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ABSTRACT 25 

Defining sustainability goals is a crucial but difficult task because it often 26 

involves the quantification of multiple interrelated and sometimes conflicting 27 

components. This complexity may be exacerbated by climate change, which will 28 

increase environmental vulnerability in aquaculture and potentially compromise the 29 

ability to meet the needs of a growing human population. Here, we developed an 30 

approach to inform sustainable aquaculture by quantifying spatio-temporal shifts in 31 

critical trade-offs between environmental costs and benefits using the time to reach the 32 

commercial size as a possible proxy of economic implications of aquaculture under 33 

climate change. Our results indicate that optimizing aquaculture practices by 34 

minimizing impact (this study considers as impact a benthic carbon deposition ≥ 1 gC 35 

m
-2

 d
-1

) will become increasingly difficult under climate change. Moreover, an 36 

increasing temperature will produce a poleward shift in sustainability trade-offs. These 37 

findings suggest that future sustainable management strategies and plans will need to 38 

account for the effects of climate change across scales. Overall, our results highlight the 39 

importance of integrating environmental factors in order to sustainably manage critical 40 

natural resources under shifting climatic conditions. 41 

42 
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Introduction 43 

Sustainability is a complex, layered and inherently multidisciplinary concept that 44 

spans multiple fields including environmental science, social policy and economics, 45 

also known as the three dimensions of sustainable development (ICSU & ISSC, 2015). 46 

The environment and the services it provides represent the base layer upon which social 47 

and economic policy relies. Sustainable development, which strives to meet the needs of 48 

a growing human population while safeguarding Earth’s stressed life-support systems 49 

(ICSU & ISSC, 2015), is becoming increasingly important in an era of global change 50 

and large-scale biodiversity decline (Barnosky et al., 2011; Barnosky et al., 2012; 51 

Cardinale et al., 2012). Most national and international legislative efforts have 52 

highlighted the critical role that sustainability plays in ensuring the welfare of current 53 

and future generations.  54 

The 2030 Agenda for Sustainable Development (ICSU & ISSC, 2015), the 55 

Sustainable Development Goals (SDGs and related targets, adopted in 2015), the 56 

Mediterranean Strategy for Sustainable Development 2016-2025 (UNEP/MAP, 2016) 57 

and the Paris Agreement of the Conference of the Parties (COP21) of the United 58 

Nations Framework Convention on Climate Change have greatly influenced and 59 

addressed the exploitation of natural resources at sea (i.e., such as fishery and 60 

aquaculture) (Visbeck, 2018). Although the importance of environmental sustainability 61 

has been widely recognized and supported by integrated frameworks (Costanza et al., 62 

1997), very few attempts have been made to objectively quantify and operationally 63 

define the existing trade-offs between the three sustainability components in the 64 

aquaculture sector (Tlusty & Thorsen, 2017). Operationally defining sustainability goals 65 

under current conditions is difficult as it involves the quantification of multiple, 66 
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interrelated and often-conflicting components. The complexity of this task is expected 67 

to be exacerbated by climate change and, in particular, rising temperatures which will 68 

increase environmental vulnerability and, in applied fields such as aquaculture, will 69 

have important social and economic repercussions that are likely to extend beyond 70 

national borders. Hence, local managers and policy-makers need comprehensive 71 

credible, salient and legitimate baseline knowledge in order to quantify the 72 

environmental trade-offs to be integrated into social and economic scenarios for a 73 

sustainable development in space and time. Such information would allow the 74 

implementation of optimal ecosystem-based management strategies and strengthen the 75 

science-policy nexus (i.e. the relationship between environment-related science and 76 

policy FAO, 2016; Hickey et al., 2013). 77 

Aquaculture has historically focused on maximizing productivity and economic 78 

returns on very short time scales. Although such practices can yield positive outcomes 79 

in the short term, the net results in the medium to long term are often negative from a 80 

social, environmental and economic perspective. Overall, future aquaculture 81 

development needs to adopt a more integrated approach that balances social, economic 82 

and environmental objectives to ensure a sustainable harvest of natural resources over 83 

multiple time horizons (ICSU & ISSC, 2015). Here, we developed an approach to 84 

quantify spatio-temporal shifts of critical trade-offs between environmental costs and 85 

benefits using the time to reach the commercial size as a possible proxy of commercial 86 

implications of aquaculture under climate change. To forestall shifts will allow one to 87 

inform policy changes and avoid the risk for a growing disparity of responses between 88 

Mediterranean countries and societies (UNEP/MAP, 2016). 89 
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The described approach relies on predictive models based on fundamental 90 

biological characteristics of species (i.e., Functional Traits [FT], sensu Schoener, 1986; 91 

Sarà et al., 2014). At scales relevant to national management (Economic Exclusive 92 

Zones, EEZ, Figs. S1 and S2), the development of FT-based approaches (Schoener, 93 

1986) can be used to generate the kinds of species- and site-specific mechanistic 94 

predictions of environmental costs and benefits needed to quantify trade-offs and inform 95 

sustainable development objectives (Sarà et al., 2018a). Such a mechanistic approach is 96 

critical for devising an optimal spatial allocation strategy that simultaneously 97 

maximizes commercial benefits (production) and minimizes environmental effects 98 

(pollution). Indeed, by quantifying how the relationship between biomass productivity 99 

and environmental impact (i.e., the amount of organic loading derived from aquaculture; 100 

LOAD) of changes over space and time, our approach can be used to design future 101 

management plans that are optimal across multiple scales. On this basis, stakeholders 102 

could identify and implement proactive, site-specific management strategies tailored to 103 

target species. Once such relationship is spatially-contextualized and mapped, it 104 

represents, in practice, the quantitative informational baseline that scientists, policy 105 

makers and stakeholders need to produce management strategies and plans that will also 106 

adapt to the combined multiple pressures of climate change (Kearney & Porter, 2009; 107 

Shelton, 2014; Pacifici et al., 2015; Payne et al., 2015; Sarà et al., 2018b).  108 

Overall, the proposed approach will document spatio-temporal patterns of 109 

covariation between environmental cost and benefit maximized changes under current 110 

and future climate conditions and narrowing the science-policy communication gap 111 

(Hickey et al., 2013). We chose the aquaculture sector as a model system to test how 112 

climate change (IPCC AR5 scenarios; 2015 vs. 2030 vs. 2050) will affect the 113 
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sustainable management of a critical natural resource. Mechanistic FT-based models are 114 

ideal in aquaculture and in most intensive terrestrial cultures (Koenigstein et al., 2016) 115 

since the effects of species interactions (e.g., competition for space and resource and 116 

predator-prey relationships) can be controlled via active management. We applied such 117 

mechanistic FT-based models on the Mediterranean seabass, Dicentrarchus labrax (Fig. 118 

S3). The Mediterranean seabass is an ideal model as it is one of the most traded species 119 

in the world (Sarà et al., 2012) and one of the fastest-growing cultivated fish in the 120 

Mediterranean Sea (FAO, 2016). Additionally, the Mediterranean seabass may represent 121 

the candidate target for Northern Europe aquaculture, owing to expected climate-122 

induced temperature increases in the region in future; the species has an affinity toward 123 

the future expected temperature in this area (EUMOFA, 2016). 124 

 125 

Materials and methods 126 

A framework (Figure 1) comprising of six steps was built, exploiting the power 127 

of the mechanistic based models Dynamic Energy Budget (the DEB; Kooijman, 2010) 128 

and FiCIM (Brigolin et al., 2014) as described here below. 129 

 130 

STEP 1 - The Dynamic Energy Budget (DEB) model 131 

The DEB model (Fig. S3) involves a complete theoretical assessment at the 132 

whole organismal level, to link habitat features, functional traits, and life history of any 133 

living organism (Kooijman, 2010). DEB was selected for this study as a suitable model 134 

to provide a whole-organismal approach, as DEB enables one to elucidate how 135 

biologically and ecologically relevant responses depend on environmental conditions 136 

(Sarà et al., 2012; Kearney et al., 2010). Central to the DEB theory is the concept that 137 
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food and body temperature (BT) are the primary drivers of an individual’s metabolic 138 

machinery (Sarà et al., 2013). The amount of ingested energy available for biological 139 

processes is regulated within the DEB theory by the Holling’s functional responses 140 

(Holling, 1959). Once food is ingested, the amount of energy that flows through the 141 

organism depends at some extent on physiological rates. As all physiological rates 142 

depends on body temperature, BT is an important driver, in particular for ectotherms, 143 

such as fish and shellfish, as their BT is close to that of their surroundings. The effect of 144 

temperature on metabolism follows the Arrhenius relationship
 
(Kooijman, 2010), which 145 

allows one to quantify how metabolic rates change within the range of tolerance in each 146 

species; such range implicitly sets the limits of the fundamental thermal niche of a given 147 

species (Kearney & Porter, 2009).  148 

To provide reliable predictions, the Dicentrarchus labrax model was 149 

implemented through a systematic review (Mangano et al., 2017a) performed to deliver 150 

some preliminary parameters needed to further calibrate the Dicentrarchus labrax DEB 151 

model. Details about the model calibration and validation are given in the Supporting 152 

information section (Table S1, S2, and S3; Fig. S4). The Arrhenius formulation includes 153 

a specie-specific parameter, i.e. the Arrhenius temperature (TA), which, in this study, 154 

was estimated as the slope of the linear regression between the logarithm of fish oxygen 155 

consumption rate and absolute temperature. The lower and upper boundaries of the BT 156 

tolerance range were extrapolated from the literature (Dalla Via et al., 1987; Claireaux 157 

& Lagardere, 1999; Person-Le Ruyet et al., 2004; Claireaux & Lefrançois, 2007); these 158 

parameters are listed in Table S1. Once the DEB model was validated, the outputs were 159 

used to map the productivity index TIME (see Fig. 1) and feed the FiCIM model, as 160 
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described below. Details about the model calibration and validation are provided in the 161 

Supporting information section (Model validation section and Figure S4). 162 

 163 

STEP 2 – FiCIM (Fish cage Integrated Model; Brigolin et al., 2014) 164 

Organic matter accumulation and associated negative effects on benthic 165 

communities has been identified as a key negative interaction of fish cages with the 166 

surrounding marine environment (Hargrave et al., 2005). Here, we simulated this 167 

impact by coupling the DEB model described in STEP 1 with the particle tracking and 168 

deposition modules of the FiCIM (Brigolin et al., 2014).  These modules allow one to 169 

obtain 2D maps of elemental fluxes of organic Carbon [g C m
-2

 d
-1

] at the water-170 

sediment interface on the basis of the amount and composition of organic matter 171 

particles released by a fish farm as faeces and uneaten feed (e.g. Figure S5). The model 172 

requires the following as input: i) time series of the amount and elemental composition 173 

of uneaten feed and faeces released by fish farms; ii) time series of water currents (see 174 

STEP 3); iii) bathymetry of the area in which a fish farm is located. 175 

FiCIM produces output time series of fluxes of organic C, N, and P deposited on 176 

the seabed surrounding a fish farm. To provide a synthetic index, the average deposition 177 

of organic C was computed, named LOAD hereafter, expressed as g C m
-2

 day
-1,

, for 178 

each grow-out production phase, at each grid point. Subsequently, based on Cromey et 179 

al. (1998) and Hargrave et al. (2008), an impact threshold, i.e. 1 g C m
-2

 d
-1

 was set, 180 

above which a grid point is classified as impacted (i.e. areas in which LOAD exceeds 181 

the threshold).  182 

The species-specific LOAD index takes into account the effects of prolonged 183 

organic matter accumulation underneath a fish farm, which depletes the concentration of 184 
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dissolved oxygen in surface sediment, leading to changes in macrofauna community 185 

structure (Cromey et al., 2002; Hargrave et al., 2008). LOAD was determined on a grid 186 

of 5m x 5m resolution by tracking 10,000 particles per day. The parameters used in the 187 

deposition module and their references are reported in Table S4. The initial positions of 188 

faecal particles and uneaten feed pellets were randomly chosen within, respectively, the 189 

volume at a fish cage and its surface. The settling velocity of each particle was 190 

randomly selected from a Gaussian distribution (parameters are reported in Table S4). 191 

The model was coded in Fortran and run on SCSCF (www.dais.unive.it/scscf), a 192 

multiprocessor cluster system owned by Ca’ Foscari University of Venice. 193 

 194 

STEP 3 - Estimation of input data 195 

In principle, all forcings needed to run the DEB seabass model and FiCIM 196 

should be estimated for the whole study area on the basis of site-specific data; however, 197 

in practice, this is not feasible, both because of the lack of a comprehensive dataset and 198 

the computational effort required by the FiCIM model. Therefore, to be consistent with 199 

the aim of the paper, we proceeded with the following: i) discretization of the study 200 

area, ii) estimation of DEB forcing function, and iii) estimation of FiCIM forcing 201 

function. 202 

 203 

Discretization of the study area 204 

In order to identify the study area, a 10 km coastline buffer with bathymetric 205 

data and excluded areas deeper than 200 meters was clipped, which would lie outside 206 

the continental shelf. The resulting study area extended along a buffer of 10 km across 207 

the continental shelf of the Mediterranean and Black Sea (Fig. S6); the total surface was 208 
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approximately 262,395 km
2
. Bathymetric data were accessed from the General 209 

Bathymetric Chart of the Ocean (GEBCO_2014, http://www.gebco.net/) at 30 seconds 210 

arc resolution (~1 km). 211 

 212 

Estimation of the DEB forcing functions 213 

As stated, DEB models require Body Temperature (BT) as input time series. To 214 

apply the approach visualized in Figure 1 to the whole study area, we took the Sea 215 

Surface Temperature (SST) as a proxy of BT. Time series of SST data were estimated 216 

from the results of the EURO-CORDEX initiative
 
(Jacob et al., 2014; Coordinated 217 

Regional Climate Downscaling Experiment). This Regional Climate Model is based on 218 

the IPCC Fifth Assessment Report (AR5) CMIP5 (Coupled Model Intercomparison 219 

Project). Data were downloaded (https://esgf-index1.ceda.ac.uk/projects/esgf-ceda/) 220 

concerning the Representative Concentration Pathways, RCP 4.5, with a spatial 221 

resolution of 0.11 degrees (~12.5 km). Next, three time series of daily SST for the 222 

following years: 2012-2014, 2030-2032, and 2048-2050 were extracted, hereafter 223 

labelled 2015, 2030, and 2050, respectively, and rescaled the data at 1 km, the same 224 

spatial resolution of the bathymetry dataset (applying the nearest neighbour 225 

interpolation) (Kotlarski et al., 2014). 226 

The study area was partitioned into sub-regions characterized by similar annual 227 

mean temperature for the three temperature scenarios. In order to obtain these sub-228 

regions, we divided the range of average temperatures for each scenario into 0.5°C 229 

intervals and aggregated each grid point of the spatial domain within the resulting 230 

classes; each class then included all cells falling within “Similar Average Temperature 231 

Regions” (SATRs). Subsequently, we estimated an average three year SST time series 232 
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for each SATR to be used as input to the DEB model. SST data in NetCDF format were 233 

transformed in comma-separated values (CSV) format suitable for the DEB model using 234 

software developed by NASA Goddard Institute for Space Studies (Panoply; GISS, 235 

http://www.giss.nasa.gov/tools/panoply/). All NetCDF files were handled using 236 

Climatic Data Operators (CDO) software (1.6.4 version; Max-Planck Institut für 237 

Meterologie). Daily SST values of each SATR were used to feed the DEB model as a 238 

proxy of individual BT to compute the spatial distributions of the outputs of the DEB 239 

model (TIME, the faeces released every hour by an individual - EJE and the hourly 240 

amount of uneaten feed per individual - UNF).  241 

 242 

Estimation of FiCIM forcing functions  243 

DEB and FiCIM were run in sequence for every SATR for each temperature 244 

scenario as follows: the first model produced the TIME index and the time series of EJE 245 

and UNF, which were used in turn as input for the FiCIM model to estimate the LOAD 246 

index. 247 

Time series of the amount and elemental composition of uneaten feed (UNF) 248 

and faeces (EJE) released by a fish farm were used to estimate daily emissions of a 249 

representative fish farm with 10 meter high cylindrical cages with a diameter of 15 m, 250 

assuming a stocking density of 30 individual m
3
, which leads to a biomass density at 251 

harvest of approximately 15 kg/m
3
 (Halwart et al., 2007; Trujillo et al., 2012). Details 252 

on the coupling among individuals, the ensemble of individuals stock in cages, and 253 

deposition modules in FiCIM are reported in Brigolin et al. (2014). The particle 254 

tracking module is computationally time-consuming and, therefore, it was not possible 255 

to run as many simulations as are the cells in which the study area was divided. 256 
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Therefore, in order to find representative values of the hydrodynamic circulation and 257 

bathymetry necessary for the FiCIM models, we performed the following: i) determined 258 

the location of fish cages within the study area, ii) estimated the distributions of the 259 

bathymetric and current data, and iii) computed the 25
th

, 75
th 

and 95
th

 percentiles as 260 

representatives values of the two distributions. Fish cage positions (Fig. S1) were 261 

determined by means of an extensive survey carried out through Google Earth (last 262 

update June 2016) within the study area following the method described by Trujillo et 263 

al. (2012).  264 

Depths at cage sites were extracted from the GEBCO dataset and the EMODnet 265 

bathymetry portal (http://www.emodnet-hydrography.eu/). Daily mean current velocity 266 

data were downloaded from the European MyOcean project for every cage in the 267 

Mediterranean Sea (Copernicus Marine Service - Ocean monitoring and forecasting 268 

service; http://www.myocean.eu/) produced by means of the NEMO Ocean model 269 

version 3.4 (Madec, 2008) on a regular grid with a spatial resolution of 1/16° (ca. 6-7 270 

km) from the year 2014. Eastward and northward current velocity (m s
-1

) data were 271 

downloaded and extracted the subset of data concerning the grid cells where the fish 272 

cages were kept. Synthetic current time series were generated, assuming that the current 273 

module and main axis were normally distributed around their 25
th

, 75
th

 and 95
th

 274 

percentiles. Variances were set on the basis of NEMO data analysis.  275 

The sensitivity of the environmental impact indicator, LOAD, with respect to 276 

oceanographic conditions, was explored for the three percentiles considered (25
th

, 75
th

 277 

and 95
th

) by combining the three representative depths (11.8 m, hereafter coded as -12 278 

m; 19.0 m and 43.6 m, hereafter coded as -44 m) with the three representative current 279 
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velocities (1.18 cm/s, 4.94 cm/s and 12.47 cm/s), thus obtaining 9 oceanographic 280 

scenarios (see Table S5).  281 

 282 

STEP 4 - Mapping of model outputs 283 

We ran the modelling system for each SATR using the forcing time series 284 

estimated as described previously for the 3 temperature scenarios (2015, 2030 and 285 

2050) as input. Each simulation was run until an individual reached the standard 286 

commercial size of 500 g according to FAO statistics 287 

(http://www.fao.org/fishery/culturedspecies/Dicentrarchus_labrax/en). Finally, the two 288 

indices (TIME and LOAD) for each time period were mapped (Figures S7). 289 

 290 

STEP 5 – Optimization trade-off 291 

Modelling the trade-off  292 

We used 1-3 degree polynomial regressions to quantify the trade-off between the 293 

environmental costs (area in m
2
: LOAD) and benefits (time to reach commercial size, 294 

days: TIME) impact of aquaculture for each oceanographic scenario (current speeds of 295 

1.18 cm s
-1

, 4.94 cm s
-1

 and 12.47 cm s
-1

) and year (2015, 2030 and 2050). We then 296 

used information theory (Corrected Akaike's Information Criterion, AICC) to select the 297 

model with the optimal polynomial degree. In all cases, the second-degree polynomial 298 

model was selected to describe the relationship between environmental and commercial 299 

impacts of aquaculture as an inverted parabola. The ascending section of the parabola 300 

represented a positive correlation between environmental and commercial components 301 

(no trade-off), whereas the descending section represented a negative correlation 302 

between environmental and commercial components (trade-off). Values found in the 303 
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ascending section were color-coded in red (no trade-off), whereas those found in the 304 

descending section were color-coded in blue (trade-off) (Fig. S8). 305 

 306 

Commercial-to-environmental impact sensitivity analysis 307 

An extensive sensitivity analysis was conducted to determine how the trade-off 308 

changed under different assumptions regarding the relative valuation of commercial and 309 

environmental components for each oceanographic scenario and year. To do so, we 310 

computed the z-scores of the commercial (zC) and environmental (zE) components by 311 

subtracting the mean from each value and dividing by the standard deviation. These 312 

dimensionless z-scores thus measure the “distance” between each component value and 313 

its mean in terms of the number of standard deviations; hence, z-scores that are negative 314 

lie below the mean and vice versa. We then computed the total impact as ztotal = zC + a 315 

zE, where “a” represents a scalar used to alter the relative weight of commercial and 316 

environmental components on total impact. We further explored values ranging from 0 317 

to 5 to determine the robustness of our results to different weightings of commercial and 318 

environmental components. 319 

 320 

STEP 6 – Optimization spatial mapping  321 

Optimization maps were produced joining the results obtained from the analysis 322 

carried out in STEP 5 with each SATR, both no trade-off and trade-off SATRs were 323 

represented. No trade-off indicates the regions where a reduction in TIME should also 324 

reduce the environmental LOAD and vice versa, while at the trade-off regions a 325 

reduction in TIME should increase the environmental LOAD and vice versa. Fig. S9 326 

Page 14 of 34Global Change Biology



 15

shows the difference in impacted areas between the 2015 and 2050 scenarios and 327 

between the 2030 and the 2050 scenarios. 328 

 329 

Results 330 

Our findings show that increasing temperatures under climate change will 331 

positively affect the time-to-reach commercial size (TIME, in days) according to a 332 

latitudinal gradient (Figure 2).  333 

In particular, most areas will have an increase in TIME between 2015 (days = 334 

939) vs. 2030 (days = 956), whereas between 2015 and 2050 (days = 937), the length of 335 

coastline where the TIME will be shorter, will increase. The environmental impact of 336 

aquaculture (LOAD) was quantified by measuring the amount of total coastline area 337 

(m
2
) affected by produced ejections (EJE) and uneaten feed (UNF) under multiple 338 

oceanographic conditions (intermediate oceanographic conditions shown in Figure 3; 339 

other conditions shown in Table S5). The areas with increasing LOAD will increase 340 

between 2015 and future scenarios (Figure 3) with a heterogeneous spatial pattern 341 

(Figure S7).  342 

In general, these maps show that the spatial distributions of commercial and 343 

environmental changes will vary in complex ways over time. To determine the 344 

relationship between commercial and environmental changes as well as their covariation 345 

in space and time, we regressed the environmental against the commercial components 346 

using second-degree polynomials for each oceanographic scenario and year. Our 347 

analyses among the three oceanographic scenarios showed a unimodal relationship 348 

between environmental and commercial components (inverted parabola), with 349 
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environmental and commercial components positively correlated in the ascending 350 

region and negatively correlated in the descending region (Figure 4).  351 

In the ascending region, there was no trade-off between environmental and 352 

commercial components, as reducing either would reduce the overall climate change 353 

effect. Conversely, in the descending region, there was a trade-off between 354 

environmental and commercial components, as reducing one would not necessarily 355 

reduce the overall impact. There appears to be a strong latitudinal signal in the 356 

distribution of the trade-off between commercial and environmental components across 357 

all oceanographic scenarios in 2015, with northern regions being dominated by a 358 

tradeoff and southern regions by a lack of trade-off (Figure 5). However, this latitudinal 359 

signal decayed over time across all oceanographic scenarios, as tradeoff and no-tradeoff 360 

regions become more interspersed in space (Figure 5). Additionally, although the first 361 

two oceanographic scenarios indicate a southern expansion of the trade-off regions, the 362 

third oceanographic scenario indicates a northern expansion of the no trade-off regions 363 

(Figure 5). 364 

Although quantifying the commercial and environmental components of climate 365 

change separately across the Mediterranean Sea is an important first step, stakeholders 366 

require an integrated metric in order to facilitate spatial planning and management of 367 

aquaculture activities. We devised a measure of total impact (�total) by summing z-368 

scores of the commercial (��)	and environmental (��) components: �total = �� + �	�� 369 

(see Supporting information). Given the lack of information regarding the relative 370 

importance or valuation of commercial and environmental impacts, we then conducted 371 

an extensive sensitivity analysis to determine how different weightings of these two 372 

components would affect the total impact of climate change by varying the value of “a,” 373 
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a measure of commercial-to-environmental impact, from 0 to 5. Our sensitivity analysis 374 

revealed that the total impact of climate change on aquaculture is expected to increase 375 

over time across all oceanographic scenarios (Figure 4). Indeed, across all three 376 

oceanographic scenarios, the total impact increased over time for all commercial-to-377 

environmental ratios. By 2050, only regions characterized by very low values of 378 

commercial component or very low commercial-to-environmental impact ratios would 379 

be characterized by low total impacts. Most of the regions, however, were characterized 380 

by intermediate to high total impact, depending on the commercial-to-environmental 381 

ratio (Figure 4). Hence, climate change will make the practice of aquaculture 382 

challenging by increasing both the frequency of trade-offs between commercial and 383 

environmental components across the Mediterranean and Black Sea and the total impact 384 

under most valuation scenarios (Figures 4, 5, S8, and S9). 385 

Overall, our results demonstrated that adopting an integrated framework that 386 

involve both environmental costs and benefits is necessary to anticipate vulnerabilities, 387 

reduce the risk of mismanagement and ensure the sustainability of human activities at 388 

sea under future climatic projections (Cochrane et al., 2009). Present results also 389 

suggest that optimizing aquaculture practices by minimizing total impact will become 390 

increasingly difficult under climate change for most oceanographic scenarios (Table 391 

S5). Although we believe that the approach adopted and summarized in Figure 1 is 392 

sound, it is important to acknowledge that our findings should be interpreted with 393 

caution, as both the computational burden and the availability of site specific data have 394 

set some limitations to its implementation in the study area.  395 

The index LOAD is computationally much more expensive than TIME, as it 396 

requires the integration via Montecarlo simulation of the trajectories of 7 x 10
9
 particles 397 
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in a 2D domain, which took approximately 126 hours on the available computational 398 

resource. Therefore, it would not be easy to run FiCIM at each grid point in order to 399 

assess a site-specific impact. Furthermore, such an approach requires site-specific 400 

hydrodynamic circulation data, although data from operational oceanography could 401 

have served the purpose for 2015 scenarios, projecting currents for the 2030 and 2050 402 

would have been highly speculative. For this reason, we explored nine oceanographic 403 

scenarios, which are representative of the present current and depth distributions of fish 404 

farms. The results of our investigation (see also the Supporting information section), 405 

showed that both bathymetry and average current speed play a significant role in 406 

determining the actual impact. Furthermore, our findings also show (see Figure 4) that, 407 

in most SATRs, impact decreases as TIME increases, such that wherever an increase in 408 

temperature will shorten the grow-out phase, one can expect an increase in the 409 

moderately impacted benthic area. To this regard, we would like to point out that this 410 

area was defined on the basis of a threshold suggested by the literature, i.e. 1 g C m
-1

 d
-1 

411 

(see also the Supporting information section), in keeping with a precautionary principle. 412 

In general, in presence of similar local bathymetry, the higher the current speed, the 413 

larger the areas affected by moderate organic enrichment, although the cumulative value 414 

of organic material deposited per unit surface will decrease. On the other hand, at sites 415 

characterized by low hydrodynamic dispersion this area would shrink, but the 416 

deposition of organic matter in surface could reach much higher values, inducing a shift 417 

toward anaerobic degradation pathways. Therefore, proper site selection, based on site-418 

specific data, will become even more relevant in the future. In the present study, we did 419 

not consider the effect of an increasing temperature on the degradation of the organic 420 

matter in surface sediment, which could further increase the impact on sediment  421 
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biogeochemistry and, in particular, on the oxygen sediment demand. Therefore, the 422 

organic carbon flux, which was taken as an indicator of moderate impact, may have to 423 

be revised and likely lowered. 424 

 425 

Discussion 426 

This study demonstrated how climate change could cause detrimental effects on 427 

sustainability when TIME and LOAD are integrated as trade-off into the environmental 428 

component of sustainability. Here, the use of TIME or LOAD as sole indicators could 429 

lead to counterproductive management decisions and yield net negative results (Figures 430 

2 and 3) (e.g. Sea-Level-Rise in wetland systems; Kirwan & Megonigal, 2013). 431 

Consistent with previous work (Poloczanska et al., 2013; Rutterford et al., 2015), our 432 

analysis showed that increasing temperatures due to climate change would produce a 433 

mean poleward shift in the environmental trade-offs. Additionally, the integration of 434 

these two drivers (TIME and LOAD) of aquaculture components (environmental cost 435 

and benefits) and downscaling to local conditions (e.g. current velocity) revealed strong 436 

differences in the spatial distribution of the trade-offs over time, with spatial variability 437 

increasing over time from 2015 to 2050. Since the Mediterranean and Black Sea 438 

Exclusive Economic Zones (EEZs) will experience distinct trade-offs in space and time 439 

(Figs. S8 and S9), management strategies must be local and adaptive in order to 440 

minimize total impact (FAO, 2016). Such spatially explicit and multi-pronged 441 

information is critical to develop, promote and encourage for cooperation between 442 

knowledge producers (scientists) and knowledge users (policy-makers) representing a 443 

solid knowledge baseline in order to tailor future effective local sustainable 444 

management measures in aquaculture-dependent countries. 445 
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To this regard, the approach here proposed could be used in an adaptive 446 

management framework, with innovation in cage management aimed at lowering its 447 

environmental impact and improving its performances can be easily taken into account 448 

by changing model parameters, with respect to the estimates used in the present 449 

application. For example, as regard feed performance and feeding management (e.g. 450 

lower FCR and differences in feed elemental composition) can be accounted for by 451 

adjusting the parameters reported in Table S3, while higher buoyancy by decreasing the 452 

settling velocity of feed particles, parameter wfo in Table S4.  453 

Therefore, present approach can provide a sound environmental baseline for 454 

constructing integrated models which allows one to explore socio-economic future 455 

scenarios of i) the industry development, ii) the markets’ prices adaptive replies to the 456 

climate change  iii) the growing seafood proteins demands. This will allow to build 457 

proactive models for a sustainable aquaculture (Chavanne et al. 2016; Sarà et al., 458 

2018a). 459 

Thus, policy and management measures must be addressed with spatial and 460 

temporal scales matching the values and issues of concern as suggested for other human 461 

activities (Muñoz et al., 2015; Paterson et al., 2015); however, they are only rarely 462 

applied (Creighton et al., 2016; Lu et al., 2015). 463 

Although our analysis focused on a single species, this mechanistic approach can 464 

easily be extended to other aquaculture species, as it exploits the power of species-465 

specific biological traits (sensu
 
Courchamp et al., 2015). Extending our framework to 466 

other species would help generate predictions about the distribution of multispecies 467 

trade-offs in space and time as well as identify winners vs. losers in the face of climate 468 

change. The generation of freely available and updated multispecies trade-off maps will 469 
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represent an useful tool to help researchers track progress in plugging knowledge gaps 470 

and drive decision-makers, stakeholders and public opinion in developing adaptation 471 

and mitigation solutions at biologically-relevant spatio-temporal scales. The seabass is 472 

thought to be the best candidate for Northern Europe aquaculture although there are no 473 

biological-trait databases to date to corroborate it; this remains more a working rather 474 

than data-driven hypothesis. 475 

Aquaculture is expected to become potentially crucial in meeting the world’s 476 

seafood demand since catches of most wild commercial fisheries are at or beyond their 477 

maximum sustainable yield (ICSU & ISSC, 2015, FAO, 2016) with consequent 478 

alteration of seabed integrity (Mangano et al., 2017b). However, our analysis shows that 479 

climate change may fundamentally limit the ability of aquaculture to satisfy the future 480 

seafood needs of a growing human population. 481 
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Figures captions 639 

Figure 1. Six-step framework based on mechanistic models (DEB and FiCIM) used to 640 

obtain mechanistic-based spatial explicit optimization. 641 

Figure 2. The time in days required to reach commercial size, from top to the bottom, 642 

respectively, across 2015, 2030 and 2050. Nine-day classes are reported (differences in 643 

the first class are to highlight, respectively: 2015 = 587 - 600; 2030 = 593 - 600; 2050 = 644 

--; other classes include 601 - 650, 651 - 700, 701 - 750, 751 - 800, 801 - 850, 851 - 645 

900, 901 - 950, 951 - 975). Each histogram on the left side of the panel shows the 646 

number of km
2
 within each class for each examined period. 647 

Figure 3. The impacted area (m
2
; LOAD), from top to bottom, respectively, across 648 

2015, 2030, and 2050. Five classes of impact are reported, respectively, in 2015: 16,125 649 

- 20,000;  20,001 - 21,000; 21,001 - 22,000; 22,001 - 23,000; 23,001 - 23,750; in 2030: 650 

17,075 - 20,000; 20,001 - 21,000; 21,001 - 22,000; 22,001 - 23,000; 23,001 - 23,650; in 651 

2050: 17,675 - 20,000; 20,001 - 21,000; 21,001 - 22,000; 22,001 - 23,000; 23,001 - 652 

23,575. Each histogram on the left side of the panel shows the number of km
2
 within 653 

each impact class. 654 

Figure 4. Optimization curves (upper panel). The optimization between environmental 655 

impacted area (m
2
; LOAD) and time to reach commercial size (days; TIME) with 656 

Similar Average Temperature Regions (SATRs) under three different scenarios of 657 

current velocity (a = 1.18 cm/s, b = 4.94 cm/s, c = 12.47 cm/s). SATRs under a “no 658 

trade-off” condition are reported in red, SATRs in a “trade-off” condition are in blue. 659 

Different symbols refer to SATRs of each of the three time periods: circle = 2015, 660 

square = 2030, diamond = 2050. The model fits are coded based on year: solid line = 661 
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2014, dashed line = 2030, dotted line = 2050. Lower panel shows optimization trends 662 

among the three scenarios of current velocity and years 2015, 2030 and 2050. 663 

Figure 5. Optimization maps of the Mediterranean and Black Sea across three scenarios 664 

of current velocity (scenario 1: 1.18 cm/s; scenario 2: 4.94 cm/s; scenario 3: 12.47 cm/s) 665 

and years 2015, 2030 and 2050. Blue and red bars refer to the percentage of km
2
 666 

respectively under “trade-off” or “no trade-off” conditions. 667 
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