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A B S T R A C T

With the proliferation of connected vehicles, new coverage technologies and colossal bandwidth availability,
the quality of service and experience in mobile computing play an important role for user satisfaction (in terms
of comfort, security and overall performance). Unfortunately, in mobile environments, signal degradations very
often affect the perceived service quality, and predictive approaches become necessary or helpful, to handle, for
example, future node locations, future network topology or future system performance. In this paper, our atten-
tion is focused on an in-depth stochastic micro-mobility analysis in terms of nodes coordinates. Many existing
works focused on different approaches for realizing accurate mobility predictions. Still, none of them analyzed
the way mobility should be collected and/or observed, how the granularity of mobility samples collection should
be set and/or how to interpret the collected samples to derive some stochastic properties based on the mobility
type (pedestrian, vehicular, etc.). The main work has been carried out by observing the characteristics of vehic-
ular mobility, from real traces. At the same time, other environments have also been considered to compare
the changes in the collected statistics. Several analyses and simulation campaigns have been carried out and
proposed, verifying the effectiveness of the introduced concepts.

1. Introduction

Pattern prediction, location tracking and micro/macro mobility
analysis represent several research topics that attracted researchers’
attention from decades (Pirozmand et al., 2014). The ability to pre-
dict users’ movements benefits a wide range of mobile wireless sys-
tems, such as location-based applications, mobile access control, Qual-
ity of Service (QoS) provisioning, resource allocation/management,
urban planning, epidemic control, location-based services, and intel-
ligent transportation management (Fazio et al., 2017). For example,
when referring to ad-hoc networks, node mobility is one of the crit-
ical aspects that have been investigated and predicted, given that it
is crucial for Mobile Ad-hoc NETworks (MANETs). Additionally, an
Information-Centric Network (ICN), dedicated to offering some features
such as distributed storage, caching and content relocation, could use
mobility prediction to optimize the content distribution, according to
user’s future locations: the user content will be available in the area it
will visit in the future, with a considerable reduction of content access
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delay. The overall performance of the considered system, for which
mobility prediction is exploited, depends on the accuracy of the pro-
posed approach, as well as on the intrinsic traffic/mobility dynamics
(Satria et al., 2014).

In this paper, we do not propose only a new predictive scheme, but
also an in-depth analysis of the way mobility samples should be con-
sidered and collected to build the historical records, which represent
the starting point for any conventional/unconventional approach (neu-
ral networks, machine learning, Markov chains, Kalman’s filtering and
other). The prediction process is always based on a preliminary training
phase, represented by the history of past user movements. To the best
of our knowledge, no works until now have considered the following
issues:

• Which should be the frequency of collecting mobility samples (rep-
resented by some form of locations or, by the coordinates)?

• How far should the prediction approach go when obtaining the
future mobility sample? Is it useful, for a mobile system to predict
the next user position after several seconds or the system is inter-
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ested in knowing the future location after a more substantial period
of time?

• Assuming that its spatial coordinates represent the location of a
moving node (such as x,y in a 2D space), is there a way to make
only one evaluation of the next position, without evaluating the
variations of x and y separately?

In this paper we address listed questions, both from a theoretical
and practical point of view, capturing the main concepts, dynamics and
aspects strictly related to the mobility prediction analysis, giving the
reader the needed knowledge about the opportunities of making a right
choice during the exploitation of predictive approaches. Without loss
of generality, we carry out our analysis on mobility records composed
only by GPS coordinates (or some representations of them), without
considering any additional feature (such as social relations, PoIs, PSIs,
LBSNs, etc.). In this way, the proposed approach is completely general
and can be enhanced, if needed, by considering the relevant issue, based
on the considered scenario.

The paper is organized as follows: Section 2 introduces some recent
works about mobility prediction models and recent advances, while
Section 3 gives a deeper description of the proposed idea, under a the-
oretical point of view. Section 4 gives a deep description of the main
reachable results, and section 5 concludes the paper.

2. State of the art and main contributions

There are many works in the literature about predictive approaches
in mobile networks (Zhang and Dai, 2019): in many mobile network
architectures, it is desired to a priori know (with a possibly low pre-
diction error) the future movements of mobile nodes, to enhance the
overall performance of the considered system (Zareei et al., 2018).

In (Zhao et al., 2015), the authors emphasize the concept of loca-
tion prediction, underlining its effects on mobility and bandwidth eval-
uation. The usage of the knowledge about the future node locations in
LTE networks for self-adaptation procedures and optimal network con-
figuration during run-time operations is illustrated.

In (Yamada et al., 2018), a novel prediction scheme is proposed,
based on the management of smartphones data (location, schedule, e-
mail information, etc.); the authors, after the illustration of the impor-
tance of big data management, show the way the data over more than
one year has been collected and, based on it, they demonstrated that the
proposed scheme can predict user location precisely, giving to mobile
users some enhanced services (about location, torrential rain, train
delays, traffic jams, etc.).

The article in (Chon et al., 2012) evaluates several mobility mod-
els (Markov and Next-Place of different orders) for regularity and
predictability purposes. The carried-out empirical studies show the
hegemony of location-dependent predictors; their performance can be
enhanced with the exploitation of the adaptive use of mobility models
and high-granularity data.

In (Cao et al., 2017; Yu et al., 2017), the concept of Location-Based
Social Networks (LBSNs) and Next-Place is considered. In the former
paper, the authors take into account the prediction of future check-
in locations of mobile users by analyzing user mobility patterns (in
terms of time periodicity, global popularity and user preference). The
proposed algorithm can extract a set of predictive features, which are
then classified, to predict fine-grained future movements. The predic-
tion approach is based on the construction of a heterogeneous social
network model. In the latter, instead, the authors propose a novel
approach based on the activity pattern for location prediction: their
idea is composed of two features. Firstly, the individual’s next activity
is determined by modelling user activity patterns; then, the next-place
is predicted based on the next activity. Also, in this case, the authors
demonstrated that their approach represents a robust scheme for pre-
dicting future places.

Fig. 1. Taxonomy of the main elements contributing to the accu-
racy/complexity of mobility prediction performance in mobile networks.

The work in (Wu et al., 2018) is strictly related to location pre-
diction, social interactions and Points of Interest (POIs). The authors
compared the last two aspects together with a two steps PSI model and
a two-stage POIs clustering approach, to reduce the effects of random-
ness and to improve the overall performance of the prediction scheme.
The paper illustrates several results, by which it can be understood how
the PSI approach outperforms other predictive algorithms.

In (Li et al., 2019), the authors, face the issue of sparse individ-
ual trajectory data, which often results in a high error of prediction
results. The proposed scheme is called Individual Trajectory-Group Tra-
jectory (ITGT), and it is based on the pattern created by group travels.
Different stages are considered, starting from a stay point extraction
with spatial clustering, and different Markov models (PPM and PST)
are then exploited to predict the clustering link. A massive amount of
real data points have been used, and the obtained results confirmed
authors expectations, with an accuracy of almost 90%.

The paper in (Katsikouli et al., 2017) describes an experimental
analysis of the way a continuous human mobility pattern can be recon-
structed after being sampled. The authors show the committed recon-
struction error based on the sampling frequency, claiming that the inac-
curacy grows of 1–4 m for each minute added to the sampling interval.
The authors did not consider the effects of changing the sampling fre-
quency on any predictive approach and the existing relationship among
the collected samples.

The work in (Wu, 2018) represents a recent overview of different
methods and approaches for predicting mobile trajectories, basing the
choice of next places on mobility data. The paper, after an interest-
ing introduction, describes the basic concepts of location prediction,
including the different sources of trajectory data, the general prediction
framework, challenges in location prediction, and common trajectory
data preprocessing methods.

In the paper in (Suraj et al., 2016) the authors underline the impor-
tance of mobility prediction in routing operations for mobile networks.
In particular the authors base their approach on the genetic theory,
able to remove outliers on the basis of heuristics and parent selection.
Numerical analysis demonstrates that, in general, a good accuracy level
can be reached.

Fig. 1 shows the classification of the above mentioned works, iden-
tifying the main elements which contribute to the acccuracy of a pre-
diction approach (model, algorithm, etc.). To the best of our knowl-
edge and from the reading of the most recent papers on mobility
prediction (as the ones described before), no works are focusing on
giving a detailed analysis of the way the mobility process should be
sampled for prediction purposes, neither from a temporal point of
view (the sampling period/frequency, the time at which the next loca-
tion/place/sample is needed) nor from a computational/space com-
plexity point of view (the number of values or features to be stored
and needed to build/train the prediction model). Referring to Fig. 1,
our proposed idea belongs to the “Sampling Approaches”, and the
“Sampling effects on accuracy” are deeply studied.
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Table 1 shows a comparison between the main features proposed in
this paper and the ones of the reviewed articles (for (Wu, 2018) round
brackets are used given that it represents a survey).

3. Mobility prediction and related issues

First of all, the considered issue is introduced and, then, an in-depth
analysis is carried out, to characterize each mobility process from a
stochastic point of view. We start the description of our idea by con-
sidering a mono-dimensional moving space (finding only one mobility
coordinate, i.e. a 1D space) and, then, the approach is generalized to 2D
and 3D spaces, enhancing the approach by reducing the needed storing
space (as explained in next sections). So, we will consider a generic
mobile network, in which all the nodes are free to move among a
given geographical region (e.g. Vehicular Ad-hoc NETworks - VANETs,
Wireless Sensor Networks - WSNs, Mobile Ad-hoc NETworks - MANETs,
etc.).

3.1. Mobility as an auto-regressive discrete process

As introduced in (Wu, 2018; Chaudhari and Biradar, 2016; Wang
et al., 2019), each time a mobile network needs to know the future
positions of mobile users, mobility patterns are stored in a central-
ized/distributed database. Then, a predictive model is built-up by ana-
lyzing the structure, and features of the stored patterns and as well as
the model are exploited to obtain the so-called “next-places”. This is the
generic process of mobility prediction, and it is based on the sampling
of the mobility pattern of each node (continuous in time), obtaining a
sequence of coordinates. Here, we do not consider whether the observed
mobility belongs to individual or group mobility. Consider a moving
node n on a 1D linear map, as depicted in Fig. 2. In this sub-section we
will refer only to one mobility coordinate of the mobile nodes, then the
approach is generalized for a 2D/3D environment.

Let us define xn(t) as the value of the x coordinate of user n at time t.
It is a continuous function of time. We assume that the mobile network
(or, directly, the mobile node n) is able to store xn(t) each T seconds
(sampling period): we indicate with Xn(kT) the discretized version of
xn(t), where k is a positive and integer value (for k = 0 the sampling
operation is started). The concept of discretization, here, is referred to
the effects of sampling mobility trajectories. In this sense, the term Xn
can be considered as a random variable, defined on the space Ω ≡ ℝ.
After the collection of mobility samples, the vector ⃖⃗Xn(T) is obtained,
with ‖ ⃖⃗Xn(T)‖ = N.

At this point, the content of ⃖⃗Xn(T) should be analyzed to evaluate
the potential relationship between Xn(kT) and Xn[(k − j)T], where j is
called lag and it is a non-zero integer value.

To this aim, we assume that Xn(kT) is an Auto-Regressive process of
order j, AR(j). Additionally, we consider the AutoCorrelation Function
(ACF) and the Partial ACF (PACF) (Bisgaard and Ankenman, 1996), as
indexes of the correlation between two values of the process (Borrego et
al., 2019). Thus, for the process Xn(kT) the autocovariance (Cochrane,
1997; Hornik et al., 1989; Lee) at lag j is defined as:

𝛾
Xn
j = Cov(Xn(kT),Xn[(k − j)T]) = …

… = E[(Xn(kT) − 𝜇) · (Xn[(k − j)T] − 𝜇)]
(1)

where 𝜇 is the mean of the process, i.e. 𝜇 = E[Xn(kT)], and the
autocorrelation coeffcient at lag j is:

𝜌
Xn
j =

𝛾
Xn
j

𝛾
Xn
0

(2)

where the autocovariance at lag zero 𝛾
Xn
0 is the variance of the pro-

cess. In the rest of the paper, the notations Xn(kT) and Xn are used
as equivalent, as well as Xn[(k − j)T] and Xn(j). It is clear that, from Ta
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Fig. 2. An example of a vehicle moving along a linear path, with its position defined by x(t).

Table 2
The average values of PACF for different pedestrian datasets of (Rhee, 2009).

j KAIST NCSU NY ORLANDO N.CAR.

1 −0.9933987 −0.997281 −0.99201195 −0.96613169 −0.98492919
2 0.15348976 0.150826 0.10655107 0.07390794 0.041613918
3 0.06507763 0.0854651 0.05102174 −0.12090218 0.020630298
4 0.04794046 0.0567063 −0.00138689 −0.05234692 0.03178502
5 −0.0734971 0.0330214 −0.0094392 −0.1179648 0.032317315
6 0.01185847 0.0418836 −0.00484217 −0.11924598 0.015642719
7 −0.0688321 0.0233922 −0.02560779 −0.13593025 0.003799786
8 −0.0316733 −0.009589 −0.04205781 0.04299811 −0.00494047
9 −0.0201564 −0.007314 −0.03827792 −0.09701921 −0.00490907
10 −0.0369393 −0.009194 −0.03666558 −0.11053815 −0.01280945

the definition, the autocorrelation coefficient 𝜌Xn
K is dimensionless, so

independent from the measurement scale, and it belongs to the inter-
val [−1,1]. From (Box et al., 2008), it is known that the term in eq.
(2) is the theoretical ACF. A lag j autocorrelation represents the rela-
tion between mobility values that are j time periods apart. So, the ACF
is a way to consider the linear relationship between a time instant
kT and all the previous process observations. As said before, in our
work, we assume that node mobility can be modelled as a AR(j) pro-
cess. Still, we want to know which is the relation among Xn(kT) and
Xn[(k − j)T], without considering the contributions of any intermedi-
ate terms Xn[(k − 1)T], …, Xn[(k − j + 1)T]. Clearly, at lag 1, PACF(1)
is the same as ACF(1). Following the theory in (Yule, 1927), to describe
the expression for the PACF, we have to consider j Yule-Walker equa-
tions (Yule, 1927) written for the AR(j) process, and solve them for the
j variables 𝜑j1,… , 𝜑jj. Typically they are written in a matrix form as
follows:⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 Xn(1) … Xn(j − 1)
Xn(1) 1 … Xn(j − 2)
Xn(2) Xn(3) … Xn(j − 3)
… … … …

Xn(j − 1) Xn(j − 2) … 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
·

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝜑j1

𝜑j2

𝜑j2

…
𝜑jj

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Xn(1)
Xn(2)
Xn(3)
…

Xn(j)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(3)

and the PACF will be represented by the j − th solution 𝜑jj, a func-
tion of lag j.

Based on the discussion above, and as shown in the next sections,
we can conclude that using the PACF instead of the ACF will lead us
to obtain the values of j for which the mobility samples are strictly
correlated. So, the ACF and PACF are statistical measures that reflect
how the observations of a process evolution are related to each other.

Based on the value of j, solving the system in eq. (3), by invert-
ing the matrix, could result in O(j3) operations with many numerical
problems (due to the limited accuracy of the processing unit). So we
based our analysis, instead, on the Levinson-Durbin Recursion (LDR)
approach (Hänsler, 2001), which represents a solving method able to
exploit some properties of the matrix (such as the Toeplitz structure).
It has been demonstrated that this algorithm has a computational com-
plexity of O(j2) (Hänsler, 2001). An example of the results obtained by
applying Eq. (3) and LDR to real traces is illustrated in Table 2.

In particular, we considered the datasets in (Rhee, 2009), consisting
of human mobility traces in GPS format from five different sites: two
university campuses (NCSU and KAIST), New York City, Disney World
(Orlando), and North Carolina Raleigh (during the state fair event). As

illustrated in the figure, for each column, the decay of PACF for higher
values of j (i.e. the higher distance between Xn(kT) and Xn[(k − j)T])
becomes evident (only the absolute value is taken into account), so the
influence of farther samples on the considered one becomes negligible.
We will deep this aspect in the next sections, when the proper value
of j is discussed, considering different types of mobility, instead of the
pedestrian one.

Foremost, we preliminarily provided to verify the results obtained
in (Katsikouli et al., 2017) regarding the spectral content of Xn(kT). In
particular, considering Xn(kT) as a discrete unidimensional signal, its
spectrum can be easily obtained as follows (by applying the Discrete
Fourier Transform - DFT):

Xn(f ) =
N−1∑
k=0

Xn(kT) · e−j𝜔kT (4)

and the authors of (Katsikouli et al., 2017) affirm that the sampling
frequency does not affect the spectral counterpart and the Power Spec-
tral Density (PSD) of the collected samples. We also recall that:

PSDXn
(f ) =  [𝜌Xn

j ] (5)

where 𝜌
Xn
j is defined in 2 (Wiener–Khintchine theorem).

We referred to the previous traces, for which an observation window
of the 30s has been considered, that is to say, each sample collection
activity has a global duration of 30s. For the KAIST traces, the average
number of samples N is 1608, for the NCSU traces N = 1431, for the NY
traces N = 1600, for the Orlando, traces N = 1284 and for the North
Carolina traces N = 415. We can conclude that the average sampling
periods T are 18.65ms, 21ms, 18.75ms, 23.36ms and 72.29ms, respec-
tively. We evaluated the spectral content for the whole datasets but, due
to space limitations, we cannot show all the obtained PSD shapes: just,
for example, Fig. 3 gives an idea of the PSD trend based on the sampling
period. In particular one trace from KAIST dataset is shown for sam-
pling frequencies F1 = 1∕T, F2 = 1∕4T and F3 = 1∕8T. We observed
the same trend for most of the traces, without noticing a considerable
change in the PSD shape, confirming the results of the previous studies
(Katsikouli et al., 2017).

At this point, we have to discuss the main aim of this sub-section:
what happens to the PACF if we change the sampling period T (or sam-
pling frequency F = 1∕T) for ⃖⃗Xn(T). To this aim, we provided to extend
the spectral analysis by investigating the effects of the sampling fre-
quency on the PACF. In other words, the question is: to make a next
location prediction with reasonable accuracy, is it necessary to sample

4
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Fig. 3. Double-sided Power Spectral Density (PSD) of one trace from KAIST dataset with sampling periods T = 18.65ms, 4T = 74.60ms and 8T = 149.2ms.

mobility patterns so frequently? Table 3 illustrates the obtained PACF
for different values of j (ranging from 1 to 3) and different sampling
periods from T to 16T (considering only the x coordinate). The last
column is the PACF averaged on the different traces, and the absolute
values have been considered. The main experimental result which can
be inferred is that the sampling frequency does not affect the nature of
the AR process: for j = 1, the absolute value of PACF is always near to
1, while from j = 2 the magnitude of PACF becomes negligible.

Concluding this sub-section, we can state that the choice of a sam-
pling frequency for storing a discretized mobility pattern affects nei-
ther the spectral content nor the correlation between any sample of the
trace. In Section 4, we will deeply analyze these preliminary results on
several mobility traces.

3.2. A possible criterion for choosing the sampling frequency aimed at
prediction purposes

After the description of the previous section, it is clear that a way for

choosing a proper value of sampling frequency should be found. From
one side, high sampling rates could be desired, due to the possibility of
exactly capturing the dynamics of the system and create precise histor-
ical traces; from the other side, the amount of data to be stored should
be minimized. Some examples of possible scenario for which sampling
frequency becomes critical are the following ones:

• Energy-based computing: higher is the sampling frequency, higher
will be the energy consumption;

• Protocol optimization: higher is the sampling rate, higher will be the
overhead in a communication system, because of the huge amount
of needed signalling messages;

• Sending probing messages for mobile polling devices: nodes are
localized periodically for different purposes of network management
and, also, in this case, the polling period becomes fundamental;

• Pattern compression: when mobility data is stored, it needs to be
compressed to reduce the needed space; the number of collected
samples will impact on the computational performance and the
needed space;

5



P. Fazio et al. Journal of Network and Computer Applications 168 (2020) 102778

Table 3
The average values of PACF for different sampling periods referred to the traces of (Rhee, 2009).

j = 1 KAIST NCSU NY ORLANDO N.CAR. ABS-AVG
T −0.99339 −0.99728 −0.992011 −0.966 −0.9849 0.98672
2T −0.9972 −0.9987 −0.9963 −0.9853 −0.969 0.9893
4T −0.9934 −0.9973 −0.992 −0.9661 −0.9359 0.97694
8T −0.9842 −0.9932 −0.9825 −0.9397 −0.863 0.95252
16T −0.9644 −0.9851 −0.9588 −0.8724 −0.7655 0.90924
j = 2 KAIST NCSU NY ORLANDO N.CAR. ABS-AVG
T 0.15348 0.150826 0.10655 0.0739 0.04161 0.10527
2T 0.1475 0.0785 0.0749 0.3532 0.0544 0.1417
4T 0.1535 0.1508 0.1066 0.0739 0.0921 0.11538
8T 0.1093 0.1353 0.1083 −0.1078 −0.0125 0.09464
16T −0.0254 0.2112 −0.0452 −0.3273 −0.443 0.21042
j = 3 KAIST NCSU NY ORLANDO N.CAR. ABS-AVG
T 0.06507 0.085465 0.051021 −0.1209 0.02063 0.06862
2T 0.0659 0.0472 0.052 −0.3091 0.0612 0.10708
4T 0.0651 0.0855 0.051 −0.1209 −0.09 0.0825
8T −0.007 0.0897 −0.0267 −0.175 −0.0739 0.0746
16T −0.0963 0.0441 −0.1571 0.2714 −0.2028 0.15434

• Trajectory prediction in dynamic networks: mobile nodes frequently
cause changes to the network topology; it is often desired to know
which will be the future position of a node (a relay node for exam-
ple), to take into account its stability or its contribution to the over-
all path duration. Based on node speeds, the sampling frequency
should be tuned, to make adequate in-advance location predictions.

The concept of sampling period/frequency can be applied in differ-
ent scenarios, and each one has its features and needings. In this subsec-
tion, then, we propose a general approach for choosing a proper value
of the sampling period, which can be particularized for the desired sce-
nario.

So, let us consider two sampling periods T1 and T2, with T1 < T2
and, without loss of generality we assume that T2 = l · T1, with l a
positive integer. We can define T1 as a fine-grained sampling period,
while T2 as a coarse-grained sampling period. Without considering any
particular prediction scheme (see, for example (Fazio et al., 2017), for a
complete description of the main algorithms for mobility prediction in
cellular networks), let P(j) be a generic j-th order predictor. So, we can
write that, in the case of fine-grained sampling, the next process value
at (k + 1)T1 is:

X∗
n [(k + 1)T1] = gP(j) {Xn[(kT1)],Xn[(k − 1)T1],…

… ,Xn[(k − j)T1]}
(6)

that is to say, after the collection of the last k − th sample, the next
process value at (k + 1)T1 is a function g (depending on the predictor
P) of the previous j samples, each one collected every T1 seconds. We
use the notation X∗

n for indicating a predicted sample. If another next
value is needed, then for the (k + 2) − th sample we will have:

X∗
n [(k + 2)T1] = gP(j)

{
X∗

n [(k + 1)T1],Xn[(kT1)],…

… ,Xn[(k − j + 1)T1]}
(7)

where the previously predicted (k + 1)-th sample is needed to col-
lect the j samples (as the order of the exploited predictor). So, in gen-
eral, if we need to predict h next samples (with h < j) starting from
the k-th one, we can write:

X∗
n [(k + h)T1] = gP(j)

{
X∗

n [(k + h − 1)T1],…

X∗
n [ (k + h − 2)T1)],… ,Xn[(kT1)],… ,Xn[(k − 1)]T,…

…Xn[(k − j + h − 1)T1]}

(8)

where the samples from the (k − j + h − 1)-th to the k-th rep-
resent the real history, while the samples from the (k + 1)-th to the
(k + h − 1)-th have to be predicted previously. This is the only way

Fig. 4. An example of the application of equations (6) and (7), with j = 3,
T1 = T = 1s. Starting from the bottom row, it can be seen that, at t = 4s, for
the sample at t = 5s the previous three samples are used. In the middle row,
instead, at t = 4s for predicting the sample at t = 6s we need to consider the
previously predicted sample at t = 5s, because we still do to know the real
sample at t = 5s. The same if we need to know the sample at t = 7s (top row).

a j-th order predictor can be exploited when more than one prediction
is needed. Numerically, if T1 = 1s and the last k-th sample has been
collected at t = 4s, then the next (k + 1)-th sample will be predicted
for t = 5s. If we need at t = 4s to know the process value at t = 6s,
then we have to apply equations (6) and (7) iteratively as in 8, using
some already predicted samples to predict the 6-th one (the number of
already predicted samples depend on j). Fig. 4 illustrates this concept
graphically, for a predictor P(3), hence j = 3.

Clearly, fine-grained sampling leads to a prediction error:

Δe(k + 1) = |X∗
n [(k + 1)T1] − Xn[(k + 1)T1]|2 (9)

where Xn[(k + 1)T1] is the real process value at time (k + 1)T1. In
the case of multiple predictions we have:

Δe(k + h) =
h∑

i=1
Δe(k + i) =

h∑
i=1

|X∗
n [(k + i)T1] +…

…− Xn[(k + i)T1]|2.
(10)

In the case of coarse-grained sampling, we use the period T2 = l · T1
and equations (6)–(10) remain the same (just substituting T1 with T2).
At this point, if we want to know the prediction error after h · T1 amount

6
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Fig. 5. An example of fine-grained sampling (period T1) and coarse-grained
sampling (period T2), with l = 3, T2 = 3 · T1.

of time, the two expressions for fine and coarse samplings are:

Δefine(k + h) =
h∑

i=1
Δefine(k + i)

Δecoarse(k + 1) = |X∗
n [(k + 1)T2] − Xn[(k + 1)T2]|2

(11)

that is to say for knowing the predicted value of the process after
h · T1 amount of time, in the case of fine sampling h steps are neces-
sary (and the global error will be the sum of the h error terms), while
for the coarse sampling only one step is enough (and the global error
will be equal to the single prediction error). Fig. 5 better illustrates the
relationship between fine and coarse sampling (with l = 3).

So, the choice of l (and, hence, of the sampling period) strictly
depends on the accuracy of P(j) and, also, on the intrinsic dynamic
of the considered system. If we are dealing with a periodic system with
period Ti (let us think, for example, to the triggered updates in a routing
process, or the beaconing signalling in a mobile network, etc.), then it
is desired to have next predicted values at a time that is at least Ti far
away. In the following sections, we will deeply analyze what happens
to the prediction error when we deal with mobile nodes, and the proper
value of l will be discussed.

3.3. Correlating the spatial coordinates with one value: the pairing
functions (PFs)

In this sub-section, we generalize our approach (until now it
has been referred only to one coordinate), introducing a correlation
between the two spatial coordinates x and y (it is also possible to extend
the analysis to the third variable z, as explained later). As already men-
tioned, most of the existing works do not account for the intrinsic cor-
relation between the spatial component of a 2D space (we consider the
dimensions up-to ℝ2). To introduce the two spatial components, we will
use the notations Xn(kT) and Yn(kT) to indicate the x and y coordinates
respectively. All the equations defined before are still valid for the other
mobility components.

One way to proceed is represented by studying the two components
separately, but there are many disadvantages to this kind of approach:

• One point on a surface is characterized by m components (with
m = 2), and each node in a mobile network moves in the consid-
ered geographical region by coordinating all the spatial variables;
besides, based on the considered scenario (a street, a road, a high-
way, a free-space, etc.) a node moves by respecting the environmen-
tal constraints; so, analyzing the individual process, independently
from the other ones, leads to the definition of some models which
may leak some precious information;

• If we deal with m separate processes, it means that we have to con-
sider m different historical traces, k distinct predictors (Px(i) and
Py(j) in the case of ℝ2) and we have to make m independent predic-

tions, each time a next-place is needed. It is evident that this kind of
approach is not efficient from a computational point of view;

• The available space needed to store m traces may be scarce.

For the reasons above, we studied a way to encode the sequence
of the m samples into only one value: in this way, only one trace is
needed, only one prediction needs to be made, and once the next-value
is obtained, it can be decoded back into the m components. To do this,
we based our approach on the Pairing Functions (PFs) (Krishna et al.,
2016; Szudzik, 2017). The concept of PF is briefly explained below and
some PFs are introduced for encoding the content of the trace files.

A PF defined on a set A relates each pair of members from A with
a single member of A, and any two distinct pairs are associated with
two distinct members. In this way, it is possible to encode a couple of
values with a single one and, then, decode the original values when
needed. A PF is generally indicated as a function pf ∶ Am → A, and they
are used in a wide variety of applications (renderers, shaders, theoret-
ical computer science, etc.). We will indicate with pf−1 ∶ A → Am the
inverse PF function to decode back the m values (it is also called unpair-
ing function). Many PFs have been defined in literature (Wolfram and
Gad-el-Hak, 2003): their study and evaluation are out of the scope of
this paper, while the main aim of this sub-section consists in the appli-
cation of some PFs to encode mobility traces. Cantor’s PF is the most
known (Wolfram and Gad-el-Hak, 2003), defined as a bijection ℕ2 → ℕ:

pfCantor (x, y) =
(x + y) · (x + y + 1)

2
+ y (12)

but it has been demonstrated that it has limitations in terms of value
packing efficiency. For example, if we set x = 8 and y = 8 we would
expect to obtain a maximum of 81 as a result (given that two digits 0–8
and 0–8 can create only 81 combinations), but pfCantor(8,8) = 144,
with an efficiency of only 56%. This result can be significantly improved
by Szudzik’s PF, also defined as a bijection ℕ2 → ℕ:

pfSzudzik(x, y) =
{

x + y2 x < y
x2 + x + y x ≥ y

(13)

with pfSzudzik(8,8) = 80. Among the wide variety of existing PFs, we
based our approach on the one defined in eq. (13). It is just an example
of the way a PF can be exploited to optimize the analysis of mobility
traces.

At this point, we have to see if and how a PF can be adapted to our
scopes. There are some drawbacks which have to be taken into account:

• Natural numbers: PFs are defined from ℕ2 to ℕ, so the real numbers
are not considered (PFs are polynomial functions, and no continuous
bijections are possible for ℝ2 and ℝ (Brouwer, 1912)). To overcome
this issue, different ways can be chosen.
– Mobility trace values can be quantized: given a geographical

region in which nodes are moving, it is easy to derive the min-
imum and maximum extension of xn(t) and yn(t) and, after the
sampling operation, values can be quantized, after setting a proper
resolution;

– A second possible solution is represented by the approximation
of mobility values. In some cases, depending on the used mobil-
ity format, the decimal part can be neglected (e.g. planar coordi-
nates), or any value can be transformed into an integer one by a
multiplication factor (e.g. GPS coordinates).

• Non-negative numbers: mobility traces often contain negative values
which do not belong to ℕ; they can be converted into integers, but
no operations can be made on the sign. Also, in this case, we have
some solutions:
– x and y values can be translated to move the origin of the reference

system;
– PF functions can be transformed to account for negative integers.

• Extension to the third coordinate: with the proliferation of the
Unmanned Aerial Vehicles (UAVs), for example, the third coordi-
nate assumes critical importance (ur Rahman et al., 2018), differ-
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Fig. 6. The logical structure of the MATLAB testbed.

ently from classical approaches for which the mobile nodes belong
to a planar geographical region. In this paper, we consider mainly
vehicular mobility (so a 2D region is enough), but the approach can
be extended to UAVs or other technologies.
– The first greedy approach is to consider a pairing of pairing:

given x, y and z coordinates, we can evaluate a = pf(x, y) and
b = pf(a, z) so the prediction analysis will be made only on b;

– A second alternative is represented by the exploitation of encoding
techniques different from PFs (e.g. bit-interleaving, etc.). We will
consider this research topic in future works.

For the Szudzik PF in eq. (13), the unpairing function is defined as
follows (for Cantor’s unpairing function please refer to (Wolfram and
Gad-el-Hak, 2003) and (Cantor, 1878)):

pf−1
Szudzik(a) =

{
a − ⌊√a⌋2 x⌊√a⌋ y

(14)

if x < y, or

pf−1
Szudzik(a) =

{⌊√a⌋ x
a − ⌊√a⌋2 − ⌊√a⌋ y

(15)

else. Given its higher efficiency, we will consider Szudzik’s PF in the
following, with the assumptions:

• Trace values are firstly rounded to integers, and the next section
gives the details about this approach;

• Negative numbers are taken into account by applying the following
transformation to the expression in Eq. (13):

c =
{

−2x − 1 x < 0
2x x ≥ 0

(16)

d =
{

−2y − 1 y < 0
2y y ≥ 0

(17)

and evaluating pfSzudzik(c, d).
In the next section, some numerical results are obtained, showing

the possible reachable results which can be reached by considering the
approaches proposed in this section.

4. Simulation results and analysis

To test and verify concepts illustrated before, a MATLAB testbed
has been setup. Different functions have been defined for analyzing and
characterizing the downloaded data in terms of quantization, AR pro-
cesses, pairing functions, etc. The considered traces are the ones linked
in (Dias, 2018) for the buses mobility and (Bracciale, 2014) for taxis
mobility. Pedestrian log files (Rhee, 2009) are also found for compari-
son purposes. The main steps of our testbed are illustrated in Fig. 6 and
the following subsections will describe them in detail.

4.1. Integer values of mobility trace files

Foremost, for applying the concepts related to PFs as in subsec-
tion 3.3, the values of the trace-files should belong to ℕ (or to ℤ if neg-
ative values will be taken into account). In general, the content of the
downloaded files contains real values, so we decided to transform them
into integer values by finding a proper multiplying factor (integer val-
ues can be obtained also by different transformations approaches, as in
(Hernández-Orallo et al., 2018), where the authors consider the space-
time discretization in opportunistic mobile networks). For the BUS and
TAXI cases, all the coordinates format, for each processed log-file, fol-
low the Decimal Degree (DD) representation, based on the WGS84 stan-
dard. For the PEDESTRIAN case, they are just cartesian values referred
to a particular reference point and expressed in meters.

In the case of bus traces (Dias, 2018), each row is formatted as date,
time(24hformat), busID, busline, latitude, longitude, speed and Tbuses = 1s.
An example of entry extracted from a BUS downloaded log-file is
the following one: [10-01-2014, 00:00:01, A48177, 0, −22.924088,
−43.255466, 0.19], which corresponds to a point on R. Barão de
Mesquita, 916–928 - Tijuca, Rio de Janeiro - RJ, 20540-004, Brasil.

In particular, the latitude and longitude values belong to ℝ with four
decimal digits, so we converted them to ℤ values with a factor of 104.
Fig. 7 illustrates an example of bus pattern: in the upper part the trends
of x and y in the function of time are shown (T = 1s) and the typical
“bus periodical loop” trend can be observed. The almost-same pattern
is repeated (every 75 s) and, in the end, the bus goes to a dedicated
parking lot. The complete pattern in a 2D space can be observed at the
bottom of the figure.

When dealing with taxi traces (Bracciale, 2014), each row is format-
ted as taxiID, date, time(24hformat), latitude, longitude, speedx, speedy ,
speedz and Ttaxi = 7s. An example of entry extracted from a TAXI down-
loaded log-file is the following one: [86349, 2007-02-20, 00:02:48,
41.9057, 12.4821, 56, 67,0], which corresponds to a point on Via dei
Condotti, Rome, Italy.

Also in this case, a conversion factor of 104 is enough to obtain inte-
ger values. Fig. 8has been added just to give a qualitative illustration
for the trend of the x and y coordinates.

In the case of pedestrian traces (Rhee, 2009), each row of the trace
files is simply formatted as ID, time(24hformat), coordX, coordY and
Tpedestrian = 50 ms. This time, as indicated in the specifications of
(Rhee, 2009), the coordinates are not expressed as GPS or DD/WGS84
values, but they are simply cartesian values referred to a reference
point. We assumed, also in this case, that a factor of 104 is enough
to represent the cartesian values as integer ones. Fig. 8 illustrates an
example of taxi pattern: in the upper part, the trends of x and y in the
function of time are shown (T = 7s). The complete pattern in a 2D
space can be observed at the bottom of the figure. The same illustration
is shown in Fig. 9 for a pedestrian trace.
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Fig. 7. The trend of x and y coordinates in the case of bus traces. The bottom plot represents the complete pattern in a 2D space.

4.2. The PACF in the function of the sampling period and PF

In this subsection, the primary analysis in terms of ACF, PF and T is
carried out. First of all, both coordinates are analyzed separately; then
the PF is used. A comparison is made to see if some differences are
encountered in the obtained stochastic properties.

The PACF has been derived for the three types of mobility traces, by
applying the LDR approach (Hänsler, 2001) on the expression of eq. (3)
to x and y coordinates separately. Assuming that the mobility process
can be considered as an AR(j) process, the trend of the PACF has been
observed for different cases, as illustrated in the following figures.

Different values of lag j have been considered, from j = 1 to j = 60
in the case of bus and taxi mobility, and from j = 1 to j = 100 for
the pedestrian mobility. In fact, from Fig. 10 and Fig. 11 it can be seen
that for j = 1 the absolute value of PACF assumes the maximum value
for all three cases (both for x and y), while for j > 1 it has a flat trend
(zero) for buses and taxis, and near-to-zero for pedestrian mobility.

Given that the previous figures show the result of only three traces
(one for a taxi, one for bus and one for pedestrian mobility), we pro-
vided to carry on the same analysis on a massive set of mobility traces,
obtaining some interesting results. In particular, we considered 4300
Taxi traces, 19000 Bus traces and 700 Pedestrian traces (from NCSU
and KAIST campuses, New York, Raleigh and Orlando cities). After a
preliminary parsing stage in MATLAB, we provided to observe the trend
of PACF, obtaining the results illustrated in Table 4.

In particular, we considered the first values of j (from 1 to 5) to see
that PACF(1) always has a “near-to-one” value. From j = 2 to j = 5 the
obtained PACF values are negligible for “high speed” mobilities (Taxi
and Buses), while for pedestrian mobility for j = 2 the PACF has a
still comparable value with PACF(1). For larger lags (j = 3, 4 or 5) the
memory effect goes vanishing, with negligible values of PACF. These

results are valid for both x and y coordinates. At the moment, these
results suggest choosing an AR(1) model for “high-mobility” environ-
ments, while for pedestrian scenarios at least an AR(2) model should be
considered.

It should be underlined that, until now, we considered the “native”
sampling period T of the trace files, that is TTaxi = 7s, TBus = 1s, and
TPedestrian = 50ms in the average. Let us consider, now, what happens to
the studied parameters (PACF values) when T is changed, by choosing
a new value of sampling period Tnew = l · T.

In particular, for Taxi traces we considered l = 2,… ,10 so a new
sampling period Tnew

Taxi ranging from 14s to 70s (larger values are not use-
ful because vehicle movements would be observed very rarely), for Bus
traces l = 2,… ,7 with a new sampling period Tnew

Bus ranging from 2s to
7s (the number of samples contained into the trace files did not permit
us to extend the sampling period further). For Pedestrian mobility, we
first considered l = 2,… ,10 and, then, additional analysis would be
shown.

Fig. 12 shows the first significant result derived from our analy-
sis. Increasing T will influence the lag = 1 correlation between sam-
ples: there is a decreasing trend (almost linear for “high speed” mobil-
ity) for the average PACF(1). For those traces, the trend is more reg-
ular, while for Pedestrian curves, the effects of a higher sampling fre-
quency are noticeable (from 10 Hz to 2 Hz). Besides, when sampling
more rarely, the dynamics of the coarse-grained mobility process are
reflected in each period, creating an additional correlation between far-
ther times. We do not illustrate the variance of PACF(j) trends, given
that it assumes always near-to-zero values (typical variance values
range from 5 · 10e−8 to a maximum of 8 · 10e−4 for “high-mobility”
traces. For Pedestrian samples, we noticed higher variance values (with
an average of 4 · 10e−2). Concluding the analysis of the curves, we can
say that the decreasing is almost negligible for “high mobility” pro-
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Fig. 8. The trend of x and y coordinates in the case of taxi traces. The bottom plot represents the complete pattern in a 2D space.

cesses, while for “slow mobility” traces (Pedestrian ones) it is more
evident: in the last case, the order of any predictor should be increased
if the phenomenon is observed more rarely.

To show the other results, obtained for different values of j, for space
limitations, we illustrate only the behaviour of PACF(3) in Fig. 13, given
that the other curves have a very similar trend. The trend is exactly the
opposite of the previous one: it is increasing, but almost negligible for
“high-mobility” traces.

From the analysis above, we can conclude that larger is T, more
substantial is the correlation lag j, which should be chosen for any pre-
dictor: this effect depends on the moving speed. For “low-mobility”
samples, the influence is stronger than in the case of “high-mobility”
traces.

4.3. Pairing results: numerical analysis

At this point, the next step is represented by the approach for avoid-
ing a separate analysis of x and y coordinates, i.e. the use of PFs. First of
all, we need to verify if the PACF trend of the paired process is similar
to one of the independent variables.

For example, Fig. 14 shows the trend of 1800 samples of a Taxi
mobility trace: in the upper part, the separate trend of x and y coor-
dinates is visible, while on the bottom, the Szudzik′spaired trace is
obtained (equations (13), (16) and (17) have been used). At this point,
all the mobility traces were paired, and the obtained results are illus-
trated in the next figures. In particular, in Table 5 the obtained values

of PACF for different lags j are shown in terms of mean and variance. It
shows that for j = 1 the correlation is always near to 1, while for j > 1
the other PACF values are negligible, except for Pedestrian mobility (in
this case also the variance is not near-to-zero).

Fig. 15 depicts effects of the sampling period Tnew on the PACF(1) of
the paired traces. Comparing it with the PACF(1) of the unpaired traces
(Fig. 12), it can be seen that the trend is the same, with the advantage
of analyzing only one variable (instead of two, or three in the case of
3D traces).

Just for completeness, PACF(3) is also shown in Fig. 16, showing the
same trend of the previous case (Fig. 13), that is a negligible increase for
Taxi and Bus mobility and noticeable improvement for the Pedestrian
case. So, after the pairing of the mobility trace samples, we can confirm
the same trend of the unpaired case: for larger values of Tnew, the partial
autocorrelation decreases for lag 1 (j = 1), while for the other values
of j it increases (in a negligible way for Taxi and Bus traces).

We can conclude that PFs are useful for storing mobility samples,
they preserve the order of the x and y processes (in general also for
the z coordinate), reducing the time complexity by giving the possibil-
ity to analyze only one process instead of two or three. The price is
paid in terms of the needed space to store the numbers (more bits are
necessary); from Fig. 14 we can see that, for example, the samples go
from the order of 104 to the order of 108, due to the power functions
introduced by the chosen PF.
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Fig. 9. The trend of x and y coordinates in the case of pedestrian traces. The bottom plot represents the complete pattern in a 2D space.

4.4. Discussion, use-cases and performance

The elements collected until now from our discussion are the fol-
lowing one:

• It is possible to pair each couple (or triplet) of coordinates and
encode them into only one value;

• By considering PF equations, the stochastical properties of the
paired processes are the same as the original uncoupled ones;

• The order 1 (j = 1) relationship between samples decreases by
increasing the sampling period (or, equivalently, by decreasing the
sampling frequency);

• The order n (j = n, with n > 1) relationship between samples is
directly proportional to the sampling period.

The main question is: how can we choose the sampling period with
the knowledge above?

It depends on the observation granularity we are interested in, that is
to say (let us consider some particular scenario as examples):

• In a distributed network in which a proactive routing protocol is
carrying on relay operations, the update interval is set to Tupd, gen-
erally its value is around 15s; so, each Tupd amount of time, routing
table entries are exchanged between nodes, leading to the building
of the optimal routes from source to destination nodes. If a predic-
tive approach is integrated with the routing layer, for example by
considering future link stability (Fazio, 2016) and/or future node
positions (for future topology evaluation) at t = Tupd, it is impor-
tant to know in advance what will be the situation at t = n∗Tupd
(with n > 1). To this aim, we have to choose the sampling period T
to have enough samples to predict the future values at the next step.

We can set T < Tupd, for example, T = Tupd∕2 or T = Tupd∕4,
based on the needed lag j, that is the number of needed samples to
perform a correct prediction. So it depends on “how far” we have to
predict future mobility samples;

• In a cellular network, mobile nodes move among different coverage
areas, each one served by a centralized device (access points, base
stations, etc.). It is beneficial to a-priori know which cell a mobile
node will visit during the call lifetime (Fazio, 2016) to be able to
reserve the right amount of bandwidth when needed. Also, in this
case, it is important to know the time after which next positions
should be predicted, generally in correspondence of the hand-over
events. The considered parameter is the so-called, Cell Stay Time
(CST) or Cell Residence Time (CRT), which indicates how often the
coverage between two cells is exchanged, and the needed bandwidth
is requested. From our previous studies (Rango, 2009), it is known
that the CST/CRT depends on different parameters (e.g. coverage
radius, average speed, mobility model, etc.), ranging from few tens
of seconds up to few hundreds of seconds.

In both cases, if we need, for example, to know the future sample
every 100 s, then is it useful to have one sample every 100 s? Or is
it better to have one sample each j seconds and make 100∕j predic-
tions to obtain the 101-th value (where j is the predictor order)? We
will now illustrate which kind of results can be reached by following
different ways. We would like only to underline that the proposal of a
new prediction approach is out of the scope of this paper. So, we are
not focusing on a particular prediction algorithm or model (markovian,
neural, Bayesian, Kalman, etc.): we use an AR(j) model, defined on the
collected mobility samples (Taxi, Bus and Pedestrian) as a valid way
to obtain some information about the prediction error. From the previ-
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Fig. 10. PACF values of the x coordinate for the a) Bus, b) Taxi, c) Pedestrian mobility patterns.

Fig. 11. PACF values of the y coordinate for the a) Bus, b) Taxi, c) Pedestrian mobility patterns.

ous sub-section, we know that j = 1 is enough for Taxi and Bus traces
(independently from the sampling period), while for Pedestrian mobil-
ity j > 1 should be considered (especially for larger sampling periods).
However, we show general trends to make some comparisons. In partic-
ular, we paired the coordinates with the Szudzik’s function; we applied
an AR(j) predictor to the paired coordinates. We unpaired the predicted
samples x∗ and y∗ and compared them with the original ones x and y,

obtaining the error percentage with the following equation:

e = 0.5 · [|((x∗ − x)∕x)|+ |((y∗ − y)∕y)|] (18)

In Fig. 17, each point represents the average error committed to
predicting the next mobility point (1-step), given the knowledge of j
previous samples. A sequence of 50 predictions has been considered for
different Taxi traces and different AR(j) predictors, with j = 1‥15. It
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Table 4
PACF statistical parameters (mean value 𝜇 and variance 𝜎2) for x
and y coordinates for Taxi, Bus and Pedestrian (PADE) trace files.

x TAXI y
j 𝜇 𝜎2 𝜇 𝜎2

1 9.99e-01 534e-07 9.99e-01 5.34e-07
2 4.78e-04 2.37e-07 6.94e-04 1.32e-05
3 4.73e-04 1.85e-07 5.88e-04 4.54e-06
4 4.47e-04 1.83e-07 3.70e-04 2.75e-06
5 4.68e-04 1.59e-07 5.36e-04 1.62e-06

x BUS y
j 𝜇 𝜎2 𝜇 𝜎2

1 9.41e-01 5.22e-06 9.41e-01 6.72e-06
2 3.00e-03 2.52e-05 3.10e-03 4.86e-05
3 2.90e-03 7.46e-06 2.92e-03 1.51e-05
4 2.90e-03 3.09e-06 2.90e-03 7.46e-06
5 3.00e-03 1.96e-06 2.94e-03 4.53e-06

x PEDE y
j 𝜇 𝜎2 𝜇 𝜎2

1 9.94e-01 2.24e-04 9.98e-01 7.32e-06
2 2.22e-01 4.24e-02 1.83e-01 2.31e-02
3 2.87e-02 1.41e-02 3.52e-02 8.50e-03
4 1.15e-02 6.60e-03 3.97e-02 4.60e-03
5 2.20e-03 5.10e-03 3.29e-02 3.40e-03

can be seen that the average error is always below the 1.4% threshold,
and goes diminishing for a low order predictor (from a maximum of
1.36% to a maximum of 0.395%).

Fig. 18, instead, represents the average error committed to predict-
ing the second next mobility point (2-step), given the knowledge of j
previous samples (the prediction is made following the scheme illus-
trated in Fig. 5). Also, in this case, a sequence of 50 predictions has
been considered for different Taxi traces and different AR(j) predictors,
with j = 1‥15. The error is negligible (under 1%) and it is minimized
for j = 1.

Fig. 19 represents the average error committed to predicting the

Fig. 12. PACF(1) trend versus sampling factor l for Taxi, Bus and Pedestrian
traces (x and y coordinate); dotted lines represent the average trend.

Fig. 13. PACF(3) trend versus sampling factor l for Taxi, Bus and Pedestrian
traces (x and y coordinate); dotted lines represent the average trend.

third next mobility point (3-step), given the knowledge of j previous
samples (the prediction is made following the scheme illustrated in
Fig. 5). Also, in this case, a sequence of 50 predictions has been con-
sidered for different Taxi traces and different AR(j) predictors, with
j = 1‥15. In general, the error is not negligible as in the previous
cases: it maintains below 2% or 3% in the general case (it is not clear
from the figure due to different scales) but, in many cases, there are also
error spikes, up to 15.2%, indicating that predicting farther samples is
more difficult.

Just for completeness, we show the same results for the Bus traces.
As it can be seen from Fig. 20, Fig. 21, Fig. 22, the trend is the same as
the Taxi case: for higher j values, the average prediction error increases.
For the prediction of more than two future samples (3-step prediction)
the predictor becomes unreliable, with error spikes up to 7.95%.

With the results above, we conclude that the prediction error
increases for higher j because the mobility process for Taxi and Buses is
a j = 1 process (1st order), so with higher-order predictors, the rela-
tionship between the future sample and the j − th previous ones cannot
be found adequately, leading the predictor to obtain a not stable set of
model coefficients. So, the predictor over-dimensioning is not suitable
for these purposes. Besides, considering the history for predicting more
than two future samples leads to undesirable and unreliable results.
The sentences above are confirmed if we find a Pedestrian trace as in
Fig. 23.

In this case, indeed, as stated in subsection 4.2 an AR(1) predictor
is not enough (unacceptable prediction error values are obtained, with
spikes of 30% and 50%). It can be seen how, for higher j, the prediction
error is minimized (around 10% for j = 15).

As regards the effects of the sampling frequency, the following
Fig. 24 illustrates the impact of changing T on the prediction error.
For space limitations, we illustrate only one figure (for the Taxi traces),
considering only one-step predictions (for Bus patterns the error trend
is the same, while for Pedestrian traces it strictly depends on the chosen

13
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Fig. 14. Szudzik’s representation of a Taxi mobility trace over 1800 samples:
the third curve, on the bottom, represents the paired version of the above x and
y coordinates.

Table 5
Mean and variance of the PACF for the Szudzik paired traces, for
different values of j.

j = 1 j = 2 j = 3 j = 4 j = 5

TAXI 0.99909 0.00055 0.00051 0.00042 0.00049
1.00e-
06

2.00e-
06

1.00e-
06

1.00e-
06

0.00e+0

BUS 0.9907 0.00306 0.0029 0.00293 0.00295
3.8e-
05

2.6e-
05

1.1e-
05

7e-
06

5e-06

PADE 0.98957 0.23502 0.00951 0.03526 0.01534
0.00113 0.0541 0.01594 0.00944 0.00708

order of the predictor), with an AR(1) process.
In particular, we can observe how the error increases for larger l:

that is to say, when Tnew
Taxi = l · T becomes higher, the order of the pro-

cess tends to be higher too, and the 1 − lag relationship among sam-
ples becomes weaker, losing the ability to predict them. We recall that,
for the considered Taxi traces, we have Tnew

Taxi belonging to the interval
[14,84]s. After the overall analysis carried out in this paper, we can
conclude that:

• No matter the prediction purpose (Cell Stay Time evaluation, predic-
tive resource reservation, routing optimization, etc.), increasing the

Fig. 15. PACF(1) trend versus sampling factor l for Taxi, Bus and Pedestrian
paired traces; dotted lines represent the average trend.

Fig. 16. PACF(3) trend versus sampling factor l for Taxi, Bus and Pedestrian
paired traces; dotted lines represent the average trend.

sampling interval (decreasing the sampling frequency) leads to the
needing of increasing the process order, with a related prediction
error;

• Samples collection depends on the frequency of the predictions: if
we consider the case of Taxi mobility, we have to focus on how
frequently we need to know the future node positions. With the col-
lected data, we can predict next positions at least each T = 7 s,
with the lowest error and simplest predictor (in terms of order). If
we need to know node positions after much more time (l > 1),
higher-order predictor should be considered, with a gain in terms of
sampling activity.

Fig. 17. Average error e in predicting 50 1-step coordinates, for Taxi traces.
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Fig. 18. Average error e in predicting 50 2-step coordinates, for Taxi traces.

Fig. 19. Average error e in predicting 50 3-step coordinates, for Taxi traces.

5. Conclusion and future works

In this paper, an in-depth stochastical analysis of nodes mobility has
been carried out: in particular, we focused on the study of the effects
of changing the sampling frequency of nodes mobility, used to cre-
ate historical patterns for future mobility prediction activities. We did
not consider any particular predictor (Markov chain, neural network,
cellular automata, etc.). Still, we verified what happens when we col-
lect mobility samples more/less frequently and why we should adjust
the sampling frequency. In particular, we noticed that increasing the
sampling period, the number of collected samples decreases, of course,

Fig. 20. Average error e in predicting 50 1-step coordinates, for Bus traces.

Fig. 21. Average error e in predicting 50 2-step coordinates, for Bus traces.

Fig. 22. Average error e in predicting 50 3-step coordinates, for Bus traces.

but the correlation among consecutive samples decreases, adding more
dependence from older samples. This implies that more complicated
predictors need to be implemented. However, the choice of the sam-
pling frequency strictly depends on the considered prediction scenario:
on the basis of the time prediction horizon (how far the future sample
needs to be predicted), the sampling frequency needs to be set accord-
ingly to desirably make a few number of prediction. We are continuing
our research activity about this topic, and the next step is to establish a
clear relationship between sampling frequency and samples correlation,
adding a more profound analysis in the frequency/Laplace/Wavelet

Fig. 23. Average error e in predicting 50 1-step coordinates, for pedestrian
traces.
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Fig. 24. Average error e in predicting 18 1-step coordinates, for Taxi traces.

domains. The obtained results confirmed the theoretical expectations
of our study.
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