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Abstract In this short paper we propose the use of a calibration procedure in or-
der to obtain predictive probabilities for a future random variable of interest. The
new calibration method gives rise to a confidence distribution function which prob-
abilities are close to the nominal ones to a high order of approximation. Moreover,
the proposed predictive distribution can be easily obtained by means of a bootstrap
simulation procedure. A simulation study is presented in order to assess the good
properties of our proposal. The calibrated procedure is also applied to a series of
real data related to sport records, with the aim of closely estimate the probability of
future records.
Abstract In questo lavoro proponiamo l’utilizzo di una procedura di calibrazione
per determinare probabilità predittive per una variabile futura di interesse. Il
metodo proposto fornisce distribuzioni di confidenza le cui probabilità si avvici-
nano a quelle vere con un buon ordine di approssimazione. Le distribuzioni predit-
tive proposte si possono ottenere facilmente attraverso una procedura di bootstrap.
Un primo studio di simulazione mostra le buone proprietà delle distribuzioni pred-
ittive ottenute. Il nuovo metodo viene anche applicato all’analisi di un insieme di
dati reali riguardanti record sportivi, con lo scopo di stimare la probabilità di un
nuovo record mondiale.
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1 Introduction

Consider the problem of predicting the value of a future or not yet observed random
variable, using a sample generated by the same random mechanism. In the frequen-
tist approach, prediction usually requires the specification of a suitable estimate for
the (conditional) distribution of the interest random variable, based on the available
data, which can be viewed as a confidence distribution ([4], [6]). In particular, this
predictive distribution is considered for defining prediction intervals or more simply
prediction quantiles, requiring that the associated coverage probability corresponds,
exactly or approximately, to the prescribed target probability. Several papers have
addressed this problem and, in particular, we mention the calibration approach in-
troduced in [1], and the related bootstrap-based procedure proposed in [3]. In this
paper we focus on the different, albeit related, problem of defining a predictive dis-
tribution giving well calibrated probabilities for the future random variable. The
bootstrap calibration procedure, introduced for the quantiles, is applied in this dual
framework, giving a new calibrated distribution in order to obtain predictive proba-
bilities. This new proposal is briefly compared with the existing ones by considering
an example involving normal distributed samples. Finally, a real data application,
related to sport records and based on the GEV distribution, is presented.

2 Calibrated distributions for prediction probabilities

Let us define the notation and the general assumptions that we require for obtain-
ing the result. Suppose that {Yi}i≥1 is a sequence of continuous random variables
with probability distribution specified by the unknown d-dimensional parameter
θ ∈ Θ ⊆ Rd , d ≥ 1; Y = (Y1, . . . ,Yn), n > 1, is observable, while Z = Yn+1 is a
future or not yet available observation. For simplicity, we consider the case of Y and
Z being independent random variables and we indicate with G(z;θ) and Q(α;θ)
the distribution function and the quantile function of Z, respectively. Given the ob-
served sample y = (y1, . . . ,yn), we look for a predictive distribution Ĝ(z;y), with
corresponding quantile function Q̂(α;y), that fullfills some good requirements for
prediction.

As far as we know, modern literature has mainly focused on the problem of find-
ing a predictive distribution which quantiles satisfy

EY{G(Q̂(α;Y );θ)}= α, (1)

for all α ∈ (0,1), at least with a high approximation. In this work, we concentrate
on the dual problem, that is finding a predictive distribution function Ĝ(z;y) such
that, exactly or approximately,

EY{Q(Ĝ(z;Y );θ)}= z, (2)
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for every z ∈ R. As it can be noted, instead of assessing the quantile function of Z
we are trying to estimate the distribution function itself. In order to solve this prob-
lem, we simply apply the same procedure proposed by [3] to the quantile function
Q(α;θ) of Z instead of the distribution function itself. This easily lead to the defini-
tion of a new calibrated predictive distribution that may be useful for the calculation
of probabilities for Z.

Consider the maximum likelihood estimator θ̂ = θ̂(Y ) for θ , or an asymptoti-
cally equivalent alternative, and the estimative predictive distribution and quantile
function, G(z; θ̂) and Q(α; θ̂), respectively. The mean of quantiles of level equal to
G(z; θ̂) is

EY [Q{G(z; θ̂);θ}] = A(z,θ)

and, although its explicit expression is rarely available, it is well-known that it does
not match the target value z even if, asymptotically, A(z,θ) = z+o(1), as n→+∞.
It is easy to see that the function

Qc(α; θ̂ ,θ) = A{Q(α; θ̂),θ}, (3)

which is obtained by substituting z with Q(α; θ̂) in A(z,θ), is a proper quantile
function, provided that A(·,θ) is sufficiently smooth. Furthermore, the correspond-
ing distribution function Gc(z; θ̂ ,θ) = G{A−1(z,θ); θ̂} satisfies (2) for every z ∈R.
Indeed,

EY{Q(Gc(z; θ̂ ,θ);θ)} = EY [Q{G(A−1(z,θ); θ̂);θ}]
= A{A−1(z,θ),θ}= z.

The calibrated predictive quantile function (3) and the corresponding predictive dis-
tribution are not useful in practice, since they depend on the unknown parameter θ .
However, a suitable parametric bootstrap estimator for Qc(α; θ̂ ,θ) may be readily
defined. Let yb, b = 1, . . . ,B, be parametric bootstrap samples generated from the
estimative distribution of the data and let θ̂ b, b = 1, . . . ,B, be the corresponding
estimates. We can thus write

Qboot
c (α; θ̂) =

1
B

B

∑
b=1

Q{G(z; θ̂
b); θ̂}|z=Q(α;θ̂). (4)

The associated distribution function allows to estimate the target probability G(z;θ)=
P(Z ≤ z), for each z ∈ R, with an error term which depends on the efficiency of
the bootstrap simulation procedure. Indeed, the estimate is the value α such that
Qboot

c (α; θ̂) = z.
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3 The Normal distribution: a simulation study

Let us first consider the case of prediction for a normally distributed random vari-
able. If we use Ȳ = ∑i Yi/n and S =

√
∑i(Yi− Ȳ )2/(n−1) as estimators for the

unknown parameters, then T =
√

n/(n+1)(Z−Ȳ )/S is a pivotal quantity having a
Student t distribution with n−1 degrees of freedom. Its quantiles satisfy (1) exactly.
In spite of this, it could be also interesting to consider the calibrated procedure
proposed in [3], which satisfies (1) approximately. Indeed, in some situations the
sample mean and standard deviation may not be the most convenient estimators for
the parameters and, thus, a pivotal quantity may not be easily available.

In the following we compare the estimative distribution function (Est), the exact
distribution function obtained from the pivotal quantity (Piv), the quantile calibrated
distribution function of [3] (Qcal) and our proposal, that we name probability cali-
brated distribution function (Pcal). Figure 1 represents an example of the different
predictive distributions obtained from a particular sample y.

We have performed a simulation study in order to assess the properties of the
different predictive distributions. Tables 1 and 2 show the results of a Monte Carlo
simulation based on M = 1000 replications. The bootstrap procedure is based on B=
500 replications. The sample size is n = 10 and the true parameter values are µ = 0
and σ = 1. We have compared the different predictive distributions on the basis
of the corresponding coverage probability for α = 0.9,0.95,0.99 (Table 1) and the
mean quantiles of levels Ĝ(z;y) for z = 1.5,2,2.5 (Table 2). As expected, the pivotal
and the quantile calibrated predictive distributions perform better with respect to
criterion (1) whereas the probability calibrated predictive distribution outperforms
the others with respect to criterion (2).
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Fig. 1 Normal case: predictive distribution functions (left) and upper tails of predictive distribution
functions (right).
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Target Piv Est Qcal Pcal
α = 0.9 0.902 0.876 0.902 0.895
α = 0.95 0.946 0.919 0.945 0.936
α = 0.99 0.990 0.972 0.990 0.982

Table 1 Normal model: coverage probabilities (standard errors are always smaller than 0.0025).

Target Piv Est Qcal Pcal
z = 1.5 1.40 1.63 1.40 1.47
z = 2 1.83 2.24 1.83 1.96

z = 2.5 2.16 2.75 2.16 2.30

Table 2 Normal model: mean quantiles of level Ĝ(z;y) (standard errors are always smaller than
0.025).

4 The GEV distribution: an application to athletic records

As a further example, we consider the case of prediction for the generalised ex-
treme value (GEV) distribution, which is usually applied to model maxima of a
process over certain time intervals; see for instance [2]. The GEV distribution has
three parameters: location, scale and shape. It is important noticing that when the
shape parameter is positive (Fréchet distribution) or equal to 0 (Gumbel distribu-
tion) the support of the distribution is not limited from above. We have collected
annual records in the period 2001 to 2019 for female long jump from the web site
of the World Athletics (formerly known as International Association of Athletics
Federations (IAAF)) [5].

Using the proposed probability calibrated predictive distribution, we can prop-
erly compute probabilities related to the variable Z which represents the best perfor-
mance in the year to come. In particular we can evaluate the probability of having a
new world record in the next year as αWR = P(Z >WR), where WR represents the
present world record. This probability can also be used to evaluate the goodness of
the world record: the smaller αWR the better the world record. Moreover, from αWR
we can calculate the expected number of years for the next record, TWR = 1/αWR.

In our example the estimate of the shape parameter of the GEV distribution is
positive, thus the estimative GEV distribution function is a Fréchet distribution with
no upper bound. Though, the confidence interval for the shape parameter includes
0 and hence, from an inferential point of view, the specification procedure indi-
cates the Gumbel model as the obvious candidate. However, prediction can be quite
affected by such a choice, as it can be seen from the results presented in Table 3. Fig-
ure 2 shows the estimative (solid), the quantile (dashed) and the probability (dotted)
calibrated GEV (red) and Gumbel (black) distribution functions for women’s long
jump data. The bootstrap procedures are based on 1000 replications. The present
world record (solid) is also represented.

The present world record, WR = 7.52 m, dates back to 1988 and is not included
in the data. Using the GEV probability calibrated distribution instead of the Gum-
bel one, we take into account for the uncertainty related to the shape parameter
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Fig. 2 Women’s long jump: GEV and Gumbel predictive distribution functions.

estimation and we can properly assess the probability of improving the current
world record: αWR = P(Z >WR) = 0.041. Notice also that both the GEV estimative
and quantile calibrated predictive distributions wrongly estimate this probability to
0.014 and 0.031, respectively. The expected time for improving the current world
record is about 24.4 years.

WR = 7.52 Est Gumbel Qcal Gumbel Pcal Gumbel Est GEV Qcal GEV Pcal GEV
Probability 0.007 0.014 0.011 0.014 0.031 0.041

Expected time 134.1 73 90.9 69.5 32.5 24.4

Table 3 Probabilities of improving the current world record (WR) with corresponding mean wait-
ing times.
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