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ABSTRACT 30 

Coastal aquifers have been identified as particularly vulnerable to impacts on water quantity and quality 31 

due to the high density of socio-economic activities and human assets in coastal regions and to the 32 

projected rising sea levels, contributing to the process of saltwater intrusion. This paper proposes a 33 

Regional Risk Assessment (RRA) methodology integrated with a chain of numerical models to evaluate 34 

potential climate change-related impacts on coastal aquifers and linked natural and human systems (i.e., 35 

wells, river, agricultural areas, lakes, forests and semi-natural environments). The RRA methodology 36 

employs Multi Criteria Decision Analysis methods and Geographic Information Systems functionalities 37 

to integrate heterogeneous spatial data on hazard, susceptibility and risk for saltwater intrusion and 38 

groundwater level variation. 39 

The proposed approach was applied on the Esino River basin (Italy) using future climate hazard scenarios 40 

based on a chain of climate, hydrological, hydraulic and groundwater systems models running at different 41 

spatial scales. Models were forced with the IPCC SRES A1B emission scenario for the period 2071-2100 42 

over four seasons (i.e., winter, spring, summer and autumn). 43 

Results indicate that in future seasons, climate change will cause few impacts on the lower Esino River 44 

valley. Groundwater level decrease will have limited effects: agricultural areas, forests and semi-natural 45 

environments will be at risk only in a region close the coastline which cover less than 5% of the total 46 

surface of the considered receptors; less than 3.5 % of the wells will be exposed in the worst scenario. 47 

Saltwater intrusion impact in future scenarios will be restricted to a narrow region close to the coastline 48 

(only few hundred meters), and thus it is expected to have very limited effects on the Esino coastal 49 

aquifer with no consequences on the considered natural and human systems. 50 

 51 

Keywords: Climate change; Regional Risk Assessment; Esino coastal aquifer; groundwater; GIS; MCDA; 52 

model chain. 53 

 54 
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1 INTRODUCTION 55 

Coastal groundwater resources connect the world’s oceanic and hydrologic ecosystems (Moore 1996, 56 

Ferguson & Gleeson 2012) and play vital roles in the socio-economic and ecological functions of coastal 57 

systems worldwide (IPCC 2007a). However, current research indicates that climate variability and 58 

climate change will constraint the usefulness of coastal groundwater through changes in climate variables 59 

(e.g., temperature, precipitation) and concomitant changes in the sea level (Sherif & Singh 1999, Ranjan 60 

et al. 2006, Jyrkama and Sykes 2007, Herrera-Pantoja & Hiscock 2008, Ferguson & Gleeson 2012, Bates 61 

et al. 2008). Thus, coastal groundwater-dependent natural and human systems (e.g., agricultural areas, 62 

natural systems, surface water bodies, etc.) will be prone to impacts related to changes in groundwater 63 

quantity and quality (Bates et al. 2008, Dragoni & Sukhija 2008, Essink et al. 2010, Abd-Elhamid 2010, 64 

Abd-Elhamid & Javadi 2011). Moreover, according to several studies (e.g., Bates et al. 2008, Dragoni & 65 

Sukhija 2008, Abd-Elhamid 2010, Franssen 2009, Baba et al. 2011, Praveena & Aris 2010), climate 66 

change would bring impact on coastal groundwater directly, through the interaction with surface water 67 

bodies, and indirectly, through the aquifers’ recharge processes. But the extent to which these resources 68 

will be affected depends largely on the region’s hydrogeological features and soil properties, and also on 69 

unsustainable human exploitation of aquifers and excessive use of soil (Herrera-Pantoja & Hiscock 2008, 70 

Werner et al. 2012).  71 

Several studies of coastal groundwater resources’ interactions with climate change and anthropogenic 72 

pressures (e.g., Ferguson & Gleeson 2012, Franssen 2009, Clarke et al. 2010, Re & Zuppi 2011) revealed 73 

that these interactions would mostly affect coastal aquifers in the coastal arid and semi-arid regions, 74 

where groundwater shortage is already aggravated by recurrent droughts and by its excessive use for 75 

socio-economic activities (mainly in coastal communities, where half of the world’s population lives and 76 

8 of the 10 largest cities in the world are currently located) (Post 2005, Carneiro et al. 2010).  77 

Climate change interactions with global water resources, and particularly with coastal groundwater 78 

aquifers, are well established, even though potential climate change effects at the regional scale are still 79 

uncertain. This is mainly due to the uncertainty related both to projections of climate variables (Baruffi et 80 

al. 2012) and the simulation of coastal aquifers’ small-scale processes, such as spatial heterogeneities, 81 

geo-chemical reactions and hydrogeological changes that often demand detailed information about 82 

subsurface areas (Werner 2010, Scibek & Allen 2006). On numerous occasions this has resulted in poor 83 

research and understanding of the links between climate change and coastal groundwater resources, and 84 

its dependent natural and human systems. 85 

As a result of these uncertainties, coastal groundwater resources’ monitoring and investigation has been 86 

much discussed in recent studies both at the global scale (e.g., IPCC 2007b, Barron et al. 2010, Werner 87 

2010) and at the regional scale (e.g., Bear 1999, Holman 2006, Herrera-Pantoja & Hiscock 2008, Post & 88 

Abarca 2010, Clarke et al. 2010, Essink et al. 2010, Gemitzi & Stefanopoulos 2011, Barron et al. 2012, 89 
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risk maps produced for the defined climate change scenarios are analysed in order to highlight areas and 120 

receptors at risk to climate-related impacts.  121 

 122 

2. THE CASE STUDY AREA 123 

The case study area is the lower Esino River valley (Figure 2) that is extended for 137 km
2
 and is part of 124 

the Esino River basin in the Marche region in central Italy. The Esino River basin has an extension of 125 

about 1203 km
2
 and the Esino River length is about 86 km, from the Mount Cafaggio in the province of 126 

Macerata, to the municipality of Falconara Marittima, where it flows into the Adriatic Sea. The region’s 127 

topography reveals two Apennines ridges: the Umbria-Marche ridge and the Marche ridge surrounding 128 

the Esino River valley. Moreover, the valley is generally steep-sided, narrow and deep with alluvial flood 129 

plains that extend wider eastward up to more than 10 km close to the Adriatic coast (Calderoni et al. 130 

2007). Clays and marls define the region’s geomorphology with millimetric silty-sandy layers from 131 

silicilastic turbiditic synorogenic deposit (Alberti et al. 2009), often covered by alluvial deposits (from the 132 

Quaternary) to form the unconfined aquifer system. The region’s alluvial deposits increase in thickness 133 

from the inland towards the coastline, due to previous Esino erosion action, and mainly comprise gravel, 134 

gravelly-sandy, and gravelly-clay with intercalated lenses of sand, clay and sandy silty clay (Coltori 1997, 135 

Nanni 1985, Alberti et al. 2009).  136 

 137 

Figure 2. The case study area of the Esino River basin in Italy. 138 
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The climate varies from sub-continental along the coast in the north to temperate in the inland areas 139 

toward the south (with the seasonal variations in temperature). However, meteorological variables studied 140 

in the region of Jesi revealed that the average annual temperature is 14.4°C and the cumulated 141 

precipitation is 827 mm/year (Bordi et al. 2001). This often resulted in torrential floods in the catchment 142 

during autumn and winter and a decreased flow during late spring and summer, with consequent strong 143 

influence on the environmental conditions. 144 

The lower Esino River valley’s location on the side of Adriatic coast makes it more vulnerable to 145 

potential impacts from natural and anthropogenic origin. In particular, the rapid growth in human 146 

population and urbanization within the Adriatic coastal area and the presence of hazardous plants and 147 

industrial infrastructures further accelerate its vulnerability. Moreover, the case study area is home to 148 

traditional agriculture for more than 100 km
2
 (about 70% of the total surface) and few natural or semi-149 

natural zones (i.e., 7 km
2
, about 5% of the total surface), mainly located along the Esino riverbed. The 150 

demand for freshwater for agriculture, the unsustainable management of urban wastewater and the 151 

increased use of fertilizers in agriculture not only increases pressures on the region’s confined and 152 

unconfined shallow aquifers but also impact groundwater quality and quantity 153 

(www.lifesalt.it/en/idea.html). Thus, the Esino wells and surface water supply network were affected by 154 

uncontrolled pollution loads untreated discharge and combined sewer overflows (Biondi & Baldoni 1993; 155 

Biondi et al. 2003). Nevertheless, the request of freshwater for the population decreased from the mid 156 

80’s, reducing the pressure on the groundwater. In fact, all the municipalities have been progressively 157 

connected with a mountain aquifer that is characterized by a very high natural recharge rate allowing a 158 

sustainable exploitation of this source of drinkable water. 159 

 160 

3. MATERIALS AND METHODS 161 

 162 

The following sections present the model chain adopted within the LIFE+ SALT project and the spatially 163 

resolved regional risk assessment methodology applied to analyse potential effects of climate change on 164 

the Esino coastal aquifer and dependent natural and human systems.  165 

 166 

3.1   The Model chain  167 

To simulate relevant climate, circulation, hydrological and hydrogeological processes that may influence 168 

climate change impacts on groundwater resources at different spatial scales, the model chain shown in 169 

Figure 3 was applied to bridge the gap between large scale climate scenarios, often defined by global 170 

circulation models (GCM), and the fine scale scenarios where local impacts happen as a result of changed 171 

climate conditions. Accordingly, the proposed model chain includes climate, hydrological, hydraulic and 172 

groundwater models. 173 
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 174 

 175 

Figure 3. The model chain defined within the SALT project. SST: Sea Surface Temperature; T: Temperature; S: Salinity; u: zonal 176 
velocity; v: meridional velocity. 177 

The Global Ocean and Mediterranean Sea model (CMCC-MED), used to perform the entire Esino River 178 

basin’s present and future climate projections, includes the coupled Atmosphere-Ocean Global 179 

Circulation Model (AOGCM) linked with a high-resolution Mediterranean Sea model (OPA/ORCA2 and 180 

NEMO/MFS). The AOGCM consists of a global atmosphere model (ECHAM5.4; Roeckner et al. 2003), 181 

implemented with 31 vertical levels and a horizontal resolution of about 80 km, and a global ocean model 182 

(OPA 8.2; Madec et al. 1998) with a horizontal resolution of about 2° and 31 vertical levels, which 183 

includes the dynamic model of the sea ice LIM (Fichefet and Maqueda 1999). The Mediterranean Sea 184 

model is an interactive model implemented with a horizontal resolution of 1/16° and 72 non-uniform 185 

vertical levels. These models were validated following the Intergovernmental Panel on Climate Change 186 

(IPCC) 20C3M protocol for the period 1950-2000, using observed radiative forcing of Greenhouse gas 187 

(GHG), and aerosol that corresponds to the 1950s conditions. Afterwards, future climate projections for 188 

the 21
st
 century were produced according to the IPCC A1B emission scenario that assumes a balanced 189 

emphasis between fossil fuels and other energy sources (Nakićenović et et al. 2000). The A1B scenario 190 

COSMO-CLM 

High resolution model 
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represent an intermediate case compared both to the more intense A2 and the weaker B1 storyline 191 

families, and to the more recent forcing pathways of RCP4.5 and RCP8.5 scenarios. 192 

The consistency of global projections used in this study was evaluated in relation with the more recent 193 

scenarios produced in the Fifth Assessment Report (IPCC 2014).   Overall, the performance of the CMIP5 194 

ensemble (IPCC 2014) is comparable to that of the older CMIP3 ensemble (IPCC 2007a) (Kharin et al 195 

2013). Specifically, for the Mediterranean region, the differences are quite little, showing slightly higher 196 

values of CMIP5 temperature and precipitations projections compared to CMIP3 (IPCC 2014). Moreover, 197 

in terms of diurnal temperature range, CMIP5 models suggest a higher increase in minimal than in 198 

maximal temperatures, which is consistent with CMIP3 (Cattiaux et al. 2013).  199 

Even if CMCC-MED has a quite large horizontal resolution (i.e., around 80–100 km), it is still too low to 200 

be used by regional/local impact models. Accordingly, the outputs from these global models were used to 201 

implement a limited area (regional) climate model (COSMO-CLM, Rockel et al. 2008) in order to 202 

increase the spatial resolution of the climate change projections and their suitability for climate change 203 

studies over all the Esino River basin. Moreover, the high horizontal resolution of COSMO-CLM allows 204 

a better description of orography, and thus, an improved representation of small-scale physical processes 205 

related to terrain height and land-sea contrast (Bucchignani and Gualdi 2011). The model has been 206 

implemented on the domain 2-20°E, 40-52°N, with a horizontal resolution of about 8 km and 40 vertical 207 

levels.  208 

Climatic variables (i.e., temperature, precipitation and evapotranspiration) projections by these models 209 

were used to perform river basin catchments hydrological simulations for precipitation and runoff 210 

processes using the hydrological model HEC-HMS and the hydraulics model HEC-RAS, both public 211 

domain software developed by the United States Army Corp of Engineers. These models were run and 212 

calibrated for the current scenario represented by the period 2003-2009, for which observed data were 213 

available. 214 

The Hydrological Modelling System (HEC-HMS) simulates the precipitation-runoff processes of 215 

dendritic watershed system. It is applied for problem solving in the field of large river basin water supply 216 

and flood hydrology and small urban or natural watershed runoff. In the SALT project, the HEC-HMS 217 

model was linked with the ArcView GIS software using the Geo-HMS extension in order to model the 218 

entire Esino River catchment and calculate the main physical parameters (i.e., length and slope of the 219 

river course, and drainage path length of the sub-basins) over the entire Esino watercourse, including an 220 

estimate of the flows hydrographs used as input by HEC-RAS.  221 

The River Analysis Systems (HEC-RAS) is used to analyse natural and artificial river networks and 222 

calculate the free surface profile based on the one-dimensional analysis of both steady and unsteady 223 

flows. In addition to the river analysis components, the system contains several hydraulic design features 224 

that can be invoked once the basic water surface profiles are computed in order to clearly identify 225 
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dynamic water surface levels from HEC-RAS simulation, which are allocated to correspondent elements 226 

in the groundwater model (FEFLOW), to simulate transmission between the river and aquifer. Results 227 

obtained by HEC-HMS for the section of Moie (i.e. the point of the river corresponding to beginning of 228 

the case study area) represented the main input useful to simulate the hydraulic levels in the same section 229 

with HEC-RAS. The produced outputs were finally used to estimate surface water levels and produce a 230 

temporal series of the flows filtering from the river bed to groundwater. 231 

For the future scenarios, a simplified approach was applied to estimate the aquifer recharge based on the 232 

assumption that the water infiltration from the river to the groundwater is the main contribution to the 233 

groundwater recharge process. Specifically, the process of transmission between the river and the aquifer 234 

simulated in the current scenario was projected for the future by applying the same monthly variation of 235 

precipitation provided by the climatic models. 236 

Finally, the FEFLOW software, a 3D finite element subsurface model, was applied only to the lower 237 

Esino River valley, representing the final case study area for the application of the RRA methodology, in 238 

order to simulate flows and transport, and salt intrusion based on density dependent flows. The FEFLOW 239 

model provides best-in-class capabilities for porous-media simulations on scales ranging from millimetres 240 

to hundreds of kilometres, from milliseconds to thousands of years. The supported processes are: fluid 241 

flow, density dependent flow, reactive solute transport, heat transport, saturated and variably saturated 242 

and unsaturated conditions, and fracture flow. Within the SALT project, a digital terrain model (DTM) of 243 

the Esino coastal aquifer was constructed using stratigraphy data from regional wells, in order to reflect 244 

the lower Esino River valley topography and identify and report its four geological units (i.e., gravel-clay, 245 

clay-sand, gravel-sand, and the impermeable aquiclude) in the FEFLOW 3D model. Saltwater intrusion 246 

into the aquifer was simulated after proper calibration, using data from existing literature regarding 247 

recharge processes and Esino River-aquifer exchange. 248 

 249 

3.2 Regional Risk assessment Methodology. 250 

The spatially resolved Regional Risk Assessment (RRA) methodology applied to evaluate potential 251 

climate change impacts and risks on the Esino coastal aquifer considers multiple sources of hazards (i.e., 252 

changes in the precipitation regime, river flow discharge, and groundwater depth and quality) that can 253 

affect the status and conditions of coastal groundwater-dependent natural and human systems (e.g., wells, 254 

river, agricultural areas, lakes, and forests and semi-natural environments). Relevant impacts considered 255 

by the methodology are: 1) Groundwater Level Variation (GLV) due to changes in the water table related 256 

to the alteration of recharge processes from climate change and excessive pumping of groundwater; 2) 257 

Saltwater Intrusion (SI), which refers to the subsurface movement of seawater into coastal aquifer, either 258 

from climate variations and consequent fluctuating sea levels or lowering of local wells potentiometric 259 

surface due to excessive pumping of groundwater.  260 
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Operatively, the RRA methodology can be implemented following six major steps:  261 

1. Definition of the regional risk matrix 262 

2. Hazard assessment 263 

3. Exposure assessment 264 

4. Susceptibility assessment 265 

5. Risk assessment 266 

6. Damage assessment  267 

 268 

3.2.1 Definition of the regional risk matrix  269 

The regional risk matrix identifies all the components contributing to the computation of risk in the case 270 

study area (i.e., stressors, receptors and impacts) and their relationships (Torresan et al. 2012). It is 271 

composed of two distinct sub-matrixes: the vulnerability matrix, which supports the assessment of the 272 

case study area’s vulnerability; and the hazard matrix that guides the identification of climate change 273 

hazard metrics/parameters and thus the construction of hazard scenarios. 274 

The vulnerability matrix (Table 1A) highlights the receptors/targets of analysis, representing relevant 275 

components of the case study area that could be affected by climate change impacts, such as GLV and SI. 276 

Receptors were selected considering the preferences of a group of stakeholders involved in the SALT 277 

project (i.e., public administrations such as coastal municipalities, the province of Ancona, the Marche 278 

region) and the availability of spatial territorial data (Table S1). The matrix also includes a range of 279 

vulnerability factors, categorised into susceptibility, value and pathway factors, which are clearly defined 280 

in Table S2. According to Torresan (2012), susceptibility factors depict the degree to which 281 

targets/receptors could be affected either adversely or beneficially by climate-related hazards and are 282 

represented by the ecological and hydrogeological features of the considered region. Value factors 283 

represent relevant environmental and socio-economic properties or features of the examined targets or 284 

receptors that need to be preserved. Finally, pathway factors denote the physical characteristics of 285 

targets/receptors that can influence their possible contact with climate change hazards and thus support 286 

the identification of potentially exposed areas. 287 

The hazard matrix (Table 1B) identifies relevant stressors with reference to GLV and SI impacts and the 288 

related hazard metrics selected as relevant output from the model chain (section 3.1). 289 

As described in the next paragraphs, vulnerability factors and hazard metrics will be employed in 290 

different stages of the RRA process, from hazard to damage assessment. 291 

 292 

 293 

 294 
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 295 

 296 

Table1. The regional risk matrix defined for the lower Esino River valley: the vulnerability matrix a) and the hazard matrix b). 297 

 298 

3.2.2 Hazard assessment 299 

The hazard assessment is aimed at the spatial characterization of climate change hazard scenarios, which 300 

describes potential climatic hazard conditions against which the identified receptors need to adapt in order 301 

to maintain their ecological and socio-economical functions. It is based on the aggregation of multiple 302 

hazard metrics/variables defined within the hazard matrix.  303 

The assessment was focused on seasonal scales (i.e., winter, spring, autumn and summer), in order to 304 

evaluate possible seasonal changes in climatic trends within the Esino River basin, and particularly to 305 

determine how changes in the precipitation regime of the reference timeframe 1971-2000 could be 306 

influenced by projected climatic trends for the future timeframe (2071-2100) at seasonal level. The 307 

calibration was made using data available for the case study area from the year 2000 to the year 2008. 308 

Even if this interval is relatively short, it can be considered as representative for the region under 309 

investigation because it include extreme years with regard to the quantity of precipitations and to the 310 

temperatures (e.g. the year 2003 was an extremely dry and hot year, while 2007 was an extremely wet and 311 

 RECEPTO RS

RIVER LAKES
AGRICULTURAL 

AREAS
WELLS

FORESTS AND SEMI-

NATURAL 

ENVIRONMENTS

Present depth to saline 

interface.

Present depth to saline 

interface.

Present depth to saline 

interface.

Present depth to saline 

interface.

Water salinity. Basin level or extension. Crop economic value. 

Wells use typology 

(drinking, domestic, and 

irrigation, industrial).

River flow (average).
Protection level (e.g. WFD 

protected areas).

River bed slope.

Protection level (e.g. WFD 

protected areas). 

Present depth to 

groundwater.

Present depth to 

groundwater.

Present depth to 

groundwater.

Present depth to 

groundwater.

Present depth to 

groundwater.

River flow. Basin level or extension.
Crop typology (water 

requirements). 

Average flow / volume 

pumped.
Extension of forests.

Protection level (e.g. WFD 

protected areas). 

Protection level (e.g. WFD 

protected areas). 
Crop economic value. 

Wells use typology 

(drinking, domestic, 

irrigation, industrial).

Vegetation cover typology 

(water requirements). 

Extension of forests.

Vegetation cover typology. 

Protection level (e.g. WFD 

protected areas). 

Legend: Pathway factors Susceptibility factors Value factors

GROUNDWATER 

LEVEL VARIATIO NS

SALTWATER 

INTRUSIO N
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IMPACTS O N WATER Q UANTITY
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IMPACTS ON WATER QUALITY

SALTWATER INTRUSION Depth of the saltwater interface 

IMPACTS ON WATER QUANTITY
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cold year). The analysis was performed considering seasonal precipitation patterns referred to three 312 

different representative years in the present and future timeframe (i.e., the driest, the average and the 313 

wettest years), in order to provide a complete description of the investigated effects. In this application, 314 

different precipitation scenarios (s) were defined to represent the future seasonal average of the 315 

precipitation regime with reference to the four different seasons and the three representative years, and 316 

they were considered as the future climate change scenarios useful to assess climate-related hazards for 317 

each examined impact (k). Generally models estimated a little increase of precipitations in winter (less 318 

than 10%) and a decrease in the other seasons (between 10% in spring and 20% in summer). Climatic 319 

information was used to estimate the recharge of the aquifer by applying the percentage of future monthly 320 

variation of precipitation to the temporal series of monthly infiltration in to the groundwater estimated for 321 

the current scenario in around 5.3 l/(s Km²), coherently with literature data (Bassi, 1972). This value, 322 

multiplied by the surface of the aquifer, allowed to estimate the annual volume of water infiltration, i.e., 323 

around 23Mm³/year. The consequence of the precipitations’ reduction in future climate brings to a 324 

decreased value of aquifer recharge of about 21 Mm
3
. In order to evaluate extreme events, simulations 325 

were produced also increasing the quantity of water extracted from wells, but results showed that even if 326 

the situation will be worse than an average year, the level will not dramatically decrease due to the 327 

increase of the mean sea level, and even if saltwater will move more inland, will not step into for more 328 

than few hundred meters from the coastline, as will be described also in the results (section 4.1).  329 

For the GLV impact, the hazard is represented by the increase of future water table depth, as a result of 330 

climate changes and anthropogenic activities. This is specifically identified by the difference between the 331 

future timeframe groundwater depth and the present timeframe groundwater depth, where a reduction in 332 

water table is expected. The GLV hazard refers to seasonal changes in the average groundwater depth  333 

considers the seasonal average groundwater depth, based on daily mean groundwater depths for the case 334 

study area. Daily mean groundwater depths were averaged to estimate the seasonal mean groundwater 335 

depth that was considered as key statistic for the GLV hazard, because the minimum depletion of 336 

groundwater depth in a shorter time frame do not reflect actual effects on dependent natural and human 337 

systems due to soil water retention capacity.  338 

For SI impact, the hazard is related to the potential intrusion of saltwater into the Esino aquifer due to the 339 

reduction in the water table as a consequence of significant pressures from human activities, climate 340 

changes and concomitant sea-level rise. According to the CMCC-MED model, the sea level of the 341 

Adriatic Sea at the end of the 21st Century might be about 22 cm higher than the mean sea level found for 342 

the reference period (1961-1990) as a consequence of the changes in the water density (steric effect). This 343 

value could increase due also to the ice melting of a value ranging between 18 and 59 cm. In order to 344 

include both the components, the sea level-level rise value was finally estimated in 60 cm, considering 22 345 

cm of increase due to steric component and 38 cm (average value of the range) due to the ice melting.  346 
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The SI related hazard is thus identified by changes in the saline interface depth (saline wedge) between 347 

freshwater in the Esino aquifer and the Adriatic seawater, taking into account the potential consequences 348 

of SLR. Such changes were derived considering the difference between saline wedge depth values in the 349 

reference period and in the future timeframe (2071-2100). The saline interface was identified based on the 350 

Italian standards for groundwater quality (DPR 236/1988; DPR 1988), i.e., where the concentration of 351 

saltwater in the Esino aquifer due to the Esino River-aquifer exchange and given by the model is higher 352 

than the threshold of 1300 mg/l. 353 

In more detail, potential changes in the saline interface depth were analysed with reference to each 354 

season, i.e., considering the seasonal average values of the saline interface depth in order to characterize 355 

potential SI hazard at seasonal scale. 356 

 357 

3.2.3 Exposure Assessment 358 

Exposure assessment is aimed at identifying and classifying possible impacted areas or valuable 359 

receptors. It aggregates the estimated hazard metrics (hs,k) with the identified pathway factors (p), 360 

according to relevant exposure functions defined for each of the investigated climate change impacts. 361 

Exposure analysis for GLV and SI impacts (Table 2) resulted in exposure scores in the range between a 362 

minimum value of 0 and a maximum value of 1. The minimum value refers to no exposure of the 363 

areas/receptors, while maximum value represents extreme exposure of areas/receptors compared with 364 

other receptors in the case study area. Accordingly, exposure scores do not allow to estimate climate 365 

change exposure in absolute terms, rather they provide a relative evaluation of potential areas or receptors 366 

exposed to climate-related hazards. 367 

 368 

Table 2. Exposure equation for the GLV and SI impacts. 369 

Such equations were based on the following specific assumptions: 1) the more variations in 370 

groundwater/saline interface depth, the more receptors lying on top are harmed; 2) the pathway through 371 

Equation Legend

EQUATIO N 1:

GRO UNDWATER LEVEL 

VARIATIO NS

hglv,s= Amount of pos i tive di fference between forecasted 

depth of groundwater in scenario s  and present depth 

(pos itive number).

pf1= Dis tance of groundwater from the ground level  at 

present (pos i tive number).

s1= Dis tance of groundwater from the ground level  which 

imply an effect of groundwater level  decrease on 

receptors .

EQUATIO N 2:

SALTWATER INTRUSION

hsi,s = Amount of posi tive di fference between present 

depth of sa l twater and forecasted depth in scenario s  

(pos itive number).

pf2= Present depth of sa ltwater from the ground level  

(pos itive number).

s 2= Dis tance of sa l twater from the ground level  which 

imply an effect of sa l twater level  increase on receptors .

IMPACTS ON WATER Q UALITY

IMPACTS ON WATER Q UANTITY
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which groundwater/saltwater can reach receptors was defined as the groundwater/saline interface mean 372 

depth, which in practice represents the soil lying between the ground surface and water table/saline 373 

interface; 3) the increase/decrease of groundwater/saline interface depth is impacting only receptors lying 374 

at a distance equal or less than a predefined susceptibility threshold (s1 or s2). The values s1 and s2 depict 375 

changes in groundwater/saline interface depth that could impact specific receptors lying at a distance 376 

equal or less than a predefined value. They were selected based on available literature’s data and on the 377 

judgements of different experts/researchers, and relevant stakeholders who participated in the various 378 

SALT project workshops. Accordingly, the values of s1 and s2 were defined as 3m for all the receptors in 379 

the entire considered region, except in a buffer zone of 50m around the river mouth where were 2m. A 380 

different technical threshold (i.e., 10m) was also chosen for all the considered shallow wells, considering 381 

the localization of the well filters. These thresholds allow analysts to identify areas and receptors, which 382 

are connected to the shallow groundwater aquifer at present and to exclude areas not directly linked to 383 

such aquifers. 384 

The exposure analysis for the GLV impact was focused on potentially exposed groundwater-dependent 385 

natural and human systems (i.e., agricultural areas, river, lakes, forests and semi-natural environments). A 386 

higher increase in groundwater depth corresponds to an increase of the potential harm for the considered 387 

receptors. 388 

As far as the SI impact is concerned, the exposure analysis was focused on the potential exposure of the 389 

same receptors to future changes in saline interface depth, due to the potential movement of saline wedge 390 

interface inland. A higher potential harm for the considered receptor is caused by a decrease of the saline 391 

interface depth. 392 

 393 

3.2.4 Susceptibility Assessment 394 

The susceptibility assessment for the GLV and SI impacts was carried out using the susceptibility factors 395 

identified in the vulnerability matrix (Table 1A). These factors have been classified assigning 396 

susceptibility scores according to data from existing literature and expert judgements. Thus, susceptibility 397 

classes were determined by thresholds that reflect variations in the degree to which the case study area 398 

may be affected by climate-related impacts. In accordance with specific features, for each factor a discrete 399 

set of classes and related scores were defined and evaluated, as reported in Table S4. The susceptibility 400 

scores represent the relative susceptibility value of each single class, ranging from 0 (i.e., no 401 

susceptibility) to 1 (i.e., maximum susceptibility). 402 

As far as the GLV impact, in concerned,  vegetation cover typology and crop typology factors were 403 

initially defined according to the Corine Land Cover 2006 map, and then aggregated according to crops 404 

typology with similar water needs. These classes were finally scored in the 0-1 ranges, assigning the 405 

highest score (i.e., 1) to the most water demanding crops, and intermediate and low scores (i.e., 0.7 and 406 
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Probabilistic-or, as shown in Equation 3,438 
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Where: 441 

 = Susceptibility score of the cell to th442 

 = “Probabilistic or” function; 443 

 = Normalized i
th
 susceptibility facto444 

Using the “Probabilistic or” function, th445 

1) if just a susceptibility factor  as446 

factors  contribute in the increase 447 

number of susceptibility factors , th448 

 449 

3.2.5 Risk Assessment 450 

The risk assessment is aimed at identifyi451 

in the lower Esino river valley. However452 

absolute predictions of risks related to c453 

areas and targets that are likely to be aff454 

same region. In this context, risk asses455 

investigated impacts as the product of e456 

 (section 3.2.4) according to the risk457 

. 458 

Where:  459 

 = Relative risk related to hazard460 

 = Exposure related to hazard k, in th461 

 = Susceptibility related to hazard k,462 

Accordingly, the estimated risk scores v463 

(i.e., there is no exposure or no sensi464 

considered receptors/areas in the region.465 

 466 

3.2.6 Damage Assessment 467 
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impacts (Table S4) include protection 474 
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 Damage scores related to hazar508 

Risk scores related to hazard k 509 

. = Value scores of receptor i  510 

In this way, damage scores were calc511 

including relevant statistics (e.g., percen512 

damage class and territorial surface of e513 

unit, etc.). 514 

 515 

4 RESULTS AND DISCUSSION516 

The main results of the RRA inclu517 

susceptibility, risk and damage to GLV 518 
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In order to apply the RRA methodology,521 

the same coordinate system and then co522 
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and discussed below.  525 

  526 

4.1 Exposure maps 527 

Exposure maps for GLV impact reveal528 
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 542 

Figure 4. Exposure map for the Groundwater Level Variation impact, summer season. 543 

Significant statistics were calculated for the considered future scenario focusing on each receptor, as 544 

reported in Figure 5. The table of Figure 5A shows the total exposed surface (km
2
) of each receptor in the 545 

five exposure classes and indicate the percentage of exposed surface of each receptor. By the table, it is 546 

evident that agricultural areas will have the largest total exposed surface (almost 3.7km
2
) distributed in all 547 

the exposure classes, while superficial water bodies, forests and semi-natural environments will have a 548 

smaller total exposed surfaces. The percentage of exposed surface, except for lakes, is around or lower 549 

than 5% of the total surface of each receptor. Based on these data, the percentage of exposed surface 550 

within each exposure class has been depicted in Figure 5B. According to these statistics, forests and semi-551 

natural environments are projected to have nearly 70% of their total exposed surface associated to the 552 

very high and high exposure classes; superficial water bodies will have approximately 55% of their total 553 

exposed surface in the two higher exposure classes, while a little more of the 40% of agricultural areas’ 554 

total exposed surface is included in the high and very high exposure classes. 555 
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 556 

Figure 5. A) Distribution of the territorial surface (km2) associated with each exposure class for the Groundwater Level Variation 557 

impact, average scenario, summer season. B) Distribution of the percentage of exposed surface associated with each exposure 558 

class. 559 

Similar statistics were calculated also for shallow wells, and these revealed a small percentage of exposed 560 

wells in the future scenario. In particular, less than 3.5% wells will be exposed to the GLV-related hazard.  561 

Exposure maps were produced also for SI impact considering the four different seasons. These maps 562 

revealed similar exposure when comparing the same season in different scenarios. In this analysis, SI 563 

exposure map for the winter season and average scenario was selected since it shows the highest 564 

exposure.  565 

Figure 6 presents the exposure map for the considered region showing potential limited exposure to the SI 566 

related hazard within the coastline (i.e., changes in saline interface depth will only be restricted to the 567 

coastal strip). Consequently, SI related impact might not bring serious threats to the considered receptors, 568 

which are not directly dependent on coastal groundwater aquifers, except few over utilized wells located 569 

along the coastline. For this reason, there are neither detailed analyses of exposure related to SI nor 570 

specific statistics calculated for the examined receptors. However, such outcomes agree with previous 571 

analyses (e.g., Alberti et al. 2009), regarding saltwater intrusion impacts in this region, which had 572 

 

 

Exposure Classes

Agricultural 

areas River Lake

Forests amd 

semi-natural 

environments

Very low 0,75 0,01 0,03 0,02

Low 0,63 0,01 0,03 0,03

Medium 0,76 0,01 0,02 0,05

High 0,77 0,02 0,05 0,10

Very high 0,76 0,03 0,06 0,14

Total exposed surface (km
2
) 3,68 0,08 0,18 0,35

Exposed receptor (%) 3,62 5,64 24,53 5,34

A 

B 
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foreseen significant annual variations in saltwater intrusion based on future climate change scenarios only 573 

at the coastal strip. 574 

 575 

Figure 6. Exposure map for the Saltwater Intrusion impact, winter season. 576 

 577 

4.2 Susceptibility map 578 

The susceptibility map in Figure 7 represents the sensitivity of receptors to GLV related impacts. 579 

According to this map, almost all agricultural areas, forests and semi-natural environments are classified 580 

with high and very high susceptibility scores, due to the prevalence, in the considered region, of 581 

permanent crops and annual/pasture/arable crops, which are characterized by high or very high 582 

susceptibility scores according to their water requirement. With regard to the susceptibility scores of 583 

forests and semi-natural environments, the final score is mainly due to the extension of forests, which are 584 

quite wide with a low level of fragmentation, while the vegetation cover typology, has a lower influence 585 

on the final susceptibility assessment. 586 
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 587 

Figure 7. Susceptibility map for the Groundwater Level Variation impact. 588 

Finally, the susceptibility scores for the superficial water bodies (e.g., Esino River and lakes) are quite 589 

heterogeneous, ranging from low to medium classes. The spatial distribution does not show the presence 590 

of hot spots or cold spots (i.e., areas characterized by high or low susceptibility scores). The medium and 591 

high susceptibility scores assigned to wells is mainly due to the average volume of water extracted per 592 

year, and are distributed all over the considered region.  593 

As far as the susceptibility to SI impact is concerned, Figure S1 highlights that superficial water bodies 594 

located within the coastline, such as lakes and the Esino River, are characterized by medium to high 595 

susceptibility scores. This is due to the low average flow rate of the Esino River that would result in high 596 

susceptibility to saline contamination. Finally, according to the defined methodology (section 3.2.4), 597 

agricultural areas and wells are characterized by the maximum susceptibility score (i.e., 1). 598 

 599 

4.3 Risk map 600 

Risk maps for the GLV impact for the considered receptors and areas, coherently with the exposure maps, 601 

have been focused on the summer season, according to the observation in section 4.1 and with the aim to 602 

analyse the extreme effects of a dry climate in the future scenarios.  603 

The risk map presented in Figure 8 shows that areas at risk are concentrated only close to the Esino River 604 

mouth in a coastal strip of a few kilometres. Moreover, it emerges that agricultural areas are classified 605 

mainly in the three lower relative risk classes (i.e., from very low to medium). This is due to the exposure 606 
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score, as the classification of susceptibility in that area was quite homogeneous. The other three receptors 607 

show a more homogeneous spatial distribution among the five relative risk classes. 608 

 609 

Figure 8. Risk map for the Groundwater Level Variation impact, summer season. 610 

Several statistics have been calculated related also to the relative risk assessment (Figure 9). Looking at 611 

the total surface potentially at risk (km
2
) of the considered receptors in each relative risk class (Figure 9A) 612 

and the related graph with the percentage of surface potentially at risk (Figure 9B), it is evident that 613 

agricultural areas are the less threatened receptor, with less than 4% of surface at risk, more than 80% of 614 

surface at risk classified within the three lower classes (i.e., from very low to medium) and less than 5% 615 

in the very high relative risk class. The other three receptors have a greater percentage of area at risk, 616 

though around 50% of their surfaces at risk belongs to the three lower classes, while the surface 617 

percentage in the high and very high classes is quite different for each receptor. Lakes and forests and 618 

semi-natural environments have around 20% of their surfaces at risk in the very high risk class, while the 619 

same class for Esino River covers about 40% of its surface at risk. 620 
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 621 

Figure 9. A) Distribution of the territorial surface (km2) associated with each relative risk class for the Groundwater Level 622 

Variation impact, average scenario, summer season. B) Distribution of the percentage of surface at risk associated with each 623 

relative risk class. 624 

To summarize, the analysed relative risk map and the related statistics show that GLV related impacts in 625 

the summer season would bring limited effects on the case study area, especially on agricultural areas. 626 

Regarding shallow wells’ risk assessment related to GLV impact, risk maps and related statistics for the 627 

future scenarios and seasons were not produced, considering the very small percentage of exposed wells 628 

in the case study area. Similarly, SI impact risk analysis for the examined scenarios and seasons were not 629 

considered, due to the limited exposure of receptors to seawater intrusion within the coastal strip.  630 

  631 

4.4 Damage map. 632 

The last output is represented by damage maps that have been produced integrating risk and value maps, 633 

as described in section 3.2.6. Value maps related to the GLV impact are reported in Figure S2. 634 

Agricultural areas show values which range from very low, close to the coastline, to very high, in the part 635 

of case study area far from the coastline due to the presence of high value crop productions. The other 636 

receptors, instead, have usually more homogeneous value scores and are mainly classified in the lower 637 

value classes. 638 

 

 

Risk Classes

Agricultural 

areas River Lake

Forests amd 

semi-natural 

environments

Very low 0,99 0,01 0,03 0,03

Low 0,93 0,01 0,03 0,05

Medium 1,07 0,01 0,02 0,10

High 0,62 0,01 0,05 0,13

Very high 0,07 0,03 0,04 0,05

Total surface at risk (km
2
) 3,68 0,08 0,18 0,35

Receptor at risk (%) 3,62 5,64 24,53 5,34

A 

B 
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Seasonal damage maps were successively produced, and Figure 10 depicts the damage map for the 639 

summer season of the average scenario. The map shows very limited or no damages for all the considered 640 

receptors, including areas close to the Esino River and lakes, which are projected to experience higher 641 

surface percentages in the very high risks class in the future scenario (i.e., summer season of the average 642 

year), as previously highlighted in section 4.3. 643 

 644 

Figure 10. Damage map for the Groundwater Level Variation impact, summer season. 645 

Overall, the damage analysis shows that changes in coastal groundwater levels due to the future predicted 646 

variations in the precipitation regimes and water table depth at seasonal scale, will likely have few 647 

consequences on surface water bodies (Lakes and Esino River) and on a large part of the natural systems 648 

and agricultural areas; because such most valuable receptors - according to value maps – are located 649 

where very low or null exposure is predicted. 650 

Finally, SI impact damage analysis for the examined scenarios and seasons were not considered, due to 651 

the limited exposure of receptors to seawater intrusion within the coastal strip. 652 

 653 

5 CONCLUSIONS 654 

The main objective of this paper was to illustrate a risk-based methodology for the assessment of climate 655 

change impacts on coastal aquifers, based on an integrated modeling chain that includes: 1. global and 656 

regional climate models, providing climate change projections and relative hazards at case study level; 2. 657 
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local hydrological and hydrodynamic models, which translate the climate signal into impacts on 658 

groundwater resources.  659 

The obtained results highlight how climate change could pose minor negative effects with different 660 

magnitudes and severity on the Esino river basin. The observed effects are impacts related to variations in 661 

groundwater levels and, to a least extent, impacts related to changes in the saltwater interface depth. In 662 

particular, results point out that seasonal variation in climate changes will slightly affect availability of 663 

surface waters. 664 

The proposed methodological approach is flexible and adaptable in terms of spatial and temporal scales. 665 

In fact, RRA can be applied to other coastal aquifers in Italy or in other countries, customizing hazard 666 

projections, susceptibility and value factors according to the specific characteristics of the case study.  667 

One of the main criticalities of the described application is represented by the level of uncertainty of the 668 

hazard assessment. In fact all the models are characterized by different levels of uncertainty over space 669 

and time that are even amplified in the modelling chain. Moreover, further research development is 670 

foreseeable by using additional datasets and monitoring data to improve the assessment of the spatial 671 

vulnerability of targets and areas to multiple stressors within the considered region. 672 
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