
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
60	
61	
62	
63	
64	
65	

A Distributed Mitigation Strategy against DoS

attacks in Edge Computing

Giuseppe Potrino

DIMES Department

University of Calabria

P. Bucci 39/c, 87036 Rende (CS), Italy

giuseppe.potrino@unical.it

Floriano De Rango

DIMES Department

University of Calabria

P. Bucci 39/c, 87036 Rende (CS), Italy

derango@dimes.unical.it

Peppino Fazio

DIMES Department

University of Calabria

P. Bucci 39/c, 87036 Rende (CS), Italy

pfazio@dimes.unical.it

Abstract— Internet of Things (IoT) is a platform where

every day devices become smarter, every day processing

becomes intelligent, and every day communication becomes

informative. Numerous challenges prevent to secure IoT

devices and their end-to-end communication in an IoT

environment. In fact, the IoT security is still an open challenge.

The purpose of this work is to examine a distributed strategy

for mitigating Denial of Service (DoS) attacks against the fog

node in an edge computing context in which the nodes

exchange messages through Message Queue Telemetry

Transport (MQTT) protocol. The proposed strategy is based

on a dynamic message sending frequency of the lightweight

nodes. It is also mitigated data tampering and eavesdropping

by using Elliptic Curve Cryptography (ECC).

Keywords—IoT, DoS, MQTT, ECC, Edge computing

I. INTRODUCTION

According to Gartner, IoT is one of the top ten strategic
technology trends [1]. The “Internet of Things” (sometimes
also referred to as the “Internet of Everything,” or IoE)
generally refers to the multiple networks of devices or
technology platforms (“things”) that communicate with each
other via wireless protocols and without direct human
interaction [2]. When IoT is augmented with sensors and
actuators, the technology becomes an instance of the more
general class of cyber-physical systems, which also
encompasses technologies such as smart grids, smart homes,
intelligent transportation and smart cities [3]. The number of
connected devices on the Internet will exceed 50 billion by
2020, this according to Cisco. By 2022, 1 trillion networked
sensors will be embedded in the world around us, with up to
45 trillion in 20 years [4]. The global internet of things (IoT)
market reached USD 598.2 Billion in 2015 and the market is
expected to reach USD 724.2 Billion by 2023 [5]. Then,
nowadays there are ever more IoT challenges that need to be
faced for example scalability, data volumes (Big data), self-
organizing, data interpretation, interoperability, automatic
discovery, software complexity, security and privacy,
wireless communication [6]. Since IoT devices typically
have limited resources, the generated data are typically
forwarded to a cloud computing platform for data processing
and analysis. A cloud computing platform is a collection of
centralized networking, computing, and storage resources

that are accessible through the Internet. This means that
network latency and jitter can become significant. To address
the above issue, the edge computing paradigm has emerged
in recent years. The edge computing is an intermediate
computing layer between the cloud layer and the smart
devices [7]. The edge computing paradigm offers many
benefits, but it needs to face many challenges, for example
scalability, complexity, dynamicity, heterogeneity, latency
and security [8]. IoT is available for various platforms and
this makes hard to find complete solutions for the actual
challenges by security researcher. The purpose of this work
is to increase the security of edge computing layer. In the
considered IoT context there are several lightweight nodes
sending messages to a fog node (a node with more
computational and power resources situated at edge
computing layer) by using the MQTT protocol. The fog node
tries to respect some messages priorities. In case of DoS
attack, each lightweight node tries to help the fog node
decongestion by adapting its message sending frequency.
The MQTT payloads are encrypted by using ECC for
mitigating data tampering and eavesdropping.

The paper is organized as follows: related work is
presented in section II; section III introduces the basic
technologies involved in the proposal such as MQTT and
ECC; the dynamic security system to mitigate DoS attack is
discussed in section IV; in section V is presented the
performance evaluation; finally, conclusions are summarized
in section VI.

II. RELATED WORKS

A. IoT security

For detecting silent attacks, precise and swift safety
monitoring and intrusion detection are of utmost importance
in IoT-based systems. An Intrusion Detection System (IDS)
will prevent failures caused by adversaries and decide proper
alert to prevent intrusion or to mitigate the impact of an
intrusion [15]. The control of malicious activities can be
done in two modalities [16]: Host based IDS (HIDS) which
collects information about activities on a single host, and
Network based IDS (NIDS) which acts on the whole
network. An IDS cannot protect from cloning of things,

WTS 2019 1570519502

1

978-1-5386-8380-4/19/S31.00 ©2019 IEEE

Authorized licensed use limited to: Universita CaFoscari Venezia. Downloaded on March 01,2021 at 10:38:40 UTC from IEEE Xplore. Restrictions apply.

malicious substitution of things, firmware replacement and
extraction of security parameters, but it can offer protection
from Eavesdropping, Man-in-the-middle attacks, Routing
attacks, DoS attacks [17]. DoS attacks increase mostly the
packet loss and the delay variation, which are critical factors,
e.g. in real-time or streaming communication, as reported in
[28, 29].

To face the IoT challenges, in [18] it was proposed a new
approach to communication and manage the security key
which is based on the MQTT protocol and ECC. Even, in
[19] it was proposed a novel lightweight security solution for
publish-subscribe based protocol in an IoT Fog networks
using ECC.

In [20] it was proposed the Secure-MQTT (SMQTT)
protocol with the purpose of increasing the security of the
MQTT protocol. In particular, the Publish messages are
replaced by a new message type called SPublish which is
identified with the reserved MQTT header code “0000” and
it is used to specify that the payload is ciphered with ECC.

In [21] it was proposed a security architecture for IoT
publish/subscribe networks, in which MQTT is divided in
two separated communication channels: a data channel and a
channel for security control (CoP). CoP is a communication
channel by which a device can authenticate itself to the
broker and through which message reports can delay or
enforce the current security policy for reaching the requested
performance.

B. Work objectives

To increase the IoT security in [11] the use of SSL/TLS

was proposed, but this can consume a lot of energy in an

IoT device. Then, in [18], [19] and [20] the use of ECC was

proposed. Like the works in [18], [19] and [20], the proposal

wants to apply ECC to an IoT edge computing network.

This work applies ECC on a MQTT based communication

for mitigating data tampering and eavesdropping. Ciphered

packets are recognized by using a mechanism like the

proposal of [20]. DoS attacks in an MQTT context are

already considered in [21] where it is proposed an

architecture based on TCP transport layer by using TLS

enabled transport channel for ensuring privacy in the

communication. Differently, our work is based on UDP

protocol (lighter than TCP), and reliability is managed by

using the MQTT ACK messages. The use of MQTT

payloads encryption can increase the packets processing

delay. This can cause a DoS attack if the fog node receives

many messages. The proposed mitigation for DoS attacks is

made in a distributed manner. In particular, each lightweight

node adapts its sending messages frequency on the basis of

the response delay from the fog node. This helps the fog

node in the decongestion process. Moreover, on the fog

node it is placed a simple IDS for trying to respect message

type priorities.

III. TECHNOLOGIES INVOLVED IN THE PROPOSAL

A. An IoT lightweight protocol: MQTT

In recent years, in the IoT context various lightweight

protocols are proposed like MQTT, MQTT-SN and CoAP.

In [9] it is observed that when the packet loss rate is low,

MQTT deliver messages with lower delay than CoAP. In

this work, we consider the use of MQTT protocol. MQTT

[10] is a lightweight application level protocol generally

used in IoT contexts. MQTT IoT devices communicate

through an MQTT broker. The protocol architecture is

composed by: Topic (a queue of messages supporting

publish/subscribe pattern), Client (publisher or subscriber on

a specified topic), Broker (the server on which topics are

maintained), Session (it identifies the connection between a

client and the server), Subscription (it attaches a client to a

topic), Messages (data units exchange). The main message

types that are exchanged in this protocol are: CONNECT (it

starts a Session), PUBLISH (it publishes data on a topic),

SUBSCRIBE (it starts a Subscription), UNSUBSCRIBE (it

cancels a Subscription), DISCONNECTED (it closes a

Session), CONNACK, PUBACK, SUBACK, UNSUBACK.

MQTT protocol doesn’t use cryptography, then it can be

susceptible to data tampering and eavesdropping. Moreover,

the broker can be subjected to DoS attacks (which can

exhaust many resources [23]). The security can become a

critical issue in e-Health applications in which this protocol

is used [24, 25]. Moreover, the security management can use

a lot of energy and this can significantly reduce the nodes

lifetime [26, 27].

B. Elliptic curve cryptography

An approach to face data tampering and eavesdropping in

MQTT protocol is to use Secure Socket Layer/Transport

Layer Security (SSL/TLS) [11] but it can consume a

significant amount of energy in an IoT device. Elliptic curve

cryptosystems over finite field have some benefits like the

key size can be considerably smaller compared to additional

cryptosystems like RSA, Diffie-Hellman since only

exponential time attack is known so far if the curve is

carefully chosen [12], [13] and Elliptic Curve Cryptography

depend on the difficulty of explaining the Elliptic Curve

Discrete Logarithm Problem (ECDLP). The elliptic curve

cryptography (ECC) is a type of asymmetric cipher based on

points arithmetic on an elliptic curve [14].

IV. DYNAMIC IOT SECURITY SYSTEM FOR FOG NETWORKS

A. Context

The proposed system is collocated in an IoT context. A

generic IoT context is composed by a Smart Devices Layer

in which we can find IoT devices, an Edge Layer in which

there are fog nodes each of which gathers data from its fog

network nodes (in the Smart Devices Layer) and a Cloud

2Authorized licensed use limited to: Universita CaFoscari Venezia. Downloaded on March 01,2021 at 10:38:40 UTC from IEEE Xplore. Restrictions apply.

Layer which can communicate with all fog nodes (in the

Edge Layer) (Fig. 1). Generally, between two layers there

are security mechanisms. The proposed system is collocated

between the Smart Devices Layer and the Edge Layer and it

is composed by several lightweight nodes and a fog node

(star topology). Lightweight nodes sense data and send them

to the fog node periodically by using the MQTT protocol.

On the fog node, which has a power source and more

processing and storing capacity, it is positioned the MQTT

broker which processes these messages.

Fig. 1: Three Tier Architecture [7]

B. Proposed system

Generally, a ciphered payload needs of a longer

elaboration time than a plain text one. If many lightweight

nodes send messages at high frequency, the fog node can

become congested. A possible attacker can compromise a

lightweight node for making it sending messages at high

frequency. This can make the system unusable. The

proposal wants to adapt the lightweight nodes to these

situations for helping the fog node to decongest itself. Then,

this is made in a distributed manner. In particular, each of

the lightweight nodes is able to detect possible congestion

on the fog node and consequently to react. Each lightweight

node measures the delay between the sent packet and the

received acknowledgment. If the fog node is congested, its

buffer becomes full and it starts to drop packets. As a

consequence, some lightweight nodes will not receive an

acknowledgement and someone will receive it in delay.

These situations help lightweight nodes to detect a

congestion on the fog node, and then, to decrease their

sending messages frequency until the fog node become

uncongested or until reaching the minimum frequency. At

the end of the congestion, each lightweight node tries to

increase its sending messages frequency until reaching the

maximum frequency or until causing a new congestion on

the fog node on the basis of the number of connected nodes.

In fact, higher is the number of connected lightweight nodes

and lower must be the sending messages frequency for

avoiding congestion. This mechanism can be reassumed in

the following pseudocode, that contains the lightweight

node functioning.

Algorithm lightweight_node_behaviour:

int current_packet_type=KEY_EXCHANGE;

long current_interval=MINIMUM_INTERVAL;

loop(){

 Packet pack=null;

 if(current_packet_type==KEY_EXCHANGE){

 pack=forge_key_packet();

 }else if(current_packet_type==CONNECT){

 pack=forge_connect_packet();

 }else{

 pack=forge_publish_packet();

 }

 long start_time=System.current_time();

 Packet ack=send_packet_fognode(WAITING_TIMEOUT,

 pack);

 If(ack==null){

 current_interval=min(MAXIMUM_INTERVAL,

 current_interval*INCR_COEF);

 }else{

 long rtt=System.current_time()-start_time;

 If(rtt<WAITING_TIMEOUT*THRESHOLD){

 current_interval=max(MINIMUM_INTERVAL,

 current_interval*DECR_COEF);

 }else{

 current_interval=min(MAXIMUM_INTERVAL,

 current_interval*INCR_COEF);

 }

 if(current_packet_type==KEY_EXCHANGE){

 current_packet_type=CONNECT;

 }else if(current_packet_type==CONNECT){

 current_packet_type=PUBLISH;

 }

 elaborate_packet(ack);

 }

 sleep(current_interval);

}

Each lightweight node needs to exchange first the ECC

keys, then it can send a CONNECT packet to initialize an

MQTT connection and finally it can send PUBLISH

messages. The “current_packet_type” variable represents

the packet type that must be sent next. The

“current_interval” variable represents the current interval

that must elapse before sending the next message. At the

beginning this interval is set to the minimum, then it is

dynamically adapted to the current fog node congestion and

can change between MINIMUM_INTERVAL and

MAXIMUM_INTERVAL that are initially fixed. Even the

INCR_COEF and DECR_COEF are initially fixed. Each

lightweight node, after sending a packet, it waits for a

WAITING_TIMEOUT to receive a response. If it does not

happen, then it is supposed that the fog node is congested

and then the “current_interval” can be increased. Otherwise,

if it receives a response in time, if the Round-Trip-Time is

3Authorized licensed use limited to: Universita CaFoscari Venezia. Downloaded on March 01,2021 at 10:38:40 UTC from IEEE Xplore. Restrictions apply.

lower than WAITING_TIMEOUT*THRESHOLD the

“current_interval” variable is decreased by supposing that

the fog node is not congested else it is increased by

supposing that the fog node is going to congest. The Fig. 2

summarizes the described mechanism between a generic

lightweight node and the fog node.

Fig. 2: Current_interval update

To avoid the reaching of the buffer fullness, the fog node

starts to drop messages when the buffer fullness reaches a

specified threshold. Respecting some priorities, the

messages are dropped in the following order: key exchange

messages, CONNECT messages and PUBLISH messages.

V. PERFORMANCE EVALUATION

A. Simulation environment

The proposed IoT system was evaluated by implementing
an event driven simulator. It is implemented entirely in Java
language and uses bcprov-jdk15on-160 [22] library for ECC.
In Fig. 3, it is reported a diagram containing the main
simulator modules.

Fig. 3: UML of implemented simulator

The environment module creates, initializes and
maintains all nodes. The fog node uses a MQTT broker for
managing topics, a HIDS module for managing buffer level
and a key manager for managing keys exchange and
maintaining lightweight nodes public keys. The attacker
node is a special lightweight node that sends packet at high

frequency trying to create a congestion on the fog node.
Lightweight nodes send and receive packets periodically.
The simulator provides several context parameters included
in a formatted CSV file. Each parameter can be modified by
the user directly from file, where it is provided a detailed
description. If the sampling mode is on, during the
simulation some data regarding the dropped and timeout
packets are collected and at the end of the simulation, these
data are stored on a formatted CSV file from where it is
possible to generate some graphs. The following paragraphs
contain various graphs generated by the sampled data in
several simulations. The table in Table I contains the used
main default parameters

Context parameters

Name Description Value

samplingInterval
It represents the sampling interval

for data collection
5 s

lightweightNodeNu
mber

It represents the number of
lightweight nodes

100

environmentSizes

It represents the length, the width

and the height of the environment in
meters

100,

100,
100

simulationEndTime
It represents the maximum

simulation time
600 s

attackInterval
It represents the interval between

two packet sent by attacker
10 ms

attackInitialTime It represents the attack initial time 100 s

brokerBufferSize
It represents the size of the broker

buffer for receiving messages

10240

bytes

brokerBufferMaxPe

rc

It represents the percentage of
buffer that must be reached for

starting dropping packets (fog node)

0.8

waiting_timeout

It represents the time for which
each lightweight node waits for

receiving a response after a message

senting

40 ms

minimum_interval

It represents represents the

minimum interval that must elapse

between two message sending

50 ms

maximum_interval

It represents represents the

maximum interval that must elapse

between two message sending

8 s

threshold

It is applied to the waiting_timeout
variable for compute an acceptable

waiting period for supposing that
the fog node is or isn’t congested

0.5

incr_coef

It represents the coefficient for

incresing the current_interval if a

fog node congestion was supposed

1.5

decr_coef

It represents the coefficient for

decreasing the current_interval if a

fog node congestion wasn’t
supposed

0.75

Table I: Main default context parameters

The following simulations compare the static message

sending (SMS) strategy (in which INCR_COEF and

DECR_COEF are both set to 1.0) and the proposed adaptive

message sending strategy (AMS). In particular, we use the

values reported in Table II for the incr_coef and decr_coef

variables.

4Authorized licensed use limited to: Universita CaFoscari Venezia. Downloaded on March 01,2021 at 10:38:40 UTC from IEEE Xplore. Restrictions apply.

Name Incr_coef value Decr_coef value

SMS strategy 1.0 1.0

AMS strategy (1.1, 0.9) 1.1 0.9

AMS strategy (1.5, 0.75) 1.5 0.75

AMS strategy (3.0, 0.33) 3.0 0.33

Table II: Strategies parameters

B. Dropped messages by the fog node

In this paragraph, we analyze the number of dropped

messages by the fog node in relations to their type. In Fig. 4

it is shown the number of dropped key messages in time by

the fog node for the various types of message sending

strategy. We can see that the number of dropped key

messages in the SMS strategy is much higher than the AMS

ones. Moreover, by using a high dynamicity for “incr_coef”

and “decr_coef” helps the system to rapidly adapt the

message sending frequency and this causes a lower number

of dropped key messages. With the start of the DoS attack

and after that the fog node buffer has become full, the

curves trends are different because in SMS strategy all

nodes continue to send messages at the same frequency

while in AMS strategies the nodes adapt their sending

messages frequencies for helping the fog node. In Fig. 5 it is

shown the number of dropped CONNECT messages in time

by the fog node for various types of message sending

strategy. Even in this case the number of dropped

CONNECT messages in the SMS strategy is much higher

than the AMS ones and a high dynamicity for “incr_coef”

and “decr_coef” helps the system to rapidly adapt the

message sending frequency and this causes a lower number

of dropped CONNECT messages. This happens for the

same previously described reason. In Fig. 6 it is shown the

number of dropped PUBLISH messages in time by the fog

node for various types of message sending strategy. Even in

this case the number of dropped PUBLISH messages in the

SMS strategy is higher than the AMS ones for the same

reason. From this graph we can also see that by using a high

dynamicity the number of dropped PUBLISH messages

increases. This can be a consequence of the use of very

dynamic coefficients that can cause several jumps from the

optimal frequency. In fact if it is sensed no congestion on

the fog node and we drastically increase the frequency, we

can cause a congestion. This can happen repeatedly causing

an increase of dropped messages. In Fig. 7 it is shown the

number of dropped messages because of full buffer reached

by the fog node. Unlike previous graphs, where the

dropping process is controlled by the fog node at reaching of

“brokerBufferMaxPerc” fullness, in this graph the dropping

process is uncontrolled because the fog node buffer is

completely full. However, also in this case, the number of

dropped messages for the SMS strategy is higher than the

AMS ones, but in a minor way. We also can see that by

using high dynamic coefficient the number of dropped

messages for full buffer reaching can become lower. From

Fig. 6 and Fig. 7, we can see that AMS Strategy (3.0, 0.33)

is able to cause a more controlled dropping process. In the

controlled dropping process of the first three graphs we can

see that this dropping respect the desired priorities. In fact,

the number of dropped key messages is higher than those of

CONNECT messages, that in turn, is higher than those of

PUBLISH messages. In all previously described graphs it is

possible to note the presence of some step in the trends of

the AMS strategy. These steps represent, for example, the

start of the DoS attack and the time when the fog node

buffer becomes full. Each step is followed by a lowering of

the growth trend coefficient because of frequency adaptation

by lightweight nodes.

Fig. 4: Dropped key messages

Fig. 5: Dropped CONNECT messages

5Authorized licensed use limited to: Universita CaFoscari Venezia. Downloaded on March 01,2021 at 10:38:40 UTC from IEEE Xplore. Restrictions apply.

Fig. 6: Dropped PUBLISH messages

Fig. 7: Dropped messages for full buffer reaching

C. Timeout messages

In the following simulations we analyze the number of

timeout occurred in the lightweight nodes in relations to

their type.

In Fig. 8 it is shown the number of CONNECT messages

sent by the lightweight nodes for which a CONNACK

response was not received within WAITING_TIMEOUT for

the various strategies. We can see that the number of

timeout CONNACK messages for the SMS strategy is

higher than the AMS strategy. This happens because the

SMS strategy continues to send messages ever with the

same frequency, also if the fog node is congested, while the

AMS strategy changes its frequency in relation of the sensed

congestion. In this case the difference is not significant

because the CONNECT messages are sent principally at the

start of the simulation when all lightweight nodes send

messages at high frequency. Later, the AMS strategy adapts

its frequency on the basis of the INCR_COEF and

DECR_COEF. Then, the steepness of the AMS curve

depends of these coefficients. In fact, AMS Strategy (3.0,

0.33) adapts rapidly its frequency, causing a lower number

of timeout CONNACK messages.

In Fig. 9 it is shown the number of PUBLISH messages

sent by the lightweight nodes for which a PUBACK

response was not received within WAITING_TIMEOUT for

the various strategies. We can see that the number of

timeout PUBACK messages in the SMS strategy is much

higher than the AMS ones. This happens because the SMS

strategy continues to send messages ever with the same

frequency, also if the fog node is congested, while the AMS

ones change their frequency in relations of the sensed

congestion. In this case the difference is significant because

when the lightweight nodes with the AMS strategy start to

send PUBLISH messages they have already a good

frequency which was adjusted in the first step at connection

establishment (Key exchange and CONNECT messages).

Fig. 8: Timeout CONNACK messages

Fig. 9: Timeout PUBACK messages

VI. CONCLUSIONS

This work has permitted to propose a distributed

mitigation strategy for DoS attacks in an edge computing

6Authorized licensed use limited to: Universita CaFoscari Venezia. Downloaded on March 01,2021 at 10:38:40 UTC from IEEE Xplore. Restrictions apply.

context in which there are lightweight nodes exchanging

data through a secured MQTT protocol. The security system

is based on ECC for mitigating data tampering and

eavesdropping. The fog node uses a Host Intrusion

Detection system for dropping messages until the reaching

of buffer fullness for granting messages priorities.

Lightweight nodes use an Adaptive Message Sending

strategy for helping the fog node in the decongestion

process because it performs better than the Static Message

Sending one.

The proposed security system was validated by the

implementation of an event driven simulator able to collect

data that can be used for generating some graphs. The

effectuated simulations show that the proposed AMS is

more suitable to a fog network context for mitigating DoS

attacks to the fog node. In fact, if this mitigation is made in

a distributed manner it can be more scalable. Moreover,

higher is the used dynamicity and lower is the adaptation

time in case of congestion. But a very high dynamicity can

become a problem because it causes repeatedly jumps from

optimal point causing system malfunctions.

ACKNOWLEDGMENT

This work was supported by “POR Calabria FSE/FESR
2014/2020 – International mobility of PhD students and
Research Grants/Type A Researchers” - Actions 10.5.6 and
10.5.12 actuated by Regione Calabria, Italy.

REFERENCES

[1] Orlando, «Gartner Identifies the Top 10 Strategic Technology Trends

for 2013», Gartner, 2012.

[2] UL, «An introduction to the internet of things,» White paper, 2016,
https://library.ul.com/wp-content/uploads/sites/40/2016/02/Internet-

of-Things-white-paper_final.pdf.pdf.

[3] Alexia Mourtou, Anastasios Kyranas, Panagiotis Yannakopoulos, «
Internet of Things», 2014.

[4] Vala Afshar, « Cisco: Enterprises Are Leading The Internet of Things

Innovation,» Huffpost, 2017,
https://www.huffingtonpost.com/entry/cisco-enterprises-are-leading-

the-internet-of-things_us_59a41fcee4b0a62d0987b0c6?guccounter=1.

[5] ICT & Electronics, « Internet of Things (IoT) Market : Global
Demand, Growth Analysis & Opportunity Outlook 2023,»,

https://www.researchnester.com/reports/internet-of-things-iot-market-

global-demand-growth-analysis-opportunity-outlook-2023/216.

[6] Mritunjay Kumar, Km Annoo e Raman Kumar Mandal, «The Internet

of Things Applications for Challenges and Related Future
Technologies & Development,» International Research Journal of

Engineering and Technology (IRJET) , vol. 5, n. 1, Jan-2018.

[7] N. e. a. Abbas, «Mobile Edge computing: A Survey,» IEEE Internet of
Things, vol. 5, n. 1, pp. 450-65, 2018.

[8] F. A. Hany, B. Gary e B. W. Gary, «Fog Computing and the Internet

of Things: A review,» Big Data Cognitive Computing, 2018.

[9] S. Barber, P. Mahalle, A. Stango e N. Prasad, «Proposed security

model and threat taxonomy for the internet of things,» Recent Trends

in Network Security and Applications, Springer Heidelberg, pp. 420-
429, 2010.

[10] P. R. Egli, «MQTT MQ Telemetry Transport - AN INTRODUCTION

TO MQTT, A PROTOCOL FOR M2M AND IoT APPLICATIONS,»
indigoo.com, 2016.

[11] E. Rescorla, «SSL and TLS: Designing and Building Secure

Systems,» Addison-Wesley Reading, 2001.

[12] K. N., «Elliptic Curve Cryptosystems,» Mathematics of Computation,

vol. 48, pp. 203-209, 1987.

[13] D. H. e. al., «Guide to Elliptic Curve Cryptography».

[14] M. V. S., «Use of Elliptic Curves in Cryptography,» Springer-Verlang

Berlin Heidelberg, 1986.

[15] H. Farhoud, V. A. Payam, P. Juha, H. Timo e T. Hanu, «An Intrusion
Detection System for Fog Computing and IoT based Logistic Systems

using a Smart Data Approach,» International Journal of digital
Content Technology and its Applications (JDCTA), vol. 10, n. 5, 2016.

[16] Bace & Rebecca, «An introduction to Intrudison Detection &

Assessment,» Infidel Inc. prepared for ICSA Inc, 1998.

[17] Oscar Garcia-Morchon e H. Renè, «Security consideration in the IP-

based Internet of Things,» IETF Internet-Draft, 2013.

[18] A. Mektoubi, H. L. Hassani, H. Belhadaout e M. Rifi, «New approach
for securing communication over MQTT protocol: A comparison

between RSA and Elliptic Curve,» IEEE, 2016.

[19] A. A. Diro, N. Chilamkurti e N. Kumar, «Lightweight Cybersecurity
Schemes Using Elliptic Curve Cryptography in Publish-Subscribe fog

Computing,» Springer Science + Business Media , New York 2017.

[20] R. M. S. V. a. B. P. Meena Singh, «Secure MQTT for Internet of
Things (IoT),» Fifth International Conference on Communication

Systems and Network Technologies, 2015.

[21] P. Victor-Valeriu, C. Bogdan-Cosmin e B. Ion, «Mitigating DoS
attacks in publish-subscribe IoT networks,» ECAI 2017-International

Conference-9th edition, 2017.

[22] «The Legion of the Bouncy Castle», Available:
https://www.bouncycastle.org/latest_releases.htm

[23] F De Rango, DC Lentini, S Marano, «Static and dynamic 4-way

handshake solutions to avoid denial of service attack in Wi-Fi
protected access and IEEE 802.11i,» in EURASIP Journal on Wireless

Communications and Networking, Vo. (1), 2006.

[24] A.F. Santamaria, F. De Rango, A. Serianni, P. Raimondo, «A real IoT
device deployment for e-Health applications under lightweight

communication protocols, activity classifier and edge data filtering, »

in Computer Communications, 2018, Vo. 128, pp. 60-73.

[25] A.F. Santamaria, P. Raimondo, F. De Rango, A. Serianni, «A two

stages fuzzy logic approach for Internet of Things (IoT) wearable

devices, » in IEEE 27th Annual International Symposium on Personal,
Indoor, and Mobile Radio Communications, 2016, pp.1-6.

[26] A. Lupia, CA Kerrache, F De Rango, C.T. Calafate, J.C. Cano, P.

Manzoni, «TEEM: Trust-based Energy-Efficient Distributed
Monitoring for Mobile Ad-hoc Networks, » in Wireless Days (WD),

2017, pp.133-135.

[27] A Lupia, F De Rango, «Evaluation of the energy consumption
introduced by a trust management scheme on mobile ad-hoc networks,

» in Journal of Networks (JNW), Vol. 10 (4), 2015, pp.240-252.

[28] Frnda, J., Voznak, M., Sevcik, L. «Impact of packet loss and delay
variation on the quality of real-time video streaming»,

Telecommunication Systems, 2016, 62 (2), pp. 265-275. DOI:

10.1007/s11235-015-0037-2

[29] Voznak, M., Kovac, A., Halas, M. «Effective packet loss estimation

on VoIP jitter buffer», Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 2012, 7291 LNCS, pp. 157-162. DOI: 10.1007/978-

3-642-30039-4_21

7Authorized licensed use limited to: Universita CaFoscari Venezia. Downloaded on March 01,2021 at 10:38:40 UTC from IEEE Xplore. Restrictions apply.

