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Summary. In many application areas, predictive models are used to support or make important deci-
sions. There is increasing awareness that these models may contain spurious or otherwise undesirable
correlations. Such correlations may arise from a variety of sources, including batch effects, system-
atic measurement errors, or sampling bias. Without explicit adjustment, machine learning algorithms
trained using these data can produce poor out-of-sample predictions which propagate these undesir-
able correlations. We propose a method to pre-process the training data, producing an adjusted dataset
that is statistically independent of the nuisance variables with minimum information loss. We develop
a conceptually simple approach for creating an adjusted dataset in high-dimensional settings based on
a constrained form of matrix decomposition. The resulting dataset can then be used in any predictive
algorithm with the guarantee that predictions will be statistically independent of the group variable. We
develop a scalable algorithm for implementing the method, along with theory support in the form of in-
dependence guarantees and optimality. The method is illustrated on some simulation examples and
applied to two case studies: removing machine-specific correlations from brain scan data, and removing
race and ethnicity information from a dataset used to predict recidivism. That the motivation for removing
undesirable correlations is quite different in the two applications illustrates the broad applicability of our
approach.

Keywords: Constrained optimization; Criminal justice; Neuroscience; Orthogonal predictions; Pre-
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1. Introduction

As machine learning models are deployed in high-stakes application areas, there has been growing

recognition that machine learning algorithms can reproduce unwanted associations encoded in the

data upon which they were trained (e.g. Dunson, 2018; Zech et al., 2018). Such potentially problem-

atic associations are typically between the outcome of interest Y , which is specific to the scientific

application under investigation, and one or more group variables Z. A model that retains correlations

between Y and Z may be undesirable for different reasons depending on the application area. This

article focuses on a method for adjusting training data to prevent models fit to that data from learning

associations between undesirable features and the outcome of interest. Without proper adjustment,

the association between the outcome of interest and unwanted group information can obscure scien-

tifically relevant signals leading to biased results and misleading conclusions, or perpetuate socially

undesirable stereotypes or practices.
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In this article we focus on two challenging research application areas where this problem is particu-

larly salient. The first is the field of “omic” data, where there is strong interest in using algorithms to

relate images, scans, and medical records to outcomes of interest, such as disease and subject-specific

phenotypes. A recent example highlights how unwanted associations can manifest in these settings.

Zech et al. (2018) showed that radiographic image data encoded information on the specific hospital

system from which the data were collected, since different systems tended to use different imaging

equipment. The systematic differences in the image data produced by the different equipment were

not readily apparent to the human eye.

However, when the data were used to train a machine learning model for pneumonia screening,

the model learned to associate these equipment-specific characteristics with the outcome of interest.

That is, the model leveraged the fact that some hospital systems saw higher rates of disease and

also used equipment that left a specific signature in the imaging data. The model’s predictions

were then partially based on correlations between the signature of the machines used in the higher-

prevalence hospital systems and the disease. The model’s reliance on such associations jeopardizes the

generalizability of the results, as there is no reason to believe that other higher prevalence hospitals

will use similar equipment in the future. This issue is also detrimental for in-sample evaluation and

inferential purposes, since regarding such associations as risk factors for disease is clinically misleading.

In the field of medical imaging and biostatistics, removal of spurious effects in high dimensional

data has been an important problem for at least the last decade. Various other tools for dealing with

this issue have been developed, with methods based on matrix factorisation being very popular in

genomics (e.g. Wall et al., 2003). For example, Alter et al. (2000) use a singular value decomposition

(svd) of the original expression matrix to filter out the singular vector associated with systematic

and non-experimental variations, and reconstruct an adjusted expression matrix with the remaining

singular vectors. A similar strategy was pursued in Bylesjö et al. (2007) and Leek and Storey (2007),

where matrix decompositions are used to separate the latent structures of the expression matrix that

are not affected by batch assignment from the nuisance batch variable. Model-based methods have

also been successful. For example, distance discrimination based on support vector machines (Benito

et al., 2004) and multilevel models estimated via empirical Bayes (Johnson et al., 2007) have been

developed to deal with groups with few observations. For a more comprehensive review of approaches

for batch correction and array normalization see Luo et al. (2010), Lazar et al. (2012), and references

therein.

The focus of these methods has mostly been on pre-processing high-dimensional data in order to

remove the batch effects and then conducting different analysis on the adjusted data; for example,

visualising the data to locate clusters of similarly expressed genes (e.g. Lazar et al., 2012). Data

visualisation is often used as the main evaluation tool to determine the success in removing batch-

effects, while assessment and evaluation for out-of-sample data has not received much interest (Luo

et al., 2010). We take an approach that is similar to the methods based on matrix decomposition, with

the focus being on providing a low-dimensional approximation of the data matrix which guarantees

that batch effects are removed with minimum information loss. Unlike the approaches popular in the

biostatistics literature, our approach explicitly focuses on quantitatively addressing the problem of

removing unwanted associations by imposing a form of statistical independence among the adjusted

data and the group membership variable and explicitly enforcing such constraints in the matrix

decomposition. In addition, our approach focuses on the generalization problem, guaranteeing that

predictions for future data will be statistically independent from group variables.

Our second motivating example comes from algorithmically automated or assisted decision-making,

where algorithms are deployed to aid or replace human decision-making. Examples include algorithms

for selecting short-listed candidates for job positions or college admission. If the measurement error

varies with group membership status, associations between the group variable and the outcome of
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interest may obscure correlations with scientific factors of genuine interest. Moreover, when groups

are defined by socially sensitive attributes – such as race or gender – a model that learns these

associations may lead to unfair or discriminatory predictions. For example, there has been much

recent attention in the “algorithmic fairness” literature on the use of criminal risk assessment models,

many of which use demographic, criminal history, and other information to predict whether someone

who has been arrested will be re-arrested in the future. These predictions then inform decisions

on pre-trial detention, sentencing, and parole. In many cases the model seeks to predict re-arrest,

which may be influenced by racially biased policing (Bridges and Crutchfield, 1988; Rudovsky, 2001;

Simoiu et al., 2017). When risk assessment models are trained using these data, the end result is that

individuals in racial minority groups tend to be systematically assigned to higher risk categories on

average (Johndrow et al., 2019; Angwin et al., 2016). Even when information on race is not explicitly

included as a covariate, this phenomenon persists, since other variables that are included in the model

are strongly associated with race.

Models for which one group is more likely to be flagged as “high risk” are in conflict with one notion

of algorithmic fairness– statistical parity. However, many definitions are available in the literature.

See Berk et al. (2018); Mitchell et al. (2018); Corbett-Davies and Goel (2018) for recent overviews of

mathematical notions of fairness. Arguably, each definition proposed in the literature can be regarded

as a valid concept of algorithmic fairness, though which notion is most sensible depends heavily on

the data and application. Some methods for achieving notions of fairness have focused on altering the

objective function used in estimation to, for example, balance the false positive or negative rate across

groups (e.g. Hardt et al., 2016; Zafar et al., 2017). Others have focused on defining metrics that more

fairly characterize relevant differences between individuals to enforce notions of individual fairness.

The recent work of Zhang et al. (2018a) achieves a variety of notions of fairness through adversarial

learning— to achieve demographic parity, the adversary is tasked with inferring group membership

status from model’s predictions. This method is applied to recidivism prediction in Wadsworth et al.

(2018).

Other approaches to creating “fair” models modify the training data rather than the objective

function, with some focusing on modifications to Y (Kamiran and Calders, 2009). The approach we

take most closely follows Johndrow et al. (2019), Adler et al. (2018) and Feldman et al. (2015) in pre-

processing the covariates X, guaranteeing that any model estimated on the “adjusted” data will pro-

duce out-of-sample predictions with formal guarantees of statistical independence. Our algorithm has

significant advantages over existing approaches in scalability and ability to handle high-dimensional

data efficiently.

Motivated by datasets from these two distinct application areas, in this article we propose a simple

method to adjust high-dimensional datasets in order to remove associations between covariates and a

nuisance or otherwise undesirable variable. Our procedure creates an adjusted dataset with guarantees

that algorithms estimated using the adjusted data produce predictions which will be statistically

independent from the nuisance variable. The main advantage of our contribution is its simplicity

and scalability to a large number of covariates (p), including when p is greater than the number of

observations n. In this sense, it is particularly well-suited for applications like brain imaging and

“omic” data, in which the observed covariates are high-dimensional. It also has significant advantages

in the case of highly collinear predictors, which is very common in applications. Moreover, the solution

we propose has theoretical guarantees, both in terms of optimal dimension reduction and the ability

to achieve independence from the undesirable variables under a linearity condition. We also provide

guarantees of minimal information loss during the pre-processing.

It is worth mentioning that the goal of achieving statistical independence is not without controversy.

In medical imaging predictions, one could imagine a scenario where hospitals use a similar equipment

type and also treat similar patient populations. Scrubbing the data of dependence on imaging equip-
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ment may also remove some information that is useful for prediction and is not captured by other

covariates in the dataset. A generous read of a common critique of creating race-independent data in

the recidivism prediction setting is that race might be an important risk factor, since the correlation

between race and the likelihood of re-arrest reflects the reality that people of color are more likely to

experience conditions leading to criminality, such as poverty. Creating race-independent predictions

may under-estimates the likelihood of re-arrest, even after accounting for systematic bias in the pro-

cess by which individuals are arrested. In reality, it is difficult to know how much of the difference in

re-arrest rate can be attributed to differential patterns of enforcement relative to differential partici-

pation in criminal activity. In this setting, it may be ethically appealing to choose equal group-wise

treatment, which is achieved by enforcing independence between predictions and race. Furthermore,

even if a reasonable ground truth were available, one might still want to create race-independent

predictions to avoid further exacerbating the existing racial disparities in incarceration rates.

2. Data description

The first case study discussed in this article comes from medical imaging data, and is drawn from a

study in neuroscience conducted by the Human Connectome Project (hcp) on n = 1056 adult subjects

with no history of neurological disorder (Glasser et al., 2016, 2013). The study provides, for each

individual, information on the structural interconnections among the 68 brain regions characterizing

the Desikan atlas (Desikan et al., 2006), measured through a combination of diffusion and structural

magnetic resonance imaging; see Zhang et al. (2018b) for additional details. Many different features

are also available, covering a wide range of biographical, physiological and behavioural information

at the individual level and technical information related to the specific session in which brain scans

were collected. For an extended description of the Humane Connectome Project, the tools involved

in the collection process and the aims of the study see Zhang et al. (2018b) and Glasser et al. (2016,

2013). For our purposes, it is enough to characterize the outcomes of interest as physiological and

behavioural traits and the covariates as data on the presence and strength of connections between the

68 brain regions.

Recent developments in neuroscience have stimulated considerable interest in analysing the rela-

tionship among brain structure or activity and subject-specific traits, with the main focus being on

detecting if variations in the brain structure are associated with variation in phenotypes (e.g. Genovese

et al., 2002; Zhang et al., 2018b; Durante and Dunson, 2018). There is evidence for the existence of

brain differences across subjects with severe drug addictions, both in terms of functional connectivity

(Wilcox et al., 2011; Kelly et al., 2011) and volumes of brain regions (Beck et al., 2012; Goldstein

et al., 2009). As discussed in the Introduction, a fundamental problem with observational medical

data is the presence of spurious associations such as batch effects. In neuroscience, it is well known

that subject motion, eye movements, different protocols and hardware-specific features, among many

others can complicate data analysis (e.g. Basser and Jones, 2002; Sandrini et al., 2011). Here, we use

the hcp data to investigate the relationship between connectivity and drug use while removing batch

effects from the identity of the imaging equipment used for each subject.

The second case study discussed in this article comes from algorithmic criminal risk assessment.

We will focus here on the compas dataset, a notable example in the fairness literature which includes

detailed information on criminal history for more than 6000 defendants in Broward County, Florida.

For each individual, several features on criminal history are available, such as the number of past

felonies, misdemeanors, and juvenile offenses; additional demographic information include the sex,

age and race of each defendant. Defendants are followed over two years after their release, and the

data contain an indicator for whether each defendant is re-arrested within this time range. See Larson

et al. (2016) for details on the data collection process and additional information on the dataset. The
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focus of this example is on predicting two-year recidivism as a function of defendant’s demographic

information and criminal history. As discussed in the Introduction, algorithms for making such

predictions are routinely used in courtrooms to advise judges, and concerns about the fairness of such

tools with respect to race of the defendants were recently raised, mainly using this specific dataset as

an example (Angwin et al., 2016). Therefore, it is of interest to develop novel methods to produce

predictions while avoiding disparate treatment on the basis of race.

3. Generating data orthogonal to groups

3.1. Notation and setup
Let X denote an n × p data matrix of p features measured over n subjects, and let Z denote an

additional nuisance variable; for example, brain scanner in the neuroscience case study or race in

the recidivism example. We focus for simplicity on a scalar Z, but the methods directly generalize

to multivariate nuisance variables. We seek to estimate X̃, an n × p reconstructed version of the

data matrix that is orthogonal to Z with minimal information loss. In our setting, the reconstructed

version is used to produce a prediction rule Ŷ (X̃) that returns a prediction Ŷ of Y for any input X̃.

Our aim is to guarantee that Ŷ (X̃) is statistically independent of Z.

We will focus on statistical models linear in the covariates, such as generalised linear models or

support vector machines with linear kernels. It is easy to check that when Ŷ (X̃) is a linear function

of X̃, cov(X̃, Z) = 0 implies cov(Ŷ , Z) = 0. Our procedure transforms X by imposing orthogonality

between X̃ and Z, while attempting to preserve as much of the information in X as possible. The

former requirement is geometrically analogous to requiring that Z is in the null space of X̃, so that

it is not possible to predict Z using the transformed variables in a statistical model which is linear in

the covariates. Non-linear dependencies could still be present in the transformed matrix X̃, so that

predictions of models which are not linear in the covariates would still depend on Z. One potential

solution to this problem is to include interactions in the matrix X before transformation; we use

this approach in the recidivism case study in Section 5.2. Another possible solution is to attempt to

remove nonlinear dependence as well, as in Johndrow et al. (2019). We do not pursue the latter here,

favoring the simplicity and computational scalability of imposing a zero covariance constraint. Indeed,

one of our two motivating applications is a large p, small n problem, for which fast computation is

critical.

Another desirable property of our procedure is dimensionality reduction. In high-dimensional

settings, it is often assumed that covariate matrices have approximately a low-rank representation.

We express a reduced rank approximation of X as X̃ = SUT , where U is a p × k matrix of k linear

orthonormal basis vectors and S is the n×k matrix of associated scores. The problem of preprocessing

the data to ensure Orthogonality to Groups (henceforth og) can be expressed as a minimization of

the Frobenius distance between the original data and the approximated version, ‖X − X̃‖2F , under

the constraint 〈X̃, Z〉 = 0. With X̃ = SUT , this leads to the following optimization problem.

arg min
S,U

‖X − SUT ‖2F , subject to 〈SUT , Z〉 = 0, U ∈ Gp,k (1)

where Gp,k is the Grassman manifold consisting of orthonormal matrices (James, 1954). While we

focus on a univariate categorical Z in this article, the procedure can be used as-is for continuous Z,

and extension to multivariate Z is straightforward.

Since the constraints are separable, it is possible to reformulate Equation 1 as p distinct constraints,

one over each column of X̃. Moreover, since any column of X̃ is a linear combination of the k columns

of S, and U is orthonormal, the p constraints over X̃ can be equivalently expressed as k constraints

over the columns of the score matrix S. The matrix U is forced to lie on the Grassman manifold to

prevent degeneracy, such as basis vectors being identically zero or solutions with double multiplicity.
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The optimization problem admits an equivalent formulation in terms of Lagrange multipliers,

arg min
S,U

{
1

n

n∑
i=1

‖xi −
k∑
j=1

siju
T
j ‖2 +

2

n

k∑
j=1

λj

n∑
i=1

sijzi

}
, (2)

with the introduction of the factor 2/n for ease of computation.

3.2. Theoretical support
The following Lemma characterizes the solution of the og optimization problem, which can be inter-

preted as the residual of a multivariate regression among left singular values and a group variable.

Let VkΣkU
T
k denote the rank-k Singular Values Decomposition (svd) of X.

Lemma 1. The problem stated in Equation 1 can be solved exactly, and admits an explicit solution

in terms of singular values. The solution is equal to X̃ = (In−Pz)VkΣkU
T
k , with PZ = Z(ZTZ)−1ZT .

Proofs are given in Appendix A.1. The computational cost of the overall procedure is dominated

by the cost of the truncated svd, which can be computed with modern methods in O(nk2) (Golub

and Van Loan, 2012). The procedure outlined in Lemma 1 is simple and only involves matrix decom-

position and least squares theory; hence we can fully characterise the solution and its properties. In

the univariate case, the expression in Lemma 1 is easily interpretable since Pz and (In−Pz) are n×n
matrices with elements

[Pz]ij =
1

n
+

zizj∑n
i=1 z

2
i

, [(In − Pz)]ij = I[i = j]− 1

n
− zizj∑n

i=1 z
2
i

, i, j = 1, . . . , n.

The following Lemma guarantees that the solution X̃ of the og algorithm optimally preserves

information in X.

Lemma 2. The solution X̃ of the og algorithm is the best rank-k approximation, in Frobenius

norm, of the data matrix X under the og constraint.

The svd achieves the minimum error in Frobenius distance among all matrices of rank-k (e.g.,

Golub and Van Loan, 2012). Naturally, the introduction of additional constraints reduces the accuracy

of the approximation relative to the svd. The following result bounds the additional error analytically.

Lemma 3. Let X̃k = VkDkU
T
k denote the best rank-k approximation of the matrix X obtained from

the truncated svd of rank k. The reconstruction error of the og algorithm is lower bounded by the

optimal error rate of X̃k, and the amount of additional error is equal to ‖PzVkDk‖2F .

The additional reconstruction error can be interpreted as a measure of the collinearity between the

subspace spanned by Z and the left singular vectors of the data X. The more correlated the singular

vectors are with the group variable, the greater the additional error relative to the solution without

the og constraint. When Z is in the null space of X, the solution is identical to the truncated

singular value decomposition and the reconstruction achieves the minimum error. Therefore, if the

correlation between the group variable and the observed data is negligible, the procedure achieves a

loss of information which is close to the svd.

3.3. Sparse OG procedure
Estimation of low-dimensional structure from high-dimensional data can be challenging when the

number of features p is larger than the number of observations n. In this setting, common methods in

multivariate analysis impose constraints on the elements of a matrix decomposition, usually through
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an `1-norm penalty to favour sparsity and improve numerical estimation (e.g. Zou et al., 2006; Jolliffe

et al., 2003; Witten et al., 2009).

To make the og problem tractable and stable when the number of features is very large – potentially

larger than the number of observations – we introduce additional constraints in the algorithm. We

will build our method on a standard procedure to perform sparse matrix decomposition (e.g. Hastie

et al., 2015, Chapter 8), and adapt the computations to introduce the orthogonality constraint. We

define the Sparse Orthogonal to Group (sog) optimization problem as follows.

arg min
S,U

∥∥X − SUT∥∥2
F

subject to ‖uj‖2 ≤ 1, ‖uj‖1 ≤ t, ‖sj‖2 ≤ 1, sTj sl = 0, sTj Z = 0,

(3)

for j = 1, . . . , k and l 6= j. The problem in Equation 3 includes sparsity constraints over the vectors

uj and imposes orthogonality constraints among the score vectors sj and the group variable, since the

reconstruction X̃ = SUT is a linear combination of the vectors sj .

To fix ideas, we focus initially on a rank-1 approximation. Adapting the results in Witten et al.

(2009), it is possible to show that the solutions in s and u for Equation 3 when k = 1 also solve

arg max
s,u

sTXu subject to ‖u‖2 ≤ 1, ‖u‖1 ≤ t, ‖s‖2 ≤ 1, sTZ = 0. (4)

Although the minimisation in Equation 4 is not jointly convex in s and u, it can be solved with an

iterative algorithm. Since the additional orthogonality constraints do not involve the vector u, when

s is fixed the minimisation step is mathematically equivalent to a sparse matrix decomposition with

constraints on the right singular vectors. This takes the form

arg max
u

bu subject to ‖u‖2 ≤ 1, ‖u‖1 ≤ t, (5)

with b = sTX and solution

u = g(b, θ) =
Sθ(b)
‖Sθ(b)‖2

,

where θ is a penalty term in the equivalent representation of the constrained problem in (4) in terms

of Langrange multipliers, and Sθ(x) := sign(x)(|x|−θ)I(|x| ≥ θ) is the soft threshold operator applied

over every element separately. The value of θ is 0 if ‖b‖1 ≤ t, and otherwise θ > 0 is selected such

that ‖g(b, θ)‖1 = t (Hastie et al., 2015; Witten et al., 2009).

When u is fixed, the solution is similar to that described in Section 3.2, which can be seen by

rearranging Equation 4 to obtain

arg max
s

sTa subject to ‖s‖2 ≤ 1, sTZ = 0, (6)

with a = Xu (Witten et al., 2009). The solution to Equation 6 is directly related to the method

outlined in Section 3.2, and is given by the following expression.

s =
a− βZ
‖a− βZ‖2

,

with β = (ZTZ)−1ZTa.

Solutions with rank greater than 1 are obtained by consecutive univariate optimization. For

the j-th pair (uj , sj), j = 2, . . . , k, the vector a in Equation 6 is replaced with Pk−1Xu
T
j , where

Pk−1 = In×n −
∑k−1

l=1 sls
T
l projectsXuTj onto the complement of the orthogonal subspace span(sl, . . . , sk−1),

thus guaranteeing orthogonality among the vectors sj , j = 1, . . . , k. A more detailed description of

the algorithm outlined above is given in Appendix A.2.
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4. Simulation study

We conduct a simulation study to evaluate the empirical performance of the proposed algorithms

and compare them with different competitors. The focus of the simulations is on assessing fidelity in

reconstructing a high-dimensional data matrix, success in removing the influence of the group variable

from predictions for future subjects, and evaluation of the goodness of fit of predictions. We also

compare our methods with two popular approaches developed in biostatistics; specifically, the combat

method of Johnson et al. (2007) and the psva approach of Leek and Storey (2007). These methods

adjust for batch effects via Empirical Bayes and matrix decomposition, respectively. The R code

implementing the methods illustrated in this article is available at github.com/emanuelealiverti/

sog, and it also includes a tutorial to reproduce the simulation studies. The approaches used as

competitors are available through the R package sva (Leek et al., 2012).

The first simulation scenario puts n = 1000, p = 200, and X has rank k = 10. The data matrix

X is constructed in two steps. We simulate a loading matrix S, with size (n, k), and a score matrix

U with size (k, p), with entries sampled from independent Gaussian distributions. A group variable

Z of length n is sampled from independent Bernoulli distributions with probability equal to 0.5.

Each p-dimensional row of the (n × p) data matrix X is drawn from a p-variate standard Gaussian

distribution with mean vector µi = (si−λzi)U , i = 1, . . . , n and λ is sampled from a k-variate Gaussian

distribution with identity covariance. Lastly, a continuous response Y with elements yi, i = 1, . . . , n

is sampled by first generating the elements of β independently from Uniform(−5, 5), then sampling

yi ∼ N((si − λzi)β, 1). We highlight that in this setting the data matrix X has a low-rank structure,

and the response variable Y is a function both of the group variable Z and the low-dimensional

embedding of X. In the second simulation scenario, the construction of the data matrix X is similar

to the first setting, except that the response variable Y does not depend on Z. This is achieved by

sampling the elements yi of Y from standard Gaussians with mean vector µi = siβ, i = 1, . . . , n.

Therefore, the response Y depends on the data only though the low-dimensional embedding of X.

The third scenario focuses on a “large p - small n” setting, in which the dimension of the data matrix

X is n = 200, p = 1000 with k = 10, and its construction follows the first scenario, with dimensions

of the score and loading matrix modified accordingly. In the fourth and last scenario, the low-rank

assumption is relaxed and we focus on a case with k = p, following the same generating processes

described above.

In each scenario, data are divided into a training set and a test set, with size equal to 3/4 and 1/4

of the observations, respectively. Therefore, the number of observations in the training and test set

is equal to 750 and 250 respectively in the first, second and fourth scenario, and is equal to 150 and

50 in the third. In each scenario, the proposed procedures and the competitors are applied separately

over the training set and the test set. Then, linear regressions are estimated on the adjusted training

sets and used to provide predictions Ŷ over the different test sets, where the performance is evaluated

by comparing predictions with the truth.

Table 1 reports the root mean square error (rmse), mean absolute error (mae) and median abso-

lute error (mdae) for the adjusted predictions from the competitors (combat, psva), the proposed

methods (og, sog) and the unadjusted case (svd), in which linear regressions are estimated on the

left singular vectors of X. In order to reduce simulation error in the results from splitting the data into

training and test sets, results are averaged across 50 different splits, with standard deviations across

splits reported in brackets. Empirical results suggest that models estimated on datasets adjusted with

the competitor methods have comparable performances, with psva providing more accurate predic-

tions than combat in most settings. Both og and sog outperform the competitors in all the settings

considered. For example, in the third scenario involving a p � n setting, the rmse of the psva is

22.93 compared to 16.15 for sog, which also provides better results for the other metrics considered.

It is worth highlighting that even when X is not low rank, as in the fourth scenario, our methods

github.com/emanuelealiverti/sog
github.com/emanuelealiverti/sog
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Table 1. Out-of sample predictions for Y . Lower values correspond to more accurate predic-
tions. Values are averaged over 50 random splits, with standard deviations reported in brackets.
Best performance is highlighted in boldface.

combat psva og sog svd

Scenario 1 rmse 20.73 (3.78) 17.49 (5.81) 15.31 (3.30) 13.19 (2.64) 21.48 (4.44)

mae 16.54 (3.00) 13.63 (4.49) 12.13 (2.54) 10.45 (2.09) 17.00 (3.40)

mdae 13.92 (2.67) 11.39 (3.65) 10.13 (2.14) 8.69 (1.84) 14.08 (2.77)

Scenario 2 rmse 15.37 (2.49) 13.99 (3.63) 11.54 (1.85) 10.36 (1.71) 15.75 (2.34)

mae 12.28 (1.96) 10.84 (2.95) 9.25 (1.51) 8.28 (1.38) 12.60 (1.89)

mdae 10.47 (1.74) 9.16 (2.75) 7.85 (1.41) 6.97 (1.19) 10.71 (1.72)

Scenario 3 rmse 25.78 (4.54) 22.93 (8.65) 18.87 (3.96) 16.15 (2.91) 26.38 (4.74)

mae 20.87 (3.78) 18.34 (7.08) 15.14 (3.31) 12.99 (2.45) 21.15 (4.01)

mdae 18.14 (3.88) 15.54 (6.58) 12.64 (3.34) 11.01 (2.47) 17.86 (4.10)

Scenario 4 rmse 44.74 (2.55) 45.70 (2.29) 42.20 (1.98) 41.93 (2.03) 45.12 (2.27)

mae 35.96 (2.18) 36.61 (2.01) 33.92 (1.65) 33.76 (1.72) 36.28 (1.91)

mdae 30.75 (2.45) 31.20 (2.37) 29.25 (2.30) 29.06 (2.03) 31.00 (2.29)

provide more accurate out-of-sample predictions than the competitors.

We also compare the accuracy of each method in recovering the data matrix X in simulation

scenario 1 with increasing values of the rank k of the approximation X̃. The rank of the reconstruction

is directly specified for og, sog and psva during estimation. Batch-adjustment via combat, instead,

does not utilize a low-rank representation. To create a fair basis for comparison, we use a rank-

k svd decomposition of the batch-corrected matrix obtained from combat in the comparison of

reconstruction accuracy. Table 2 illustrates the Frobenius norms between the training set of the first

scenario and its approximations for increasing values of the rank of each approximation. Results are

averaged over 50 random splits, and standard deviations across splits are reported in brackets.

For each value of the rank k, the best reconstruction is, as expected, obtained by the svd decom-

position, which returns a perfect reconstruction for ranks greater or equal than the true value k = 10,

but of course svd does not impose orthogonality to Z, and thus is reported only to provide a basis

for comparison of the reconstruction error of the other methods. Among the procedures that do seek

to remove the influence of Z, the best reconstruction (minimum error) is obtained by og for every

value of k. This empirical result is consistent with Lemma 2, which illustrates the optimality of the

method in terms of reconstruction error. For values of k greater than or equal to 10, the error is

stable and corresponds to the quantity derived in Lemma 3. The error achieved with the sog algo-

rithm is considerably higher than that of the og algorithm. This is expected since the true singular

vectors are not sparse in our simulation scenarios. Despite this, sog performs better than og in out

of sample prediction, suggesting that the additional regularization is useful in prediction. Among the

competitors, combat is more accurate in reconstructing X than psva, which encounters estimation

issues with values of the rank greater than 8, as illustrated by the increasing standard deviation of

the reconstruction error with large k.

Finally, we analyse success in removing information about Z from predictions based on adjusted

data. Figure 1 compares the empirical correlation between the out-of-sample predictions for Ŷ and

the group variable Z, over 50 random splits, for the first simulation scenario. Results from Figure 1

suggest a general tendency of all the adjustment methods to reduce the correlation between the out-

of-sample predictions and group variable, confirming the ability of the proposed algorithms and the

competitors to remove the linear effect of group information from predictions. Results from the two

competitor approaches suggest that predictions from combat have smaller correlation than psva on

average, and results are also less variable across different splits. The high variability observed with
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Table 2. Reconstruction error of the data matrix in the first scenario, measured in Frobenius
norm. Results are averaged across 50 random splits, with standard deviations reported in
brackets. Lower values represent more accurate reconstructions.
Rank k combat psva og sog svd

2 310.48 (1.45) 347.78 (2.97) 309.03 (1.48) 338.01 (1.56) 305.65 (1.31)

3 282.80 (1.36) 326.58 (3.25) 281.07 (1.38) 318.90 (1.49) 277.32 (1.23)

4 256.61 (1.24) 304.34 (4.70) 254.53 (1.27) 300.93 (1.38) 250.28 (1.07)

5 228.90 (1.35) 286.01 (15.83) 226.37 (1.37) 282.60 (1.71) 221.56 (1.06)

6 202.38 (1.33) 264.54 (18.54) 199.27 (1.33) 266.01 (1.50) 193.74 (1.00)

7 174.52 (1.31) 247.20 (36.40) 170.67 (1.33) 249.55 (1.42) 164.13 (1.04)

8 143.73 (1.41) 231.63 (58.65) 138.83 (1.41) 233.48 (1.56) 130.62 (1.13)

9 107.80 (1.62) 291.11 (106.68) 100.86 (1.63) 217.29 (1.69) 89.19 (1.11)

10 60.97 (2.85) 139.36 (187.70) 47.09 (3.16) 201.88 (1.92) 0.00 (0.00)

11 62.49 (2.82) 162.44 (192.83) 47.09 (3.16) 201.64 (3.21) 0.00 (0.00)
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Fig. 1. Correlation between Ŷ and Z across 50 random splits into training and test set in the first scenario.

psva, and its very modest effect at reducing correlation with Z, might be due to the convergence

issues described previously. As expected, predictions from og and sog always have zero correlation

across all splits, since this constraint is explicitly imposed in the algorithm during optimization.

5. Application

5.1. Human connectome project
To apply og and sog to the imaging case study, the brains scans were first vectorised into a n×pmatrix

X, with n = 1065 subjects and p = 2278 features corresponding to the strength of connection among

all pairs of brain regions. The outcome of interest is coded as a binary variable Y indicating a positive

result to a drug test for at least one among Cocaine, Opiates, Amphetamines, MethAmphetamine

and Oxycontine. The nuisance variable Z indicates the machine on which the data were gathered.

Data are randomly divided into a training and a test set, with size equal to 798 and 267 observations,

respectively. In order to reduce simulation error from data splitting, results are averaged over 50

different splits into training and test. Table 3 illustrates the averages and the standard deviations of

Accuracy (acc), Area Under the Roc Curve (auc), True Positive Rates (tpr), and True Negative

Rates (tnr) for the out-of-sample predictions across splits. The threshold for predicting observations

as positive corresponds to the proportion of positive observations in the training data, which is very

small (around 3% for both scanners).

To provide a basis for comparison, analyses are conducted using the original covariates without any

adjustment. The first columns of Table 3 represent results for a logistic regression using sparse pca

with k = 30 components as covariates. The second and third columns compare predictive performance

for Lasso (lasso) and Random Forest (rf), using all the unadjusted available covariates. The right

half of Table 3 shows results for the adjusted procedures, with the columns og and sog giving
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Table 3. Predictive performance on the HCP dataset. Higher values correspond to more accurate
predictions. Best performance is highlighted in boldface.

logistic lasso rf og sog lasso, og rf, og

acc 0.60 (0.06) 0.62 (0.06) 0.62 (0.06) 0.72 (0.32) 0.79 (0.23) 0.53 (0.06) 0.58 (0.07)

auc 0.54 (0.08) 0.52 (0.08) 0.51 (0.10) 0.51 (0.06) 0.53 (0.08) 0.57 (0.10) 0.52 (0.10)

tnr 0.61 (0.06) 0.63 (0.06) 0.63 (0.07) 0.27 (0.34) 0.20 (0.25) 0.43 (0.07) 0.37 (0.07)

tpr 0.29 (0.18) 0.40 (0.16) 0.33 (0.19) 0.55 (0.33) 0.57 (0.28) 0.42 (0.18) 0.53 (0.18)
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Fig. 2. Histograms for Ŷ under the four approaches. Light gray corresponds to Scanner 1, black to Scanner 2.
Regions where the two histograms overlap are shown as dark gray. The more extensive overlap between the
histograms by scanner in the right two panels indicates success of the method at removing scanner information
from the data.

results from a logistic regression estimated on X̃ obtained from our two methods, while lasso,og

and rf,og give results for predictions from Lasso and Random Forest estimated after og adjustment.

Empirical findings suggest that predictive performance is not noticeably worse for models estimated

on reconstructed data X̃. In some cases, performance improves, while in other cases it declines.

A similar phenomenon is observed in the recidivism example, suggesting that the loss of predictive

performance after performing our pre-processing procedure can be minimal in applications. Figure 2

provides additional results illustrating the empirical distribution of Ŷ under the four approaches.

Results suggests that predictions produced by logistic and lasso are different across two scans,

with predicted probabilities from the first Scanner (black histogram) being on average greater. After

pre-processing using our procedures, the empirical distribution of predicted probabilities of drug

consumption becomes more similar, with results from predictions formed on sog-preprocessed data

being close to equal across scanners. We also conducted sensitivity analysis for different values of

the approximation rank ranging in {10, 50, 100}. The results were consistent with the main empirical

findings discussed above.

5.2. COMPAS recidivism data
We apply our methods to the recidivism dataset by first constructing a design matrix which includes

the available features and all the interaction terms, for a total of p = 64 variables. The proportion

of individuals with a positive outcome was roughly 40% for Caucasian and 50% for non-Caucasian.

Although the number of features is not particularly large in this case study, and considerably smaller

than in the previous example, methods for pre-processing X that require manual interaction with the

statistician, such as Johndrow et al. (2019), are burdensome for even 64 covariates, since each covariate

must be modeled separately conditional on others. Moreover, the inclusion of every interaction term

induces substantial collinearity in the design matrix, so that low-rank approximation of the data

matrix is likely to be both accurate and improve computational and predictive performance for models

estimated on the data. Data are randomly divided into a training set and a test set, with size 5090 and
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Table 4. Predictive performance on the COMPAS dataset. Higher values correspond to more
accurate performances. Best performance is highlighted in boldface.

logistic logistic, z rf og sog rf, og

acc 0.669 (0.02) 0.671 (0.01) 0.671 (0.01) 0.654 (0.01) 0.654 (0.01) 0.606 (0.01)

auc 0.712 (0.02) 0.714 (0.02) 0.712 (0.01) 0.708 (0.01) 0.708 (0.01) 0.642 (0.01)

tnr 0.719 (0.02) 0.716 (0.04) 0.766 (0.02) 0.659 (0.02) 0.661 (0.02) 0.608 (0.01)

tpr 0.609 (0.05) 0.617 (0.03) 0.558 (0.02) 0.649 (0.01) 0.647 (0.01) 0.602 (0.02)

ppv 0.644 (0.02) 0.645 (0.02) 0.665 (0.02) 0.613 (0.01) 0.614 (0.01) 0.562 (0.02)

npv 0.689 (0.02) 0.692 (0.01) 0.675 (0.01) 0.692 (0.01) 0.691 (0.01) 0.647 (0.01)

1697 observations, respectively. Table 4 reports Accuracy (acc), Area Under the Roc Curve (auc),

True Positive Rates (tpr), True Negative Rates (tnr), Positive Predicted Values (ppv) and Negative

Predicted Values (npv) of the out-of-sample predictions. Results are averaged over 50 random splits

of the data, with standard deviations reported in brackets.

The first and second columns of Table 4 represent, respectively, results for a logistic regression using

all the available original covariates plus all interaction terms, and all the covariates and interaction

terms plus race, while the third column corresponds to a Random Forest trained on the original data.

The second part of 4 illustrates results for the adjusted procedures, with og and sog reporting results

from a logistic regression estimated on the adjusted data and rf,og from a Random Forest estimated

on data preprocessed using og. As observed in the case of the brain scan data, predictive performance

on the whole is quite similar when data are first pre-processed using our procedures, indicating that

in some applications there is an almost “free lunch;” information on Z can be removed with very little

effect on the overall predictive performance on average.

Figure 3 assesses success in removing dependence on race from Ŷ by comparing the empirical

cumulative distribution function (cdf) of the predicted probabilities with and without pre-processing

of X. The first two panels of Figure 3 represent the empirical cdf of Ŷ for the models denoted as

logistic and logistic,z in Table 4. Results are averaged across splits, with bands corresponding

to the 0.975 and 0.025 quantiles reported as dotted and dashed lines to illustrate variability of the

curves across splits. Without adjustment, white defendants (gray curves) are assigned lower proba-

bilities of recidivism. This issue affects predictions both excluding the race variable (first panel) and

including it is a predictor (second panel). The third and fourth panels correspond, respectively, to

predictions obtained from logistic regressions estimated on the data pre-processed with the og and

sog procedures. The gap between the empirical cdfs is substantially reduced, both with the standard

og and the sparse implementation, leading to distributions of the predictive probabilities which are

more similar across different racial groups. This indicates that the procedure was largely successful

at rendering predictions independent of race.
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Fig. 3. Empirical cumulative distribution functions for Ŷ under the four approaches. Gray refers to white
ethnicity, black to non-white. Dashed and dotted lines corresponds to confidendence bands.
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6. Discussion

We have proposed a simple approach for adjusting a dataset so that predictive algorithms applied to

the adjusted data produce predictions that are independent of a group variable. This is motivated by

two very different applications, involving adjusting for batch effects in neuroimaging and removing

the influence of race/ethnicity in risk assessments in criminal justice. Although these applications

areas are fundamentally different, our adjustment procedure can be used in both cases. An appealing

aspect is that the procedure is agnostic to the type of predictive algorithm used, so that a single

adjusted dataset can be released without prior knowledge of the types of predictive algorithms that

will be applied.

There are several interesting areas for future research building upon the proposed framework. One

interesting direction is to consider more complex types of covariates. For example, in neuroimaging

one may obtain a tensor- or function-valued predictor. For functional predictors, it is potentially

straightforward to modify the proposed framework by leveraging developments in functional principal

components analysis (fpca), combining fpca factorizations with our proposed algorithm. For tensor

predictors, one can similarly rely on tensor pca-type factorizations. However, in such settings, it

is important to think carefully about the ramifications of orthogonality assumptions, as unlike for

matrices most tensors are not orthogonally decomposable. Another important direction is to consider

more complex data structures; for example, containing longitudinal observations, a network-type de-

pendence structure and potentially censoring. In the risk assessment setting, data are increasingly

collected over time and there is dependence across different individuals which should be accommo-

dated.
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A. Appendix

A.1. Results on OG procedure
Proof (Proof of Lemma 1). Focusing on the case k = 1, the approximation of the original set

of data consists of finding the closest rank-1 matrix (vector). Equation 2 can be reformulated as

arg min
s1,u1

{
1

n

n∑
i=1

‖xi − si1uT1 ‖2 +
2

n
λ1

n∑
i=1

si1zi

}
, (7)

and some algebra and the orthonormal condition on u1 allows us to express the loss function to

be minimized as

L(s1, u1) =
1

n

n∑
i=1

(xi − si1uT1 )T (xi − si1uT1 ) +
2

n
λ1

n∑
i=1

si1zi

=
1

n

n∑
i=1

(xTi xi − 2si1xiu
T
1 + s2i1) +

2

n
λ1

n∑
i=1

si1zi.

The function is quadratic, and the partial derivative in si1 leads to

∂

∂si1
L(s1, u1) =

1

n
(−2xiu

T
1 + 2si1) +

2

n
λ1zi,
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with stationary point given by si1 = xiu
T
1 − λ1zi. The optimal score for the i-th subject is obtained

by projecting the observed data onto the first basis, and then subtracting λ1-times z. The constraint

does not involve the orthonormal basis u1, hence the solution of Equation 7 for u1 is equivalent to the

unconstrained scenario. A standard result of linear algebra states that the optimal u1 for Equation 7

without constraints equivalent to the first right singular vector of X, or equivalently to the first

eigenvector of the matrix XTX (e.g., Hastie and Tibshirani, 2009). Plugging in the solution for u1
and setting the derivative with respect to λ1 equal to 0 leads to

n∑
i=1

(xiu
T
1 − λ1zi)T zi = 0 λ1 =

∑n
i=1 xiu

T
1 zi∑n

i=1 z
2
i

=
〈XuT1 , z〉
〈z, z〉

, (8)

a least squares estimate of XuT1 over z.

Consider now the more general problem formulated in Equation 2. The derivatives with respect to

the generic element sij can be calculated easily due to the constraint on U , which simplifies the

computation. Indeed, the optimal solution for the generic score sij is given by

sij = xiu
T
j − λjzi, (9)

since uTi uj = 0 for all i 6= j and uTj uj = 1 for j = 1, . . . , k. The solution has an intuitive interpretation,

since it implies that the optimal scores for the j-th dimension are obtained projecting the original

data over the j-th basis, and then subtracting λj-times the observed value of z. Moreover, since the

og constraints do not involve any vector uj , the optimization with respect to the basis can be derived

from known results in linear algebra. The optimal value for the vector uj , with j = 1, . . . , k, is equal

to the first k right singular values of X, sorted accordingly to the associated singular values (e.g.,

Bishop, 2006; Hastie et al., 2015).

The global solution for λ = (λ1, . . . , λk) can be derived from least squares theory, since we can

interpret Equation 9 as a multivariate linear regression where the k columns of the projected matrix

XUT are response variables and z a covariate. The general optimal value for λk is then equal to the

multiple least squares solution

λk =
〈XuTk , z〉
〈z, z〉

.

Proof (Proof of Lemma 2). Since the optimization problem of Equation 1 is quadratic with a

linear constraint, any local minima is also a global minima. The solution performed via the singular

value decomposition and the least squares constitute a stationary point, that is also global minimum.

Proof (Proof of Lemma 3). Let VkDkU
T
k define the rank-k truncated svd decomposition of

the matrix X, using the first k left and right singular vectors, and the first k singular vales. Let

X̃OG define the approximated reconstruction obtained by the og algorithm. The reconstruction error

between the original data matrix X and its low-rank approximation X̃OG can be decomposed as

follow.

‖X − X̃OG‖2F = ‖X − (VkDk − Zλ)UTk ‖2F
= ‖X − VkDkU

T
k + ZλUTk ‖2F

= ‖X − VkDkU
T
k ‖2F + ‖ZλUTk ‖2F+ 2〈X − VkDkU

T
k , ZλU

T
k 〉F .

The Frobenius-inner product term is equal to 0 due to the orthogonality of the singular vectors, and

rearranging terms the following expression is obtained.

‖X − X̃OR‖2F − ‖X − VkDkU
T
k ‖2F = ‖ZλUT ‖2F = ‖Zλ‖2F ,

Since the optimal value for λ is equal to the least squares solution of Z over VkDk, it follows that

‖Zλ‖2F = ‖Z(ZTZ)−1ZTVkDk‖2F = ‖PZVkDk‖2F , and the proof is complete.
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A.2. Sparse OG procedure
The following pseudo-code illustrates the key-steps to implement the sog procedure illustrated in

Section 3.3. An r implementation is available at github.com/emanuelealiverti/sog.

Algorithm 1: sog algorithm

Input: Data matrix X, n× p. Approximation rank k.

for j = 1, . . . , k do

while Changes in uj and sj are not sufficiently small do
Compute βj via least squares as

βj = (ZTZ)−1ZTPj−1Xuj ,

with Pj−1 = In×n −
∑j−1

l=1 sls
T
l

Update sj ∈ Rn as

sj =
Pj−1Xuj − βjZ
‖Pj−1Xuj − βjZ‖2

Update uj ∈ Rp as

uj =
Sθ(XT sj)

‖Sθ(XT sj)‖2
,

where Sθ(x) = sign(x)(|x| − θ)I(|x| ≥ θ) and

if ‖XT sj‖1 ≤ t then
Set θ = 0

else
Set θ > 0 such that ‖uj‖1 = t

Output: Set dj = sTj Xuj . Let S denote the n× k matrix with columns djsj , j = 1, . . . , k. Let

U denote the p× k sparse matrix with rows uj , j = 1, . . . , k. Return X̃ = SUT
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