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FlexibleMean and Dispersion Function Estimation
in Extended Generalized AdditiveModels

I. GIJBELS AND I. PROSDOCIMI

Department of Mathematics, and Leuven Statistics Research Center
(LStat), Katholieke Universiteit Leuven, Leuven, Belgium

Real data may expose a larger (or smaller) variability than assumed in an
exponential family modeling, the basis of Generalized linear models and additive
models. To analyze such data, smooth estimation of the mean and the dispersion
function has been introduced in extended generalized additive models using P-
splines techniques. This methodology is further explored here by allowing for the
modeling of some of the covariates parametrically and some nonparametrically. The
main contribution in this article is a simulation study investigating the finite-sample
performance of the P-spline estimation technique in these extended models, including
comparisons with a standard generalized additive modeling approach, as well as
with a hierarchical modeling approach.

Keywords Additive modeling; Dispersion function; Double exponential family;
Mean function; Nonparametric estimation; P-splines approximation.

Mathematics Subject Classification 62G05; 62G08.

1. Introduction

A convenient way to describe the mean effect of two or more covariates on a
variable of interest (the response) is via Generalized Additive Models (GAM); see
Hastie and Tibshirani (1986, 1990) and Wood (2006a), among others.

Within the GAM framework one assumes that the data at hand come from
a distribution belonging to the exponential family of distributions, which results
in assuming a specific relationship between the variance and the mean function.
In many cases, however, data actually show a variability which deviates from
the one expected from the theoretical model. This is, for example, the case for
heteroscedastic normal data, for which the variability is not constant as assumed by
the model, but changes as a function of the covariates. Another notable example is
the case of over-dispersed (respectively, under-dispersed) count or proportion data
in which the variability shown by the data is higher (respectively, lower) than the
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3260 Gijbels and Prosdocimi

one assumed by the Poisson and Binomial distribution usually employed to analyze
such data.

Some early work on dispersion function estimation can be found in Efron
(1986), who introduced a double exponential family of distributions, which extends
the standard exponential family by adding an extra dispersion parameter which
governs the extra variability observed in the data. Efron (1986) also presented
methods to model this extra parameter as a parametric function of the covariates.

In this article, we focus on the case when the over-dispersion (or under-
dispersion) in the data is changing as a function of the covariates. Moreover, the
mean and dispersion functions might be entirely unknown, or partially modeled
in a parametric way and partially in a nonparametric way. In the univariate case,
a similar estimation method, in a fully nonparametric setting, can be found in
Gijbels et al. (2010). An application to Italian abortion rate data in a multivariate
setting is provided in Gijbels and Prosdocimi (2011). That article also included
a small simulation study for a normal model in which all covariates enter in
a nonparametric way. The aim of the current article is to further investigate
this flexible technique for estimation of mean and dispersion functions, and to
provide a simulation study in which the quality of mean and dispersion function
estimation for normal and counts data is investigated. To work in full generality
we allow for a subset of the covariates to be modeled through a parametric
function, whereas the effect of the remaining set of covariates is fully unknown and
requires nonparametric estimation techniques. Both the quality of estimation of the
parametric part as well as of the nonparametric part are investigated. A comparison
with an alternative approach, in case of over-dispersed data, is also included.

Such an alternative approach is to start from the class of models called
Generalized Additive Models for Location Scale and Shape (GAMLSS); for
example, see Rigby and Stasinopoulos (2005) and Stasinopoulos and Rigby (2007).
This class of models allows the user to obtain smooth functional estimates for
different parameters of a given distribution which is assumed to be generating
the data. To model the dispersion of, for example, count data, one needs
to specify a distribution which also allows for dispersion modeling. In this
context, a typical extension of the standard Poisson distribution is the Negative
Binomial distribution, which extends the standard Poisson via hierarchical modeling
reasoning. Nevertheless the Negative Binomial distribution only allows for over-
dispersion modeling. In our approach the modeling of under-dispersed data or
over-dispersed data, or even the modeling of data showing a combination of over-
dispersion and under-dispersion, are all easily done in one unique framework.
Some comparisons with alternative approaches of hierarchical modeling type are
available in the literature; see Gijbels et al. (2010) for such comparisons in the
univariate covariate case, and Croux et al. (2012) for a comparison in a robust
modeling context. In the current article, we additionally provide a comparison in
the multivariate covariate setting in which some covariates enter the model in a
parametric way, and others in a nonparametric way. All these comparisons together
reveal that the presented modeling framework is very appealing due to mainly (i) its
easiness to capture various departures from the original theoretical model, and (ii)
its computational convenience by using a sparse estimation method.

This article is organized as follows. In Sec. 2, we briefly introduce the statistical
modeling framework used in this article. The method for a flexible estimation of
the multivariate mean and dispersion function is exposed in Sec. 3. A detailed study
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Flexible Mean and Dispersion Function Estimation 3261

investigating the finite-sample performance of the method is provided in Sec. 4. This
section also presents comparisons with other methods. An illustration with a real
data example is given in Sec. 5.

2. The Statistical Framework

Let Y be the response variable of interest and consider a set of d covariates
Xd = �X1� � � � � Xd�. In the settings of Generalized Linear Models (GLM), see for
example McCullagh and Nelder (1989), and GAM one assumes that the response
variable Y given Xd = xd, with xd = �x1� � � � � xd� ∈ �d, has a distribution belonging
to the exponential family of distributions, i.e., the conditional density of Y given
Xd = xd, is

eY �y� ��xd�� �� = exp
{
y��xd�− b���xd��

�
+ c�y� ��

}
� (2.1)

where b�·� and c�·� �� are known functions, identifying specific distributions and �
is a scale parameter. For short, we denote this as �Y �Xd = xd� ∼ EF�b���xd��� ��.
It can be shown that

��xd� = E	Y �Xd = xd
 = b′���xd�� and Var	Y �Xd = xd
 = �b′′���xd���
(2.2)

In GLM and GAM, a transformation of the mean function ��xd� = g���xd��, with
g�·� the link function, is then further modeled. A link function is called a canonical
link when ��xd� = g�b′���xd��� = ��xd�, i.e., when g�·� = �b′�−1�·�. In this article, we
work with canonical link functions.

In a GLM setting, the function ��xd� is modeled as a parametric linear function
of the covariates. In GAM the unknown multivariate predictor ��xd� is modeled as
a linear combination of unknown univariate functions:

g���xd�� = ��xd� = ��0 + �1�x1�+ · · · + �d�xd� = ��0 +
d∑

j=1

�j�xj�� (2.3)

with ��0 an intercept parameter. The estimation task consists of estimating
the parameter ��0 and all functional univariate components �j�·�. Note that
GLM models are essentially parametric in nature whereas GAM are essentially
nonparametric. In general, the model in (2.3) is defined up to a constant and is
not identifiable. Indeed, one could add and subtract the same constant � from two
component functions �i�·� and �j�·� (with i �= j), without affecting the final model.
To avoid this identifiability issue, constraints E	�j�Xj�
 = 0, are imposed on each
component.

Of particular interest in this modeling context is to allow for some variables
entering the model in a parametric linear fashion (e.g., as a polynomial), and others
entering in a nonparametric fashion via additive modeling as in (2.3). This then leads
to a semiparametric model.

Under the exponential family modeling it is assumed that the variance behaves
as in (2.2). Such a structure of the variance can be too restrictive though. Data,
and in particular counts or proportion data, sometimes show a variance that is
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3262 Gijbels and Prosdocimi

smaller (respectively larger) than the variance imposed by the theoretical model
in (2.2). One refers to this as under-dispersion (respectively, over-dispersion). The
amount of over- or under-dispersion may also vary with different values taken by
the covariates. In a normal model with variance 
2, b��� = �2/2, b′′��� = 1, the
canonical link function is g�t� = t, and � = 
2, and hence the theoretical model
assumes a constant variance. However, in practice, data following a normal model
may exhibit heteroscedasticity, i.e., a variance that is different for different values of
the covariates.

Various approaches have been proposed to analyze over-dispersed data. A
review of common methods can be found in Hinde and Demétrio (1998). For a
comparison of different approaches see Nelder and Lee (1992) and Davidian and
Carroll (1988), among others; see also Gijbels et al. (2010) and references therein.

A unique framework for modeling both over-dispersed and under-dispersed
data as well as heteroscedastic data is obtained by starting from the double
exponential family of distributions introduced by Efron (1986). For ease of
presentation we focus first on the case with no covariates involved. In the
exponential family model (2.1), take �S to be the choice of � corresponding to the
saturated one-parameter model, which maximizes eY �y� �� �� over all possible values
of � (�S = �b′�−1�y�). The corresponding double exponential family is

f̃Y �y� �� �� �� = c��� ���−
1
2 eY �y� �� ��

1
� eY �y� �S� ��

1− 1
� � (2.4)

where c��� �� is a normalizing constant, such that
∫ �
−� f̃Y �y� �� �� ��dy = 1. As

discussed in Efron (1986) and Nelder and Lee (1992) this normalizing constant
can be approximated (in first order) by 1. The deviance for a one-parameter
exponential family is defined as d�y� �� = 2	log�eY �y� �S� ���− log�eY �y� �� ���
, so
that an approximation of (2.4) can be written as

fY �y� �� �� �� = �−
1
2 eY �y� �� ��

1
� eY �y� �S� ��

1− 1
�

= �−
1
2

{
exp

[
1
2
d�y� ��

]}− 1
�

eY �y� �S� ��� (2.5)

We denote this density as Y ∼ DEF�b���� �� ��. Efron (1986) showed that for such
a Y the approximate mean and variance are, respectively, E�Y� = � = b′��� and
Var	Y
 = ��b′′���. The role of the extra parameter � is clear:

� = 1 � back to the one-parameter exponential family �2�1�

� > 1 � over-dispersion

� < 1 � under-dispersion�

In the case when Y is normally distributed � coincides with the variance parameter
(denoted with 
2) when taking � = 1, and the normalizing constant c��� �� has
exactly value 1. For other distributions, the variance is the product of the variance
we would have in the one-parameter exponential family framework multiplied by
the value of the � parameter. Estimation of � thus refers to estimation of the variance
(in a normal model) as well as to estimation of the dispersion.

Coming back to our covariate setting, we assume that �Y �Xd = xd� ∼
DEF�b���xd��� �� ��xd��, where � is assumed to be constant and known. Similarly
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Flexible Mean and Dispersion Function Estimation 3263

as in (2.3) we use additive modeling for the (transformed) unknown dispersion
function ��xd�

h−1���xd�� = ��xd� = ��0 + �1�x1�+ · · · + �d�xd�� (2.6)

where h�·� is a given link function, and ��0 an intercept parameter. Since ��xd� is
a dispersion function it must be nonnegative and a natural link function is h�t� =
exp�t�.

3. Flexible Estimation of Mean and Dispersion

Looking back to (2.3) and (2.6), the task is now to estimate both intercept
parameters ��0 and ��0 as well as all unknown univariate functions �j�·� and �j�·�,
j = 1� � � � � d. An appealing method for estimating these univariate functions is
penalized splines. Eilers and Marx (1996) used B-splines as a starting basis and
used a specific form of penalty, leading to the P-splines estimation technique.
For explaining briefly this method and for introducing some notation, consider
for a moment the case d = 1 and absence of an intercept parameter in (2.3).
The task is then to estimate a univariate function ��·�. Eilers and Marx (1996)
proposed modeling the linear predictor ��x� as a linear combination of B-spline
basis functions. For a given set of knots ��1� � � � � �k�, B-spline basis functions of
degree p, are composed of polynomial pieces of degree p, joined together at each
knot point �j , such that the resulting function is �p− 1� times differentiable with a
continuous �p− 1�th derivative. This results into a basis of dimension K = k+ p+
1, and the linear predictor ��·� can be approximated in this space of B-spline basis
functions:

��x� =
K∑
j=1

�jBj�x� = BT �x��� (3.1)

denoting B�x� = �B1�x�� � � � � BK�x��
T the B-splines base and � = ��1� � � � � �K�

T , the
unknown vector of parameters. The superscript T denotes the transpose of a vector
or a matrix. Obviously, taking a large set of B-spline basis functions leads to a
better approximation in (3.1), but will also lead to a large variability of the fit.
This overfitting is controlled by introducing a penalty term in the log-likelihood. In
P-splines regression this penalty is often taken to be based on finite differences of
adjacent coefficients �j , namely a penalty term

∑K
j=m+1��

m�j�
2, where m is the order

of the differencing operator. Examples are: with m = 1, ��j = �j − �j−1; and with
m = 2, �2�j = ���j = �j − 2�j−1 + �j−2.

From i.i.d. observations �x� y� = ��x1� y1�� � � � � �xn� yn��
T from �X� Y�, we obtain

B�xi�, for all i = 1� � � � n, and build from this the B-splines bases matrix B of
dimension n× K in which the ith row is given by BT �xi� = �B1�xi�� � � � � BK�xi��. The
penalized log-likelihood, using (2.1), is defined as

l��� x� y� �� �� = yTB� − 1Tn b�B��
�

− 1
2
��TDT

mDm�� (3.2)

where � > 0 is a smoothing parameter and 1n = �1� 1� � � � � 1�T denotes the
unit vector of length n. The notation b�B�� means that we apply the
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3264 Gijbels and Prosdocimi

function b�·� to each element of the vector B�, and obtain as such b�B�� =
�b�BT �x1���� � � � � b�B

T �xn����
T . The same notation holds for other functions applied

to a vector of values. The quantity �TDT
mDm� is the matrix representation of∑K

j=m+1��
m�j�

2. Maximization of (3.2) with respect to � leads to the maximum
penalized log-likelihood estimator of �. This estimator is obtained by using iterative
procedures, like Fisher scoring.

We now turn to the general set up: the case of multivariate covariates (i.e.,
general d), the case of estimation of the mean and the dispersion function (see (2.3)
and (2.6)), and the case of allowing for a subset of the covariates to be modeled via
parametric functions. We start by discussing the estimation of the mean function
in (2.3) using the P-splines technique.

The expected value of �Y �Xd� is modeled as a function of the covariates
Xd = �X1� � � � � Xd� through the link function g�·� in (2.3). Assume now that dP ≤ d
covariates, say XP

d = �X1� � � � � XdP
�, enter the model parametrically, while dNP =

d − dP covariates, say XNP
d = �XdP+1� � � � � Xd� are modeled nonparametrically via

approximations with P-splines. Writing xd = �x1� � � � � xdP� xdP+1� � � � � xd� = �xP
d� x

NP
d �,

and denoting by Bj�xj� the parametric model basis of dimension Kj for modeling
the parametric component of xj for j = 1� � � � � dP. The whole parametric part can
then be modeled via the basis BP�xP

d� = 	BT
1 �x1�� � � � �B

T
dP
�xdP�
 of dimension KP =∑dP

j=1 Kj . Consider for example the case d = 3, in which the effect of X1 is modeled
linearly (i.e., via �P1x1) and the effect of X2 is modeled via a cubic function (i.e.,
via �P2x2 + �P3x

2
2 + �P4x

3
2). Then K1 = 1 and K2 = 3 and BT

1 �x1� = x1 and BT
2 �x2� =

�x2 x
2
2 x

3
2�.

For the covariates entering the model in a nonparametric way we have
dNP sets of B-splines basis functions for the flexible modeling of these dNP =
d − dP covariates, denoted by Bj�xj� of dimension Kj , for j = dP + 1� � � � � d.
We denote by BNP�xNP

d � = 	BT
dP+1�xdP+1� � � �B

T
d �xd�
 the global basis for this

nonparametric modeling part, of dimension KNP = ∑d
j=dP+1 Kj . Finally, define

B�xd� = 	1�BP�xP
d��B

NP�xNP
d �
T to obtain the model basis of dimension K = 1+

KP + KNP. Expression (2.3) can then be rewritten as

g���xd�� = ��xd� = ��0 + BP�xP
d��

P + BNP�xNP
d ��NP = BT �xd��� (3.3)

with � = ��0� ��
P�T � ��NP�T �T the vector of unknown parameters of dimension K,

to be estimated. Using large sets of knots the B-splines bases BNP�xNP
d � are built,

and overfitting is avoided by introducing a vector of smoothing parameters � =
��1� � � � � �dNP

� and differencing type of penalties of order �m1� � � � � mNP�.
Based on i.i.d. observations �x� y� = ��x11� x21� � � � � xd1� y1�� � � � � �x1n� x2n� � � � �

xdn� yn��
T from �X1� � � � � Xd� Y� one builds the model matrix B = 	1n BP BNP
.

For a given smoothing parameter vector � = ��1� � � � � �dNP
� the penalty matrix is

P = blockdiag �0� 0KP
� �1D

T
m1
Dm1

� � � � � �dNP
DT

mdNP
DmdNP

�, where the first 1+ KP zero
elements come from the fact that there is no need to penalize the parametric
components of the model. The maximum penalized log-likelihood estimator for � is
obtained via iterative methods of the Fisher scoring type.

We now turn to the full generality of estimating both mean and dispersion
function, with some covariates possibly entering in a parametric way. Of course
the set of covariates entering in a parametric way can be different for the mean
and the dispersion function estimation. We thus need to expose this in the
general description of the estimation procedure. Given the set of d covariates
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Flexible Mean and Dispersion Function Estimation 3265

Xd = �X1� � � � � Xd�, the mean is modeled as a function of a certain set of d�

covariates, with d� ≤ d. Of these d� covariates a subset of dP�
covariates enter the

mean model in a parametric fashion and the remaining dNP�
= d� − dP�

covariates
enter the model in nonparametric way. The dispersion function ��·� is modeled as a
function varying with a set of d� covariates (d� ≤ d), possibly different from the set
of covariates used to model the mean function. Here, dP�

covariates enter the model
parametrically and the relation between the remaining dNP�

= d� − dP�
covariates

and the dispersion function is modeled in a nonparametric way. Denote by Xd�
=

�X1� � � � � XdP�
� XdP�+1� � � � � Xd�

� = �XP
d�
�XNP

d�
� the set of covariates that is used to

model the mean function ��xd�
�, and by Xd�

= �X1� � � � � XdP�
� XdP�+1� � � � � Xd�

� =
�XP

d�
�XNP

d�
� the set of covariates for modeling the dispersion function ��xd�

�.
The components in the nonparametric part are modeled via P-splines, for which

smoothing parameters �� = ��
�
1� � � � � �

�
dNP�

� and �� = ��
�
1� � � � � �

�
dNP�

� and differencing
type of penalties of order m1� � � � � mdNP�

and �1� � � � � �dNP�
are introduced. Similar

as in the previous paragraph when we rewrote (2.3) into (3.3), we now re-
express (2.3) and (2.6) by defining B��xd�

� = 	1�BP
� �x

P
d�
��BNP

� �xNP
d�
�
T and B��xd�

� =
	1�BP

� �x
P
d�
��BNP

� �xNP
d�
�
T so that

g���xd�
�� = ��xd�

� = ��0 + BP
� �x

P
d�
��P� + BNP

� �xNP
d�
��NP

�

= BT
� �xd�

���� (3.4)

and

h−1���xd�
�� = ��xd�

� = ��0 + BP
� �x

P
d�
��P� + BNP

� �xNP
d�
��NP

�

= BT
� �xd�

���� (3.5)

with �� = ���0� ��
P
��

T � ��NP
� �T �T and �� = ���0� ��

P
� �

T � ��NP
� �T �T the vectors of

unknown parameters to be estimated.
For a given sample of n i.i.d. observations �x� y� from �Xd� Y�, we extract

from x the x� vector and the x� vector in which we consider only the observed
values of respectively the Xd�

covariates and the Xd�
covariates. From the resulting

set of observations we then build the “design” matrices B� = 	1n BP
� BNP

� 
 and
B� = 	1n BP

� BNP
� 
 as described above. Furthermore, for given �� and ��, we build

the two penalty matrices P� = blockdiag �0� 0KP�
� �

�
1D

T
m1
Dm1

� � � � � �
�
dNP�

DT
mdNP�

DmdNP�
�

and P� = blockdiag �0� 0KP�
, ��1D

T
�1
D�1

� � � � � �
�
dNP�

DT
�dNP�

D�dNP�
�. For given smoothing

parameter vectors �� and ��, the estimates for �� and �� are obtained by maximizing
the penalized log-likelihood:

l���� ��� x� y� �
�� ��� �� = −1

2
1Tn

{
log�h�B�����+

1
h�B����

d�y�B����

}

− 1
2
�T�P��� −

1
2
�T� P���� (3.6)

where the log-likelihood function follows from (2.5). Maximization of (3.6) is done
via a two-steps iterative procedure: we first maximize with respect to �� and then
with respect to �� and iterate between the two steps until convergence. Each of the
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3266 Gijbels and Prosdocimi

two maximization steps is done via Fisher scoring. More precisely, the estimation
algorithm iterates between the following two steps.

• Step (a). Estimation of ��. Taking �� to be fixed, an optimal value for �� is
selected, and estimates of �� are obtained via the following updating rule:

�� = �BT
� W̃�B� + P��

−1BT
� W̃�z̃�� (3.7)

with �̃� the current estimated value of ��, z̃� = B��̃� + �y−
b′�B��̃���/b

′′�B��̃�� the vector of working variables and with W̃� the current
diagonal matrix W̃� = diag

( b′′�B� �̃��

���x��

)
. Once convergence is reached, values for

��x� and d�y�B���� are computed.
• Step (b). Estimation of ��. Taking �� to be fixed, an optimal value for �� is
selected, and estimates of �� are obtained via the updating rule

�� = �BT
� W̃�B� + P��

−1BT
� W̃�z̃�� (3.8)

with �̃� the current value of ��, z̃� the working variable vector

z̃� = B��̃� + �d�y� ��x���− h�B��̃���
1

h′�B��̃��
�

and with W̃� the current diagonal matrix of weights

W̃� =
1
2
diag

(
h′�B��̃��

h�B��̃��

)2

�

The smoothing parameters �� and �� are chosen by generalized cross validation
criteria; see Eilers and Marx (1996), Gu and Xiang (2001), Wood (2006a, 2008),
and Gijbels et al. (2010). For more details on the estimation algorithm and practical
implementations, see Gijbels and Prosdocimi (2011).

Asymptotic properties of penalized spline estimators of a mean regression
function in a univariate setting are studied in a general context in Claeskens (2009).
Antoniadis et al. (2011) provided rates of convergence in P-spline estimation of
a univariate mean regression function for general classes of penalty functions.
Consistency of P-spline estimation of a mean regression function in a multivariate
additive modeling setting is established in Antoniadis et al. (in press), relying on the
univariate consistency results and consistency of a backfitting procedure in additive
modeling (see, e.g., Horowitz et al., 2006). The method in this article involves
P-spline estimation of both the (multivariate) mean and dispersion function.
Although no theoretical results are available yet, it is to be expected that the
estimation of mean and variance/dispersion remains consistent as long as the
estimation of the latter function is based on appropriate residuals of the consistent
mean estimation; see, for example, Hall and Carroll (1989) and Fan and Yao
(1998), among others, for theoretical results on variance estimation in a regression
context.
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Flexible Mean and Dispersion Function Estimation 3267

4. Simulation Study

The aim of this section is to investigate the finite-sample performance of the
estimation of the parametric and nonparametric components in (3.4) and (3.5)
via the maximum penalized log-likelihood estimation method in (3.6). We also
provide, in Section 4.2, comparisons with: (i) the standard GAM method in which
the variance is constant; and (ii) a hierarchical modeling approach in case of
over-dispersion.

4.1. Finite-Sample Performance of the Method

In this simulation study we consider the d = 2 covariate case for different type
of models: a normal model, in which we are thus estimating mean and variance
functions; and a Poisson model, in which we estimate mean and dispersion
functions. In all simulation models the two covariates are generated as independent
U�0� 1� random variables.

For each modeling type, the normal and the Poisson model, we consider two
different settings, referred to as Models A and B hereafter.

Normal model settings:

��x1� x2� = ��x1� x2� = ��0 + �1�x1�+ �2�x2�

log��A�x1� x2�� = �A�x1� x2� = ��0 + �1�x1�+ �2�x2�

log��B�x1� x2�� = �B�x1� x2� = ��0 + �2�x1�+ �1�x2��

where

��0 = 45 �1�x� = −18x + 7x2 + 6x3 �2�x� = 7�2 sin�90+ 6x� cos��x + 0�5�1�5�

��0 = 0�5 �1�x� = 1�5x − 0�5x2 + 0�15x3 �2�x� = 0�4 cos�4�x − 0�2�� exp�0�6x��

The functions �1�·� and �1�·� are entering the model in a parametric way. The
modeling of the parametric part as a third degree polynomial is motivated by the
fact that such a function often can capture global influences (of linear, quadratic, or
cubic type) of covariates; see also Sec. 5.

Poisson model settings:

log���x1� x2�� = ��x1� x2� = ��0 + �1�x1�+ �2�x2�

log��A�x1� x2�� = �A�x1� x2� = ��0 + �1�x1�+ �2�x2�

log��B�x1� x2�� = �B�x1� x2� = ��0 + �2�x1�+ �1�x2��

where

��0 = 4 �1�x� = 0�85 cos��x� sin�7�2�x − 0�5�� �2�x� = 1�8 sin�x� cos�x�
��0 = 0�5 �1�x�= 1�5 exp�0�5x2� �2�x�= 0�6�sin�90+ 6x�+ 4cos�x1�5���

Here all covariates enter the model in a nonparametric way.
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3268 Gijbels and Prosdocimi

Figure 1. Normal model setting A: true mean and dispersion components with
representative estimates. (color figure available online.)

Note that the difference between the two models (Models A and B) in each of
the settings is simply obtained by swapping the roles played by the covariates. By
doing so, we aim at a better understanding of how the estimation of the mean and
the dispersion interact with each other and influence each other. The true mean and
dispersion components are displayed as bold solid lines in Figs. 1 and 2.

For the normal models we took samples of size n = 100, while for the Poisson
models we use two different sample sizes: n = 70 and n = 300. For all the simulation
settings we simulate 1�000 data sets and evaluate the quality of the obtained fits via

Figure 2. Poisson model setting A, sample size n = 300: true mean and dispersion
components with representative estimates. (color figure available online.)

D
ow

nl
oa

de
d 

by
 [

K
.U

.L
eu

ve
n 

- 
T

ijd
sc

hr
if

te
n]

 a
t 0

0:
29

 2
6 

Ju
ly

 2
01

2 



Flexible Mean and Dispersion Function Estimation 3269

an approximate integrated squared error (AISE)

AISE�s� =
∑

xgrid

(
f̂ �s��xgrid�− ftruexgrid�

)2

∑
xgrid

(
ftrue�xgrid�

)2 � for s = 1� � � � � 1000�

for each of the simulations (indexed by s).
In Figs. 1 and 2, we present, for the model settings A, the true component

functions with some representative estimates taken as the estimated curves
associated to the 5th, 50th, and 95th percentile of the ordered AISE-values across
the 1,000 simulation results. As is seen from Figs. 1 and 2, the quality of the
estimation is quite good.

In Fig. 3, we show boxplots of the AISE-values for the mean and the dispersion
components in both settings for the normal data. The performance of the estimation
in the two settings for the mean component is quite comparable, while we see
a considerable difference in the quality of the estimation of �1�·� (the parametric
component) in the dispersion function. Somehow the estimation of this parametric
component in the dispersion function appears more difficult than the estimation of
the nonparametric component.

Figures 4 and 5 present boxplots of the AISE-values for the mean and the
dispersion components for the Poisson data settings, for sample sizes n = 70 and
n = 300� respectively. Note that the estimation of the component �1�·� in the mean
function is remarkably better when the underlying component in the dispersion
function is not so smooth (model setting B). This difference is already noticeable
for the sample size n = 70. Overall the estimation of the smoother dispersion
component �1�·� is less biased but shows a larger variability.

Since in the normal model settings one covariate enters the model
parametrically and the other one nonparametrically it is of particular interest to
investigate this modeling strategy aspect. In the normal model setting A, the true
parameter values are

�P� = �−18� 7� 6� and �P� = �1�5�−0�5� 0�15��

Figure 3. Normal model settings. Boxplots of the AISE-values for the mean (top) and the
dispersion function (bottom) for model setting A (left panels) andmodel setting B (right panels).
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3270 Gijbels and Prosdocimi

Figure 4. Poisson data, sample size n = 70. Boxplots of the AISE-values for the mean (top)
and the dispersion function (bottom) for model setting A (left panels) and model setting B
(right panels).

Figure 5. Poisson data, sample size n = 300. Boxplots of the AISE-values for the mean
(top) and the dispersion function (bottom) for the model setting A (left panels) and the
model setting B (right panels).

Figure 6. Normal data: mean function estimation. Boxplots of the estimated parameters of
the parametric mean component. The dashed lines indicate the true values �P� = �−18� 7� 6�.
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Flexible Mean and Dispersion Function Estimation 3271

Figure 7. Normal data: dispersion function estimation. Boxplots of the estimated
parameters of the parametric dispersion component. The dashed lines indicate the true values
�P� = �1�5�−0�5� 0�15�.

In Figs. 6 and 7 we present boxplots of the estimated parameters for the
parametric component estimation of respectively the mean and the variance
function. Not surprisingly, the estimation of the parameters in the parametric
dispersion component function is of a lesser quality than these in the parametric
mean component function. For comparison purpose, we also applied the estimation
method when both covariates enter the model in a nonparametric way. The
performance of the (nonparametrically) estimated parametric components is
summarized in Fig. 8 which should be compared with Fig. 1. From a comparison
of these two figures, it is clear that nonparametric estimation of a parametric
component increases slightly the estimation variability (most noticeable in the
estimation of the mean components) but that the quality remains good.

Figure 8. Normal model setting A: true mean and dispersion components with
representative estimates when the parametric functions are estimated via P-splines. (color
figure available online.)
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3272 Gijbels and Prosdocimi

Figure 9. Normal model settings. Boxplots of the AISE-values for the mean (top) and the
dispersion function (bottom) for the model setting A (left panels) and the model setting B
(right panels).

4.2. Comparisons with Other Methods

One might wonder what happens if one ignores the fact that the dispersion
function changes with the values of the covariates. In Figs. 9 and 10, we show
the performances of the global mean (i.e., ��x1� x2�) and dispersion estimation
(i.e., ��x1� x2�) when (i) we estimate the dispersion function as a constant; and (ii)

Figure 10. Poisson model settings, sample size n = 300. Boxplots of the AISE-values for
the mean (top) and the dispersion function (bottom) for the model setting A (left panels)
and the model setting B (right panels).
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Flexible Mean and Dispersion Function Estimation 3273

we estimate the dispersion effectively as a function of the two covariates. Since
in our simulation models the dispersion function is varying with the values of
the covariates, considering this dispersion as a constant parameter (as is done in
standard GAM modeling) is expected to deliver poorer results also in terms of
mean estimation. The simulation results summarized in Figs. 9 and 10 confirm
this. Here, the abbreviation “DoubleGAM” refers to the method discussed in this
article and the abbreviation “GAM” refers to the results for a standard GAM
fitting. The poor results for the standard GAM fitting are mostly visible in the
case of the Poisson data because of the larger sample size: not surprisingly,
in order to obtain a good estimate for the dispersion function, which can be
considerably beneficial for the mean function estimation, larger sample sizes are
desirable.

Rigby and Stasinopoulos (2005) also proposed methods to flexibly estimate the
mean and dispersion functions of over-dispersed data, although in their approach
one needs to assume that the data come from a specific distribution which can
handle over-dispersed data. It is common practice to assume that over-dispersed
count data come from a Negative Binomial distribution, which is an extension of a
Poisson distribution using some hierarchical modeling. One of the major drawbacks
of this approach is that, unlike the double exponential family, it does not allow the
data to be under-dispersed.

In order to compare the finite-sample performance of the proposed method with
those found in Rigby and Stasinopoulos (2005), we perform a simulation study,
using count data with the same mean structure used in Sec. 4.1. We can only
compare the two methods in the situation of over-dispersion. We therefore changed
some of the parameters for the dispersion function in the Poisson model setting of
Sec. 4.1 to make sure that ��x� would always be larger than 1. Moreover, since the
two methods assume that the data come from two different distributions, we analyze
the data with both methods and generate samples using both distributions as the
underlying data-generation process. It can be shown that for a r.v. �Y �Xd = xd� ∼
Negative Binomial���xd�� 
�xd�� we have: E	Y �Xd = xd
 = ��xd� and Var	Y �Xd =
xd
 = �1+ 
�xd����xd�, with 
�xd� > 0. From this it is easy to see the relationship
between the 
�xd� function for the Negative Binomial and the ��xd� in the double
exponential family. The data simulated for the double exponential family have a
dispersion function �∗�x1� x2� = exp��∗�0 + �∗1�x1�+ �∗2�x2�� where

�∗�0 = 0�3 �∗1�x� = 0�7 exp�0�5x2� and �∗2�x� = 0�2
(
sin�90+ 6x�+ 4 cos�x1�5�

)
�

while for the data generated using the Negative Binomial we take the dispersion
function 
∗�x1� x2� = �∗�x1� x2�− 1. We generate 1�000 samples of size n = 300 data
points for each distribution and then analyze the data using both the estimation
techniques. In Fig. 11, we show the results regarding count data generated from a
distribution belonging to the double exponential family and modeled using either
the proposed Double GAM method or the GAMLSS technique of Rigby and
Stasinopoulos (2005). Figure 11 depicts the boxplots of the AISE-values for both
methods of estimation of �∗ and 
∗. In Fig. 12 instead, we compare the finite-
sample performance of the two methods when the data are generated via a Negative
Binomial. For the mean estimation both methods perform comparable, but for
the dispersion/variance estimation the Double GAM method performs slightly
better.
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3274 Gijbels and Prosdocimi

Figure 11. Data generation: double exponential family. Boxplots of the AISE-values for
all estimated functions using the Double GAM method or GAMLSS method.

Apart from estimation quality also the computational efforts should be taken
into account. For both data-generation processes, the Double GAM estimation
method took on average 63 s, whereas the GAMLSS estimation needed on average
19 s. Even if this difference in computing time is quite relevant, both methods are
computationally very feasible. The proposed method has the considerable advantage
of allowing for various departures of a constant dispersion modeling (e.g., under-
dispersion as well as over-dispersion, or combinations of both).

Figure 12. Data generation: Negative Binomial. Boxplots of the AISE-values for all
estimated functions using the Double GAM method or GAMLSS method.
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Flexible Mean and Dispersion Function Estimation 3275

Figure 13. The Boston housing data: mean and dispersion estimation. Top panels:
(centered) data together with the estimated mean components �1, �2 and �3. Lower panels:
(centered) residuals are plotted with the �1 and �2 estimates. The dotted lines are the
approximate 95% confidence bands.

5. Real Data Example: the Boston Housing Data

In this section we illustrate the discussed flexible estimation method on the Boston
housing data. These are data, presented in Harrison and Rubinfeld (1978), regarding
the prices of houses in Boston in 1970. The interest is in the median price of
owner-occupied homes in the Boston area expressed in 1000×US Dollars. The
proposed method allows for modeling heteroscedasticity in the covariates, either in a
parametric or a nonparametric way. In addition, different covariates can enter in the
mean and the dispersion function modeling. In the upper panels of Fig. 13, we see
the estimated influence of three covariates, a first covariate being the weighted mean
of distances to five Boston employment centers (dis), a second covariate (denoted
by black) and defined as 1000�Bk− 0�63�2 where Bk is the proportion of blacks
by town, and a third covariate defined as the percentage of the population which
is in the lower status (denoted as lstat). The covariates dis and black enter
the model parametrically as polynomial functions of degree 3, while the covariate
lstat is modeled nonparametrically via P-splines. The lower panels of Fig. 13
depict the estimated components of the dispersion function. Again, lstat enters
the model nonparametrically, while the relationship between the dispersion function
and dis is modeled as a polynomial of degree 1. We did not include black in the
dispersion function model as that component was not significant. From our analysis
it is clear that the covariate lstat has the most complex influence on the response
variable, and requires nonparametric estimation techniques.

In Fig. 13, we also show 95% confidence bands for each of the estimated
components. These are based on the approximate distributions for �� and ��

�̂� ∼ N���� �B
T
�W�B� + P��

−1BT
�W�B��B

T
�W�B� + P��
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3276 Gijbels and Prosdocimi

and

�̂� ∼ N���� �B
T
� W�B� + P��

−1BT
� W�B��B

T
� W�B� + P���

with W� and W� the weight matrices as in (3.7) and (3.8), respectively, associated
with the values of the estimated parameter vectors after convergence has been
reached. These approximations are a generalization of the approximations used to
do inference for generalized linear models; see Wood (2006b) for a more complete
discussion on ways to build confidence bands for GAMs.

Note that the confidence bands are wider in areas with lesser data points, as to
be expected.
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