the impact
of sign and magnitude of past returns on volatility. We, finally, deal with
predictability of returns, an issue that has been considered since the
early works of Merton (1971), that gave a theoretical justification for
this feature. For optimal portfolio choices, it is important to take into
account the conditional means and volatilities of returns, since economic
theory shows that an investor gains from market predictability and volatility
timing, even if the impact of these benefits is difficult to quantify.

The remainder of the article is organized as follows. The SV models
considered are described in Section 2. Our inferential solution is outlined
in Section 3. Empirical results based on simulated and real data are
illustrated in Sections 4 and 5. Finally, Section 6 concludes.

2. STOCHASTIC VOLATILITY MODELS

The stochastic volatility model for the observable returns yt+1 is
specified as

yt+1 = !t + exp"vt/2#$t+1 + %t+1Jt+1 (1)

vt+1 = &v + 'vt + ())t+1 (2)

!t+1 = &! + *!t + (!+t+1, (3)

The nonobservable stationary processes !t+1 and vt+1 are, respectively,
the conditional mean and the log-volatility. We assume that the error
vector ($t+1, )t+1, +t+1) is a standardized white Gaussian noise where the
leverage effect has been modeled simply through Cov($t+1, )t+1) = -. In
order to properly describe extreme events such as market crashes, a useful
extension is to introduce a jump component both in the returns and in
the volatilities. Duffie et al. (2000) for instance propose a model based
on a stochastic differential equation with jumps driven by a marked point
process. In the discrete time model, these discontinuities are governed
by a sequence of independent Bernoulli random variables Jt+1 with fixed
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672 D. Raggi and S. Bordignon

intensity1 .. A Gaussian random variable %t+1 with mean !y and variance
(2
y describes the size or mark associated to each jump.

We directly model the conditional mean via an autoregressive process
!t+1. Chernov et al. (2003) suggest that some serial dependence on
!t+1 can be motivated by the effect of non-synchronous trading and
unexpected stochastic dividends. This dependence is assumed to be mean
reverting. Similar dynamics for the conditional mean have been studied
recently in Johannes et al. (2002). We also assume that v0 and !0 are
distributed according to their stationary distributions. Finally, the noise +t+1

is uncorrelated with $t+1 and )t+1 even if there are no theoretical reasons
to impose this constraint.

The prior distribution for the parameters vector ! is consistent
with Kim et al. (1998) and Eraker et al. (2003). We thus hypothesize
the following prior distributions: &v ∼ N(0; 10), ' ∼ Beta(25; 2), (2

) ∼
IG(2,5, 0,05), -∼U(−1, 1), &! ∼ N(0; 4), *∼Beta(25; 2), (2

! ∼ IG(2,5; 0,05),
. ∼ Beta(2; 100), !y ∼ N(0; 20), (2

y ∼ IG(2,5; 0,05), where, in particular, IG
denotes the inverse Gamma distribution.

In empirical applications, a first order autoregressive volatility
specification can be restrictive and might not be able to describe long
range dependencies. Different and more flexible long memory dynamics
could be introduced within our framework. For instance, to help in
describing a long memory behavior of the volatility in the ARCH literature,
Engle and Lee (1999) use the combination of a highly persistent process
together with a short memory dynamics. A similar parameterization
for SV models to describe long memory has been studied in Chernov
et al. (2003), Liesenfeld and Richard (2003), Durham (2006), Omori
et al. (2007), and in Nakajima and Omori (2009). Volatility can thus be
defined by a superposition of stationary autoregressive processes, that is,
vt = v1,t+1 + v2,t+1 in which

v1,t+1 = ! + '1v1,t + (1)1,t+1 (4)

v2,t+1 = '2v2,t + (2)2,t+1, (5)

The first factor v1,t describes the long range dependencies whereas the
second factor, v2,t , is the short memory component that accommodates
for extreme observations. We thus impose −1 < '2 < '1 < 1. As noted in
Chernov et al. (2003) the low persistent volatility process v2,t , as well as the
jump factor Jt , describes the tail behavior of the returns. For this reason
in this second specification we do not consider the jump dynamics that
would be redundant. Moreover, the leverage effect is modeled through the

1This assumption has been relaxed in Eraker (2004) where the intensity is modeled by .t =
.0 + .1vt .
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Volatility, Jumps, and Predictability of Returns 673

non-null correlations Cov()1,t , $t) = -1 and Cov()2,t , $t) = -2, leading to the
following distribution for the errors

⎛

⎝
$t
)1,t
)2,t

⎞

⎠ ∼ N (0,/), / = 0

⎡

⎣
1 (1-1 (2-2

(1-1 (2
1 0

(2-2 0 (2
2

⎤

⎦ ,

To make / positive definite we claim that -2
1 + -2

2 < 1. Our prior’s choice
is based on Omori et al. (2007) and states that ! ∼ N(0, 1), ('1 +
1)/2 ∼ Beta(20, 1,5), ('2 + 1)/2 ∼ Beta(10, 10), (1 ∼ IG(2,5, 0,025), (1 ∼
IG(2,5, 0,05), and -i ∼ U(−1, 1), i = 1, 2.

A different solution to introduce long run dependencies, not
considered here but feasible in our inferential setup, has been proposed
in Chan and Petris (2000), by describing vt through a fractional integrated
process. Following Chan and Palma (1998), an Autoregressive Fractional
Integrated Moving Average (ARFIMA) process can be approximated
through a Moving Average dynamics truncated at a finite lag M, leading to

vt =
M∑

i=1

0j)t−j , (6)

in which 0j is a given function of the long memory parameter. Then,
following Chan and Petris (2000) it is possible to provide a state-space
representation2 of the stochastic volatility model that can be handled
through our particle filtering method.

3. SEQUENTIAL PARAMETER LEARNING

Since their introduction, stochastic volatility models have provided
an interesting benchmark for several estimation techniques, since their
likelihood function is not available in closed form and then inference
has to be based on approximations or numerical evaluations. Some of
these techniques have been applied to estimate parameters of continuous
time models with and without jumps,3 others to inference on their
discrete counterparts. Here we will focus on discrete time specifications.
In the recent literature, Monte Carlo algorithms have provided a flexible
yet powerful tool for inference on complex models possibly with non

2See also Raggi and Bordignon (2011) for a state space representation of a long memory
ARFIMA model.

3Some of the most popular methods include Simulated Method of Moments (Chernov
et al., 2003; Gallant and Tauchen, 1996), Approximate Maximum Likelihood (Aït-Sahalia, 2002),
Generalized Method of Moments (Pan, 2002), Simulated Maximum Likelihood (Durham and
Gallant, 2002), Markov Chain Monte Carlo (Elerian et al., 2001), Particle Filters (Golightly and
Wilkinson, 2006; Johannes et al., 2009.)
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674 D. Raggi and S. Bordignon

observable factors. Several strategies based on importance sampling have
been proposed for univariate models (Danielsson, 1994; Durbin and
Koopman, 1997; Durham, 2006; Pitt, 2002; Shephard and Pitt, 1997).
In particular Jungbacker and Koopman (2006) and Liesenfeld and
Richard (2006) propose different sampling strategies which are important
to estimate various versions of an SV model both in the univariate
and in the multivariate case. The efficient importance sampling of
Liesenfeld and Richard (2006) have been used to implement classical
and Bayesian inference. A simulated maximum likelihood method for
stochastic volatility models, jumps, and leverage has also been proposed
in Malik and Pitt (2009). In a Bayesian framework, MCMC has been
extensively used since the seminal papers of Jacquier et al. (1994) and Kim
et al. (1998). Extensions to models with leverage have been considered,
for instance, in Jacquier et al. (2004), Yu (2005), and Omori et al. (2007),
whereas multivariate dynamics have been estimated in Chib et al. (2005),
Bos and Shephard (2006), Chan et al. (2006), and Yu and Meyer (2006).
Finally, applications to models with jumps have been developed through
MCMC in Chib et al. (2002), Eraker et al. (2003), Raggi (2005), and in
Nakajima and Omori (2009).

Many of the mentioned techniques provide efficient and accurate
estimates when used for off-line applications, but seem to be inadequate
when dealing with real time problems where we need to regularly
update the estimates at each time step. In the recent literature, filtering
techniques for sequential parameter learning have been implemented in
Liu and West (2001), Storvik (2002), Johannes et al. (2006), and in Polson
et al. (2008).

Our idea to implement sequential parameter learning relies on
sequential Monte Carlo methods. We first describe the background tools
for particle filtering with known and unknown parameters. We then focus
on our solution for the parameter learning problem.

3.1. Some Background on Particle Filters

Particle filter algorithms, introduced in Gordon et al. (1993), have
been successfully used in a variety of fields such as engineering,
econometrics, and biology. They provide a suboptimal but feasible solution
to the Bayesian filtering problem. A detailed review on Monte Carlo
sequential algorithms is given in Doucet et al. (2001) and Arulampalam
et al. (2002). Consider the general state-space model defined by the
density p(xt | xt−1) that describes the evolution of the latent states xt

and by p(yt | xt) that specifies the observable yt . Our goal is to estimate
the distribution p(xt+1 | y1:t+1) given p(xt | y1:t) in which y1:t = (y1, , , , , yt) is
the past history of the observable process up to time t . We also require the
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Volatility, Jumps, and Predictability of Returns 675

knowledge of the initial distribution p(x0), of the transition distribution
p(xt+1 | xt), t ≥ 0, and of the measurement distribution p(yt+1 | xt+1), t ≥ 1.

The key idea is to approximate the filtering density p(xt+1 | y1:t+1) by
a discrete cloud of points called particles x

j
t+1, j = 1, , , , ,N , and a set of

weights 1j
t+1 as follows

p̂(xt+1 | y1:t+1) =
N∑

j=1

1
j
t+12(xt+1 − x

j
t+1), (7)

where 2(·) is the Dirac delta measure. The cloud of points at time t + 1 are
chosen using the importance sampling principle, in which the importance
density is q(xt+1 | xi

t , yt) and the weights are

1i
t+1 ∝ 1i

t

p(yt+1 | xt+1)p(xi
t+1 | xi

t)

q(xi
t+1 | xi

t , yt)
i = 1, , , , ,N , (8)

With this setup, it can be proved that the variance of the weights increases
systematically over t , leading to a poor approximation of the filtering
distribution. For this reason a resampling step is often added in order
to avoid numerical degeneracies by getting rid of the particles with low
probability. This is the Sampling Importance Resampling (SIR) algorithm.
An important variant of the SIR filter is the Auxiliary Particle (AP) filter,
suggested by Pitt and Shephard (1999) in which the proposal depends
on the whole stream of particles, i.e., q(xt+1 | xi

1:t , yt) through a suitable
auxiliary variable.

When parameters are unknown, inference is a challenging question,
in fact, standard particle methods such as the SIR filter and the AP
filter can evidence some degeneracy problems, mainly in the presence of
outliers and high dimensionality of the latent states. Recently, a number
of article have tackled the problem of estimating the fixed parameters
in a sequential context. For instance Storvik (2002) proposes a filter in
which the parameters are sequentially updated by simulating from their
conditional distribution p(! | y1:t+1) through MCMC. A different approach,
named the practical filter by Polson et al. (2008), is based on the idea that
p(xt+1, ! | y1:t+1) can be expressed as a mixture of lag-filtering distributions.
The estimate is then based on a rolling-window MCMC algorithm.

A different solution has been proposed in Gordon et al. (1993) and
in Kitagawa (1998) by artificially defining an autoregressive dynamics for
the parameters, say !t+1, and by incorporating them in an augmented state
vector (xt+1, !t+1). The main point against this approach is that it leads to
time varying and not to fixed parameter estimates. More precisely, Liu and
West (2001) point out that these artificial dynamics can lead to posterior
variances that are larger, relative to the true posteriors for the actual fixed
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676 D. Raggi and S. Bordignon

parameters. To correct for this overdispersion, West (1993) and Liu and
West (2001) propose to approximate the posterior distribution p(! | y1:t+1)
by a smooth kernel density, leading to

p(! | y1:t+1) ≈
N∑

i=1

1i
tN (mi

t+1; h
2"t+1), (9)

The quantity mi
t+1 = a!it+1 + (1 − a)!̄t+1 is the kernel location for the

ith component of the mixture whereas the matrix "t+1 and the vector
!̄t+1 are respectively estimates of the variance-covariance matrix and of
the mean of the posterior distribution at time t + 1. Furthermore, !it+1,
i = 1, , , , ,N is a sample from p(! | y1:t+1). The constants h and a, which
measure the extent of the shrinkage and the degree of overdispersion
of the mixture, are given by h2 = 1 − ((22 − 1)/22)2 and a =

√
1 − h2,

whereas the discount factor 2 ranges between 0.95-0.99. It can be proved
that the variance of the mixture approximation in (9) is "t+1 and the
mean is obviously !̄t+1. According to this setup, at time t + 1, a reasonable
proposal for the posterior is then

!t+1 | !t ∼ N(a!t + (1 − a)!̄t , h2"t), (10)

This methodology has been successfully used in Liu and West (2001)
in a dynamic factor stochastic volatility context and in Carvalho and Lopes
(2007) in a switching regime stochastic volatility framework.

3.2. Particle Filters with MCMC Correction

For the stochastic volatility model with jumps defined in Eq. (1)–(3)
we found that the Liu and West (2001) setup described above performs
poorly. The major drawback with this algorithm is that the estimated
posterior variance-covariance matrix "t+1 collapses to zero after a
few hundred iterations. This problem is probably due to the sample
impoverishment phenomenon caused by the resampling procedure, that
in this context is likely due to the high dimension of the extended states
vector and to the discontinuous nature of the jump process. In fact,
particles with high probability are selected many times, causing a loss of
diversity in the cloud of points. This effect is severe when the noise of the
latent process is small.4 To reduce degeneracies, following the suggestion
of Gilks and Berzuini (2001), we propose a generalization of the Liu
and West (2001) method by adding an MCMC move to increase sample
variability of the particles. This should also help to reduce the correlation

4Note that this feature can be emphasized by the choice of h2 < 1.
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Volatility, Jumps, and Predictability of Returns 677

between particles after resampling. In practice, calling x̃t+1 = (xt+1, !), the
particles x̃i

t+1 approximating p(!, xt+1 | y1:t+1), can be moved to a different
location x̃′i

t+1 according to a Markov transition kernel T (x̃t+1, x̃′
t+1), that is

invariant with respect to the same filtering distribution. For this reason,
a burn-in period for the MCMC step is not necessary.

More formally, given the posterior distribution p(x̃t+1 | y1:t+1), the
importance weights 1t+1(x̃t+1) and the proposal q(x̃t+1 | x̃t+1, yt), it is easy
to check that

p(x̃t+1 | y1:t+1) =
∫

1t+1(x̃t+1)q(x̃t+1 | x̃t , yt)T (x̃t+1, x̃′
t+1)d x̃t+1

= p(x̃′
t+1 | y1:t+1), (11)

In other words, we move all the particles (xi
t+1, !

i), that approximate
the posterior, through T (·, ·) thus obtaining a further approximation of
the filtering distribution based on the weighted sample (!′i , x′i

t+1,1
i
t+1).

We now provide the details of the algorithm proposed considering the
version we implement for the model described in Eq. (1)–(3). We write the
vector of the states as xt+1 = (vt , !t , Jt+1, %t+1) and we estimate the posterior
distribution p(vt , !t , Jt+1, %t+1, ! | y1:t+1).

In order to perform the MCMC step we need to keep track of
the whole trajectory of each particle. A useful way to store all of this
information is through a set of sufficient statistics St (see Fearnhead,
2002, for an extensive treatment on this point). In order to implement
the sequential Monte Carlo procedure, it is thus necessary to update
recursively the sufficient statistics set. We update St through a recursive
updating rule f (·), such that St+1 = f (St , xt+1). For our model with jumps,
the sufficient statistics up to time t are

St =
(

v0,
t∑

i=1

vi ,
t∑

i=1

vi−1,
t∑

i=1

v2
i−1,

t∑

i=1

v2
i ,

t∑

i=1

vivi−1,

t∑

i=1

aibi ,
t∑

i=1

aibivi−1,
t∑

i=1

aibivi ,
t∑

i=1

a2
i b

2
i , !0,

t∑

i=1

!i ,

t∑

i=1

!i−1,
t∑

i=1

!2
i ,

t∑

i=1

!2
i−1,

t∑

i=1

Ji ,
t∑

i=1

%i ,
t∑

i=1

%2
i

)

,

where ai = yi − !i−1 − %i Ji and bi = exp"−vi−1/2#. It can be noticed that the
sufficient statistics may depend on vt and !t that belong to xt+1. In this
case we estimate these quantities by simulating them from their dynamics.
The amount of computer memory required is, thus, sensibly reduced.
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678 D. Raggi and S. Bordignon

The resulting algorithm is summarized as follows

Parameter learning algorithm

1. Set t = 0. Simulate N particles from the prior p(!), from p(v0) and from
p(!0) with equal weights, J0 = 0 and %0 = 0;

2. For t = 1 to T :

i) Auxiliary particle step:

a) Given x
j
t = (vj

t−1, !
j
t−1, J

j
t , %

j
t , !

j
t) and 1

j
t , j = 1, , , , ,N , set (J jt+1 = 0

and compute

v̄ j
t = E [vt | vj

t−1, !
j
t ]

!̄
j
t = E [!t | !j

t−1, !
j
t ]

m
j
t = a!jt + (1 − a)!̄t ;

b) Compute g j
t+1 ∝ 1

j
t p(yt+1 | v̄ j

t , !̄
j
t ,(J jt+1,m

j
t), such that

∑N
j=1 g

j
t+1 = 1,

j = 1, , , , ,N ;
c) Select with replacement from (x

j
t ,m

j
t) with probability "g j

t+1#;

ii) Updating the parameters:

a) Update !t+1 from N (m
j
t , h2"t), j = 1, , , , ,N ;

iii) Updating the states:

a) Update vt from N (&jv + 'j vj
t−1, (

2 j
) ), j = 1, , , , ,N ;

b) Update !t from N (&
j
! + *j!

j
t−1, (

2 j
! ), j = 1, , , , ,N ;

c) Update Jt+1 from Bi(1, .j), j = 1, , , , ,N ;
d) Update %t+1 from N (!j

y, (
2 j
y ), j = 1, , , , ,N ;

iv) Updating the sufficient statistics:

a) Update the sufficient statistics S j
t+1 = f (S j

t , x
j
t+1), j = 1, , , , ,N ;

v) Computing the importance weights:

a) Compute 1
j
t+1 ∝ p(yt+1 | vjt ,!

j
t !

j
t+1)

p(yt+1 | !̄jt ,v̄
j
t ,m

j
t )
,
∑N

j=1 1
j
t+1 = 1;

b) Record x
j
t+1, 1

j
t+1 and S j

t+1, j = 1, , , , ,N ;

vi) MCMC step (optional):

a) Move all of the the particles through a systematic scan Gibbs
sampler, i.e., T (x

j
t+1, x

′ j
t+1) using S j

t+1, j = 1, , , , ,N ;
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Volatility, Jumps, and Predictability of Returns 679

b) Update the sufficient statistics according to the MCMC move,
that is, S j

t+1 = f (S j
t , x

′ j
t+1), j = 1, , , , ,N .

3. End.

We perform the MCMC step through a Gibbs sampler. It is also
convenient to use some transformation of the parameters ! in order to
extend their support to the real line. In fact, the posterior is approximated
by a mixture of Normals, and then a convenient reparameterization of the
model is in terms of parameters lying on the real line. This is important
in order to perform step 3 of the algorithm. We then consider the
transformed parameter '∗ = log' − log(1 − ') and *∗ = log * − log(1 −
*). We also define -∗ = log(1 + -) − log(1 − -). For the same reason, we
consider the logarithm of (), (!, (+ and of the intensity ..5

4. SIMULATION STUDY

In this section we provide some illustrative examples to show the
performance of the algorithm. All the calculations are based on software
written using the Ox©5.00 language of Doornik (2001). We simulate a time
series of length T = 2000 from the model described by Eqs. (1)–(3). The
true parameters, consistent with empirical findings on similar stochastic
volatility models with jumps, are the following one:

a) Volatility process: &v = 0,06, ' = 0,95, () = 0,15, - = −0,5;
b) Conditional mean: &! = 0,001, * = 0,90, (! = 0,1;
c) Jump Process: . = 0,01, !y = −4, (y = 2.

We approximate the posterior distributions of interest through a cloud
of 25,000 particles. We use the MCMC correction for ! every 50 iterations
of the algorithm, whereas Jt+1 and %t+1 are updated systematically. This
choice provides a reasonable compromise between statistical precision and
computational burden. We noticed that the introduction of an MCMC
correction makes the inferential procedure more robust. First, it prevents
the algorithm from degenerating after a few hundred iterations, keeping
" different from the null matrix and thus providing a non degenerate
posterior distribution for !. Second, our empirical evidence suggested that
also the estimated latent vectors may degenerate without any correction,

5For the superposition model the following transformations have been used in order to achieve
stationary and positive definitness of /: 31 = !, 32 = log(1 + '1) − log(1 − '1), 33 = log(1 + '1) −
log('1 − '2), 34 = log (2

1, 35 = log (2
2, 36 = log(1 + -1) − log(1 − -1), 37 = log

(√
1 − -21 + -2

)
−

log
(√

1 − -21 − -2
)
.
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680 D. Raggi and S. Bordignon

FIGURE 1 Estimated parameters together with the 2.5 and the 97.5% posterior quantiles.

providing a poor approximation of the true factors. Figure 1 reports the
sequential learning process for the parameters, i.e., the evolution of the
posterior mean together with the 2.5 and the 97.5% posterior quantiles.

Our algorithm provides accurate estimates for the parameters of the
log-volatility process and, in fact, the posterior means of ', () and - quickly
converge to their true values. In particular, the algorithm provides very
precise estimates of the leverage - and of the persistence '. It is also
interesting to note the accuracy obtained for the volatility of the volatilities
parameter (). The top panel of Fig. 2 shows that the estimated log-volatility
closely follows the true process.

More difficulties arise with the conditional mean parameters. Even
though Fig. 2 suggests that the true trajectory of !t is well approximated, we
find that the persistence parameter * is slightly underestimated, while the
estimate of (! is slightly larger than its true value. However, the difference
between true and posterior means is not dramatic and we think this gap
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Volatility, Jumps, and Predictability of Returns 681

FIGURE 2 True vs. estimated log-volatilities (upper panel) and conditional means (lower panel).

can be reduced by introducing a non null correlation between yt+1 and !t+1,
thus making the observed data more informative for these parameters.

It is interesting to note that the algorithm detects the jumps accurately.
This feature is displayed in Fig. 3. In a few other cases we have noted an
occasional inability of the algorithm to distinguish between outliers and
actual jumps. This is especially evident when an extreme return is observed
at the beginning of the series and when the jump size is small. However,
Fig. 3 suggests that the algorithm is very accurate in detecting expected
size and timing.6 In some occasions difficulties arise when estimating the
parameters related to the jump process, in which case some care has to be
taken in the empirical analysis. The reason for these occasional pitfalls is
most likely due to the rare nature of the jumps. Apart from ., it is difficult
to identify the parameters describing %t , i.e., !y and (y. Difficulties related

6Some further Monte Carlo results, not reported here, show that the algorithm perform well
even when the jump’s size is heterogeneous, meaning that we considered jumps that range between
−7.5% and +5%.
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682 D. Raggi and S. Bordignon

FIGURE 3 The simulated data are in the top left panel; in the bottom left panel, the estimated
probabilities of jumps; on the right, the true and estimated impact of a jump event.

FIGURE 4 Particle filter with and without MCMC correction. Comparison between the sequential
estimates with MCMC correction (solid lines) and the sequential estimates with no correction
(dashed lines). The true parameter values are indicated with the horizontal lines.
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Volatility, Jumps, and Predictability of Returns 683

FIGURE 5 Particle filter with and without MCMC correction. Comparison between the estimated
latent processes with MCMC correction (dashed lines) and the sequential estimates with no
correction (dotted lines). The simulated processes are indicated with solid lines.

to the lack of identification of jump models are, however, a common
problem in this field and have also been noticed in Chib et al. (2002),
Eraker et al. (2003), Raggi (2005), and in Nakajima and Omori (2009).

In a second set of experiments we compared the performance of our
procedure against the particle filtering algorithm that does not use the
MCMC correction. Figure 4 plots the sequential estimates versus the true
parameters. In particular, the estimates obtained introducing the MCMC
correction are always closer to the true parameters with respect to the plain
method. We also report in Fig. 5 the estimated latent states. We observed
that the estimates obtained through the plain algorithm sensibly differ
with respect to the true processes and seem to converge to the marginal
means of vt and !t . On the other hand, the approximation provided by
our methodology closely follows the true trajectories of vt and !t .

This analysis, corroborated by many other experiments not reported
here for conciseness reasons, suggests that the MCMC correction is useful,
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684 D. Raggi and S. Bordignon

FIGURE 6 Sensitivity analysis of the algorithm for different priors for *.

and provides an improvement with respect to the plain algorithm of Liu
and West (2001). We found also cases in which the MCMC correction was
not strictly necessary, even though, in our experience, it has never been
worst than the benchmark method.

Furthermore, to assess the robustness properties of the algorithm for
inference, we also considered different initial distributions for *, ., !y,
and (y by running two more experiments. In the first case, we changed
the initial distribution for *, choosing priors with expected values ranging
between 0.28 and 0.92 as follows:

Prior 1: * ∼ Beta(25, 2) ⇒ E[*] = 0,9259, (* = 0,0495;
Prior 2: * ∼ Beta(20, 20) ⇒ E[*] = 0,5, (* = 0,0781;
Prior 3: * ∼ Beta(2, 5) ⇒ E[*] = 0,2857, (* = 0,1597;
Prior 4: * ∼ Beta(25, 10) ⇒ E[*] = 0,7142, (* = 0,0753;
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FIGURE 7 Sensitivity analysis of the algorithm for different priors for ., !y and (y .

As shown in Fig. 6, we observed precise and stable estimates for the
posterior mean of this parameter. We also noticed some small variations
on the posterior means of (! and (). In particular, we noticed that the
posterior means of () ranged between 0.12 and 0.18, whereas the posterior
means of (! were between 0.11 and 0.135. This behavior is likely explained
by the difficulty of identifying these two parameters, since they are very
sensitive to outliers, as stressed in Johannes et al. (2006).

We also performed a sensitivity analysis for ., !y and (y. We considered
different initial distributions coherent with a setup characterized by
infrequent but large jumps (see Eraker et al., 2003, and Nakajima and
Omori, 2009, on this point). In particular, we considered the following six
cases:

Prior 1: . ∼ Beta(2, 100), !y ∼ N(−3, 4), and (y ∼ IG(2,5, 0,05);
Prior 2: . ∼ Beta(2, 40), !y ∼ N(0, 100), and (y ∼ IG(5, 20);
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686 D. Raggi and S. Bordignon

Prior 3: . ∼ Beta(2, 100), !y ∼ N(0, 100), and (y ∼ IG(2,5, 0,025);
Prior 4: . ∼ Beta(2, 40), !y ∼ N(0, 20), and (y ∼ IG(2,5, 0,05);
Prior 5: . ∼ Beta(2, 100), !y ∼ N(0, 20), and (y ∼ IG(2,5, 0,05);
Prior 6: . ∼ Beta(5, 100), !y ∼ N(0, 100), and (y ∼ IG(10, 5);

Empirical results, reported in Fig. 7, evidenced that all of the other
parameters were insensitive to the prior’s choice, even though some
changes occurred for !y and (y. On the other hand, the estimated
latent processes remained substantially unchanged, and all of the jumps
have been precisely detected, with high probability and correct size. This
finding evidenced some lack of identification for these two parameters that
is related with the rare nature of the process they describe.

5. DOW JONES INDEX

In this section we report some empirical results based on the Dow
Jones index observed daily from January 1985 to mid August 2009. The
data set has been downloaded from Yahoo Finance. As usual, the returns
are defined as yt+1 = 100 × (log pt+1 − log pt). The upper panels of Fig. 9
provide the plot of the observed time series. We estimate the model
by approximating the distributions of interest through 25,000 particles.
We initially estimated the model through the algorithm of Liu and West
(2001) and we noticed that, after a few hundred iterations, " collapses to
the null matrix inducing a posterior distribution of ! approximated by just
one particle with probability one and all of the others with null weights
(Fig. 8).

We then compare the parameter learning algorithm with MCMC
correction to the standard single-move Gibbs sampler proposed in Jacquier
et al. (2004), in which the results are obtained by running the algorithm
for 50,000 iterations with a burn-in of 25,000. The output of both the
procedures is summarized in Table 1 and in Figs. 9 and 10. More precisely,
Fig. 9 compares the particle filter estimates of the latent processes with
the full MCMC posterior averages, whereas Fig. 10 shows the sequential
estimates of the parameters. Finally, Table 1 provides the full sample
comparison between the sequential and the full MCMC estimation.

We first comment the particle filter results and then we compare them
with the MCMC output. The left panels of Fig. 9 report the sequential
posterior means of the latent processes. For the log-volatility and the
conditional mean we also give 95% confidence bands. It is remarkable
to note that associated with each spike in the original data set there is
an estimated high probability of jump. This is particularly evident for the
crash observed during October 1987 in which we observe a daily move of
about -25%. It is also clear from the bottom-left panel in Fig. 9, that the
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Volatility, Jumps, and Predictability of Returns 687

FIGURE 8 Dow Jones Index. Sequential estimate of the posterior means of the parameters of the
model (solid line) and the 95% confidence bounds (dotted line).

particle filter detects with high probability almost all the jumps observed
between 1997 to 2003. Together with the jumps, it is easy to note that the
log-volatility bursts every time a jump is detected, which is a reasonable
feature since an extreme and negative event leads to a sudden and large
increase in the variability of the financial asset. In the last two years of the
crisis, the algorithm detects just one jump. This is in some ways surprising,
even though this behavior can be easily explained by a very high volatility
that accomodates for extreme observations. The introduction of the jump
factor is also useful in explaining the second moment of the interest rates
process. We compute the ratio Var[(Jt%t )]

Var[yt ] which expresses the percentage of
the total variance due to jumps. In our analysis, we find that jumps explain
21% of the total variance.
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688 D. Raggi and S. Bordignon

FIGURE 9 Dow Jones Index. On the upper-left panel, we report the observed prices, whereas
on the left, we plot the returns. On the other panels, we show the sequential, and the MCMC
posterior means for the latent processes. On the left panels, we report the sequential estimates,
whereas on the right we report the MCMC estimates.

In Fig. 10 we show the sequential evolution of the parameters’
posterior means. The estimate of - is approximately −0.32 and confirms
a marked leverage effect, since it is negative and substantially different
from zero. The log-volatility process is persistent since ' is greater than
0.97. We found that ' tends to increase slightly in time, but this behavior
can be explained by the rising volatility observed during the last years.
The parameter () is approximately 0.15. These results are consistent with
the current literature on stochastic volatility. The analysis of !t provides
evidence about the predictability of the returns. The intercept &! is positive
but close to zero, and the persistence parameter * converges to 0.87. This
high estimate of * clearly implies a non-null autocorrelation of !t and
suggests that the effect of a jump is persistent over time, thus influencing

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
R
a
g
g
i
,
 
D
a
v
i
d
e
]
 
A
t
:
 
0
9
:
1
1
 
9
 
J
u
n
e
 
2
0
1
1
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TABLE 1 Dow Jones Index. Stochastic volatility with jumps model.
Comparison between sequential and MCMC estimates. We report the posterior
means and the 95% confidence bounds

Particle MCMC

Mean 95% Conf. Int. Mean 95% Conf. Int.

p(&v | y1:T ) −0.01694 [−0.021, −0.012] −0.00272 [−0.006,0.0008]
p(' | y1:T ) 0.97199 [0.966,0.976] 0.98866 [0.984,0.992]
p(() | y1:T ) 0.15353 [0.150,0.156] 0.13815 [0.120,0.157]
p(- | y1:T ) −0.32867 [−0.351,−0.306] −0.65645 [−0.756,−0.561]
p(&! | y1:T ) 0.01091 [0.008,0.013] 0.01610 [0.009,0.023]
p(* | y1:T ) 0.87814 [0.863,0.891] 0.76834 [0.689,0.835]
p((! | y1:T ) 0.08940 [0.087,0.091] 0.07247 [0.053,0.094]
p(. | y1:T ) 0.01097 [0.008,0.013] 0.00996 [0.003,0.020]
p(!y | y1:T ) −1.38785 [−1.493,−1.286] −0.74232 [−2.634,0.317]
p((y | y1:T ) 3.97957 [3.9054.053,] 2.16437 [1.602,2.870]

future returns. We think it is important to notice this feature, since in the
current literature jumps are often taken to be independent with a transient
impact on returns. This is one of the reasons why jumps are usually added
to the volatility process. It is interesting to compute the half-life of the two
autoregressive processes, defined as the number of periods required for
the impulse response to a unit shock to a time series to dissipate by half.
In practice, if the persistence parameter is ', the half-life is defined as
log0,5

log'
. The half-life for the log-volatility process is about 24.4, whereas for

the conditional mean it is 5.33. These quantities imply that it takes about
one month for the volatility and about one week for the conditional mean
to absorb 50% of a shock.

Finally, we consider the parameter estimates related to Jt and %t . The
intensity . suggests that the model detects about five extreme events per
year. Concerning !y and (y, the expected size and the variability of %t ,
we obtain that !y ≈ −1,3 and (y ≈ 4. This high value of (y implies that
the impact of jumps on the returns is heterogeneous. More precisely, it
seems that the model accurately describes the timing of the jumps, but
their effect is quite variable. The estimates reported, in fact, indicate that
%t likely ranges between −9,5 and +6,5 percent.

This analysis suggests that the model can be generalized to allow for
a time dependent intensity .t . On closer inspection, Fig. 9 suggests that
jumps arrive in clusters. For example, we estimate many jumps of large size
between 1986 and 1992, none in the subsequent six years, several jumps
again between 1998 and 2003 and then just one in the last two years. It is
also easy to note that jumps of large size are more frequent in periods with
high volatility, thus suggesting that the intensity . and the jump’s size %t
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FIGURE 10 Dow Jones Index. Sequential estimate of the posterior means of the parameters of
the model (solid line) and the 95% confidence bounds (dotted line).

may be time varying and dependent on the volatility. Surprisingly, in the
last two years, we do not observe many jumps. This finding, however, can
be explained by an extremely high volatility that accomodates for extreme
events.

We now compare our results with those obtained through the standard
MCMC procedure. In Table 1 we report the full sample MCMC posterior
estimates and the posterior means estimated at the last observation of the
particle filter, whereas plots of the MCMC estimated latent processes are
on the right panels of Fig. 9. The second and third row panels evidence
a substantial equivalence between the estimates of the log-volatilities and
of the conditional means. Surprisingly, the MCMC procedure seems to
be inadequate to detect the major jumps observed in the real data and
associates to these events a low probability of jump. For example, the
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crash of October 1987 is detected with low probability (about 10%)
and negligible size, whereas the sequential procedure estimates the same
jump with probability 1 and size of about −16%. A comparison with
an independent benchmark suggests also that the sequential approach
outperform MCMC on detecting jumps. In our analysis, the particle
filtering procedure recognize more than 60% of the jumps detected by the
Lee and Mykland (2008) test whereas MCMC detects just about the 30%.
However, it is important to stress that this benchmark can be imprecise
when daily data are taken into account.

Finally, Table 1 compares the posterior means and the confidence
bounds of the parameters. There is a substantial equivalence of the two
methods for almost all the parameters. The major differences concern
(y, that halves with MCMC, and -. However, these differences can be
explained by the inability of MCMC to detect the major jumps.

FIGURE 11 Dow Jones Index. Estimated parameters of the superposition model (solid line) and
the 95% confidence bounds (dotted line).
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692 D. Raggi and S. Bordignon

We further report the results for the superposition model. In this case
we do not consider the conditional mean. Figure 11 displays the sequential
estimates of the parameters, whereas Fig. 12, shows the estimated volatility
factors.

Our results are in line with Liesenfeld and Richard (2003) that
consider a similar two factors specification without leverage effects. We
observe that (2 is much larger than (1. Furthermore, the estimated value of
the persistence parameter of the long-run component is about 0.95, while
those of the short-run component is -0.08. The two correlation parameters
are negative, in particular -1 = −0,33 and -2 = −0,10, thus indicating a
leverage effect due to both of the factors. We observe from Fig. 12 that v1,t
is underestimated with respect to the volatility model with jumps; however,
v2,t compensates for this. Furthermore, the short-run volatility sensibly
increases in correspondence to extreme observations, thus suggesting that
this factor can be useful to describe the tail behavior of the return’s
distribution.

FIGURE 12 Dow Jones Index. Estimated volatilities vi ,t , i = 1, 2.
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6. CONCLUSIONS

Sequential Monte Carlo methods represent a valuable and reliable
methodology to estimate nonlinear and nongaussian state-space models.
Their application also seems to be useful in the analysis of stochastic
volatility models. In this article, we have proposed an algorithm based on
the kernel smoothing approximation of the posterior suggested in Liu
and West (2001), in which an MCMC step is incorporated in order to
reduce sampling impoverishment problems related to sequential Monte
Carlo strategies. Analysis based on simulated and real data demonstrate
the effectiveness of our proposal, since the algorithm provides robust
and stable results with longer time series that are typical in financial
econometrics.
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