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Abstract
Climate sciences foresee a future where extreme weather events could happen with 
increased frequency and strength, which would in turn increase risks of floods (i.e. the 
main source of losses in the world). The Mediterranean basin is considered a hot spot in 
terms of climate vulnerability and risk. The expected impacts of those events are exac-
erbated by land-use change and, in particular, by urban growth which increases soil seal-
ing and, hence, water runoff. The ultimate consequence would be an increase of fatalities 
and injuries, but also of economic losses in urban areas, commercial and productive sites, 
infrastructures and agriculture. Flood damages have different magnitudes depending on the 
economic value of the exposed assets and on level of physical contact with the hazard. This 
work aims at proposing a methodology, easily customizable by experts’ elicitation, able to 
quantify and map the social component of vulnerability through the integration of earth 
observation (EO) and census data with the aim of allowing for a multi-temporal spatial 
assessment. Firstly, data on employment, properties and education are used for assessing 
the adaptive capacity of the society to increase resilience to adverse events, whereas, sec-
ondly, coping capacity, i.e. the capacities to deal with events during their manifestation, 
is mapped by aggregating demographic and socio-economic data, urban growth analysis 
and memory on past events. Thirdly, the physical dimension of exposed assets (susceptibil-
ity) is assessed by combining building properties acquired by census data and land-surface 
characteristics derived from EO data. Finally, the three components (i.e. adaptive and cop-
ing capacity and susceptibility) are aggregated for calculating the dynamic flood vulner-
ability index (FVI). The approach has been applied to Northeast Italy, a region frequently 
hit by floods, which has experienced a significant urban and economic development in the 
past decades, thus making the dynamic study of FVI particularly relevant. The analysis 
has been carried out from 1991 to 2016 at a 5-year steps, showing how the integration 
of different data sources allows to produce a dynamic assessment of vulnerability, which 
can be very relevant for planning in support of climate change adaptation and disaster risk 
reduction.
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1  Introduction

Climate sciences foresee a future where extreme weather events could happen with 
increased frequency and strength as a consequence of accumulating greenhouse gases in 
the atmosphere. Specifically, climate change would favour extreme precipitations to occur 
with higher frequency and intensity, causing more riverine, coastal and flash floods, which 
are already the main source of losses in the world (UNISDR 2015). The Mediterranean 
basin is considered a hot spot in terms of climate vulnerability and risk (Blöschl et  al. 
2019). The higher probability of these events to happen, coupled with the effects of land-
use change and, in particular, of urban growth that increases soil sealing and, hence, water 
runoff, in turn determines increased potential impacts (Kundzewicz et  al. 2014; Slater 
et al. 2015; Viero et al. 2019; Winsemius et al. 2016). The expected consequences are an 
increase of fatalities and injuries, but also of economic losses in urban areas, commercial 
and productive sites, infrastructures and agriculture, and they depend on the specific vul-
nerability of the area hit by the event.

The definition of vulnerability can vary significantly depending on the community 
addressing it. Two major conceptualizations of vulnerability can be found in the literature 
(USAID 2014): contextual vulnerability, focusing on the factors that define the ability to 
withstand and recover from a shock, and outcome vulnerability combining “information on 
potential climate impacts and on the socio-economic capacity to cope and adapt.” (Füssel 
2010; O’Brien 2007).

The IPCC with its report on managing the risk of extreme events (IPCC-SREX 2012) 
made an effort for harmonizing the definition of vulnerability among the communities of 
Disaster Risk Reduction (DRR) and Climate Change Adaptation (CCA) and defined it as 
“the propensity of predisposition of exposed receptors to be negatively affected by hazard 
events”.

Having defined the concept and relevance of vulnerability, the need for methods for its 
quantification emerges. Vulnerability assessment (VA) has been covered extensively in the 
literature, however without a consensus on what constitutes a best practice (USAID 2014). 
Four major conceptual frameworks for VA can be identified (USAID 2014): (i) the Inter-
governmental Panel on Climate Change (IPCC) framework with vulnerability as a function 
(i.e. outcome) of exposure, sensitivity and adaptive capacity (IPCC 2001; Parry 2007); (ii) 
the extended vulnerability framework (Turner et al. 2003; Birkmann 2006), which develops 
upon the IPCC framework including a broader array of place-based contextual factors, con-
ceptualizing also the main feedbacks among elements; (iii) the livelihood framework (Car-
ney 1998) developed by the United Kingdom’s Department for International Development, 
which describes five capitals (natural, social, financial, human, physical); (iv) the SREX 
framework mentioned above (IPCC 2012), building on contextual vulnerability, which 
becomes one of the three variables determining risk, together with exposure and hazard.

In this work we adopt the IPCC-SREX definition and assessment approach to vulner-
ability, following the KULTURisk (KR) framework, which considers vulnerability as one 
of the three independent variables of risk (Giupponi et al. 2013; Mojtahed et al. 2013). KR 
considers both the physical and human dimensions of vulnerability (see Figure S1). The 
physical dimension is given by the susceptibility of exposed man-made structures, namely 
their predisposition of being negatively affected by hazards. The social dimension is made 
of two components: adaptive capacity (AC) (ex-ante) that is “the ability to anticipate and 
transform structure, functioning, or organization to better survive hazards” and coping 
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capacity (CC) (ex-post) that is “the ability to react to and reduce the adverse effects of 
experienced hazards” (Gain et al. 2015).

To assess social vulnerability through its two components of adaptive and coping capac-
ities, several socio-economic characteristics need to be taken into account and measured 
by means of indicators, such as age, gender, race, overcrowding, ethnicity, social class, 
unemployment rate, immigrant status, density and quality of the built environment, land 
use, housing tenancy and the presence of informal support networks (Borden et al. 2007; 
Burton and Cutter 2008; Cutter et al. 2000, 2003; Fekete 2009; Finch et al. 2010; Masozera 
et al. 2007; Rygel et al. 2006).

The results of VA are quite often presented as maps showing the spatial variability of 
social vulnerability as a non-dimensional index, highlighting community needs at different 
level of disaster response and mitigation, useful for emergency management or risk reduc-
tion planning (Boruff and Cutter 2010; Cardona 2005; Chakraborty et al. 2005; Wood et al. 
2010).

More rarely vulnerability is assessed as a dynamic variable, which vary not only across 
space, but also in time. In general, being vulnerability the outcome of the combination of 
variables, which evolve over time, it should be expected to vary over time too. Moreover, 
the dynamics of vulnerability is intertwined with the occurrence of extreme events, with 
the direct experience of flooding influencing the perception of future risk and the responsi-
bility to act, increasing the propensity to believe to be affected again in the future, the sense 
of personal duty and willingness to adapt (Adger et al. 2013; Di Baldassarre et al. 2015). 
Especially when there is a frequent occurring of flooding, this leads to a decrease of social 
vulnerability, i.e. the so-called adaptation effect (Mechler and Bouwer 2015; Wind et al. 
1999), with the society gaining AC and CC through experience or by means of flood risk 
management policies put in place by local authorities, such as early warning systems, flood 
risk awareness programmes or land-use planning regulations (Johnson et  al. 2005; Pen-
ning-Rowsell et al. 2006). On the contrary, in the case of non-occurrence of frequent flood-
ing thanks to the presence of flood protection structures, an increase of social vulnerability 
can be observed, i.e. the so-called levee effect (Montz and Tobin 2008). In fact, measures 
taken in order to prevent flooding may lead to a shift from frequent but small flooding, to 
rare but catastrophic ones (Burton and Cutter 2008; Di Baldassarre et al. 2013; Kates et al. 
2006; Ludy and Kondolf 2012).

Notwithstanding the dynamic nature of vulnerability, methodologies for vulnerabil-
ity and flood risk assessment available in the literature are usually static. In some cases, 
changes in risk are assessed by comparing scenarios driven by climate change and socio-
economic development (Apel et al. 2009; Winsemius et al. 2013) or by flood policies (Di 
Baldassarre et al. 2015).

One of the main limitations to dynamic assessment of flood risk and vulnerability lays 
in the difficulties in obtaining time series of the spatial indicators used in the assessments. 
In recent years, earth observation technologies (EO) have contributed to overcome such 
limitations by providing accurate and prompt data for different purposes, including rapid 
assessment of impacts, support emergency management, DRR and CCA (De Sherbinin 
2014; Giupponi and Biscaro 2015; Marconcini et al. 2013; Wolters and Kuenzer 2015).

The EO data revolution started recently, with the launch of the Copernicus pro-
gramme by the European Commission in 2014, providing a systematic weekly obser-
vation of the Earth in multi-spectral optical and radar mode. Together with the USGS’s 
Landsat data, available from 1984 at 30  m resolution, these are constituting the so-
called EO big data (Guo et  al. 2014, 2015), an unprecedented tool for the observa-
tion of global environmental changes. While several spatial and non-spatial parameters 



	 Natural Hazards

1 3

required for detecting and quantifying flood risk can be extracted directly from RS 
imagery, many have to be elicited indirectly. This is especially true for VA, where the 
inherent characteristics of several socio-economic urban elements cannot be extracted 
directly from the images (Ghaffarian et  al. 2018). Therefore, using proxies have 
become central and the predominant approach in RS-based risk assessment studies 
(Taubenböck et al. 2009).

Ghaffarian et al. (2018) provide an exhaustive review of EO-based proxies for disas-
ter risk management, including vulnerability. Most of the proxies they found in the lit-
erature refer to the physical component of vulnerability, the one we call susceptibility. 
For instance, detecting buildings material allows to classify their level of vulnerability 
(Geiß et al. 2016; Yuan and Wang 2004) in case of a shock affecting their structure, or 
detecting the elevation of the buildings compared to the street level allows to under-
stand their vulnerability to floods (Müller 2013). The analysis of road networks and 
road characteristics allows for VA in relation to flows of people, both in a frame of risk 
reduction and impacts assessment (Hu et  al. 2017; Kumagai 2012). They found also 
several studies focusing on the socio-economic components of vulnerability, where for 
instance the income of population is inferred by analysing the slope where buildings 
are located or by the percentage of green in the urban environment (Ebert et al. 2009).

Further contributions to VA and its dynamics are coming from machine learning 
techniques, helping to extract information from different sources of data. For instance, 
Schwarz et al. (2018) used machine learning, remote sensing (RS) and census data to 
predict the socio-physical vulnerability to floods and dynamically deliver that informa-
tion to decision makers through a web platform in the case of Senegal.

Given the current status of the literature briefly outlined above, this work proposes 
a novel method for calculating a spatial and multi-temporal index of social vulnerabil-
ity to floods (flood vulnerability index, FVI), integrating EO, census data and spatial 
statistics about flood events. The method is flexible enough to easily allow decision 
makers and stakeholder to customize the way of integrating the different indicators 
by changing their overall weight within the framework, based on local knowledge and 
experience. Vulnerability is assessed through three components—AC, CC and suscep-
tibility—by combining physical properties of urban areas (extent, growth, impervi-
ousness, etc.) with economic and societal features (age of population, income classes, 
commercial activities, flood memory, etc.) by means of an Ordered Weighted Averag-
ing method.

2 � Methodology

Figure 1 shows the workflow followed to compute the FVI. From the input data, sev-
eral indicators are extracted, which are later normalized by means of value functions 
and weighted using a simple weighting method (SW). Finally, an ordered weighted 
averaging (OWA) is applied to obtain the final FVI. The next two sections explain in 
detail all the steps.
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2.1 � Flood vulnerability indicators

Fourteen indicators have been defined and derived from the input data. Table 1 shows 
their definition, their description and to which component of vulnerability they belong 
to.

They have been selected from the generalized list of indicators proposed by Giupponi 
et al. (2013) and Mojtahed et al. (2013) for the three components of vulnerability. The 
selection has been based on data availability and on characteristic and spatial extent of 
the area of study.

The indicators have been stored in GIS layers with highest possible resolution: at 
census cell level for census data, municipality for flood records, 30 × 30 m grid for data 
deriving from RS. All vector data were later rasterized at 30 m resolution to perform a 
pixel-based analysis.

Indicators derived from census data have been computed for the years 1991, 2001 
and 2011 corresponding to the years of the census surveys with the exception of the 
indicator “Conservation Status” not computed for 1991 and 2001 for the lack of data in 
the two censuses, and the indicator “Number of Multi-Storey building” not computed 
for 1991 for the lack of data in the census.

The three indicators derived from EO data have been computed from 1991, 1996, 
2001, 2006, 2011 and 2016, with exception of the indicator “Newcomers” not computed 
for 1991 given that data for urban areas prior to 1991 were not available.

The “Memory Effect” indicator, which is based on the experience of the society to 
cope with a flood based on the occurrence of past events, was computed for each of the 
years of the analysis adding a dynamic component to the FVI. The indicator has been 
computed only for the Veneto region since the data on past flood were available only for 
this region. For a detailed description of the employed model, see Sect. 1 of Supplemen-
tary Materials (SM).

Fig. 1   Workflow with hierarchical aggregation of indicators and simple weighting for calculation of the 
flood vulnerability index. Indicators highlighted in blue are computed from census data, in green from earth 
observation data and in red from flood record
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2.2 � Indicators normalization, weighting and aggregation into the FVI

The extracted indicators are aggregated in two steps to define the social and physical 
dimensions of vulnerability, first weighted through a SW method, and later aggregated 
by means of OWA, a spatial multi-criteria analysis method (Yager 1988), giving as a 

Table 2   Value functions adopted for indicators requiring normalization

Indicator Value function (indicator value, normalized value)

Adaptive capacity
Employment Piecewise increasing: A(0.2,0)–B(0.5,1)–C(1,1)
Education Piecewise increasing: A(0,0)–B(0.5,1)–C(1,1)
House property Piecewise decreasing: A′(0,1)–B′(0.2,0)–C′(0,0)
Coping capacity
Dependency ratio Linear increasing: A(0,0)–C(1,1)
Population age Piecewise decreasing: A′(0,1)–B′(0.5,0)–C′(1,0)
Foreigners Piecewise decreasing: A′(0,1)–B′(0.5,0)–C′(1,0)
Newcomers Piecewise decreasing: A′(0,1)–B′(100,0)–C′(inf., 0)
Memory effect Linear increasing: A(0,0)–C(1,1)
Compactness of urban areas Piecewise decreasing: A′(0,1)–B′(2000,0)–C′(inf.,0)
Susceptibility
Building age Piecewise increasing: A(0,0)–B(0.75,1)–C(1,1)
Conservation status Piecewise increasing: A(0,0)–B(0.75,1)–C(1,1)
Number of multi-storey buildings Linear decreasing: A′(0,1)–C′(1,0)
Empty buildings Linear decreasing: A′(0,1)–C′(1,0)
Imperviousness (EO data) Linear increasing: A(0,0)–C(100,1)
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result the final FVI. To allow the aggregation of the indicators, values expressed in dif-
ferent units were normalized by means of value functions expressing the contribution of 
each indicator to the three dimensions of vulnerability, thus obtaining values between 0 
and 1 as indicated in Table 2.

Figure 1 shows in detail how the different components of vulnerability are considered 
and weighted in the SW step. At the stage of methodological proposal, we considered 
that weights could be equally distributed within each group of indicators to be aggre-
gated, while in operational applications they should be defined with competent decision 
makers and stakeholders and subject to specific sensitivity analysis (see Bojovic et al. 
2018 or Ceccato et al. 2011, for the techniques of participatory weighting with stake-
holders). The physical dimension, which weights one third, is the susceptibility and it 
is given by the properties of the buildings and the value of imperviousness (percent 
impervious surface) of the area. The social dimension is made of AC and CC (each 
weighted one third of the FVI). AC takes into consideration the skills of the society, 
such as employment and income level. CC takes into consideration demography, the 
urban growth and the characteristics of the urban environment.

After the SW, OWA is applied where the values obtained per each pixel are ordered 
and a second weight vector is applied, in which weights are not attributed to each indi-
cator, but are instead applied to the ordered sequence of weighted values to be aggre-
gated. This second weighting step allows to overcome the full compensation of sim-
ple weighted averages. Variations in the level of skew in the order weights results in 
solutions with different levels of risk. Therefore, the balancing between ANDness (risk 
averse) and ORness (risk taker), and the values of the weight vectors allow for much 
better consideration of the risk attitude and thus improve significantly the opportunity 
to meet the preferences of the decision/policy makers. Table S1 and Figure S2 show the 
weight order and value for the three decision makers’ profiles considered in this study: 
balanced, optimistic (risk taker) and pessimistic (risk averse).

Let x̄ be the vector containing all the n indicators; let w̄ be the vector containing all 
the n weights for each corresponding indicator, and let w̄ be the vector containing the 3 
weights corresponding to the three components of vulnerability, AC, CC and S.

Then, the vector containing all the simple additive weighted indicators will be:

with k being the number of indicators for the component CC, h the number of indicators for 
the component AC, and n the total number of indicators.

Let h̄ be the vector containing all the n OWA weights with hn ∈ [0, 1]and
∑n

i=1
hi = 1 

and b̄ the ordered vector of the SWI indicators, where bi is the ith largest and bn is the 
smallest of the SWI indicators.

Then, the flood vulnerability index (FVI) is:

(1)SWI =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

SWI1
⋮

SWIk+1
⋮

SWIh+1
⋮

SWIn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

x1 ∗ w1 ∗ W1

⋮

xk+1 ∗ wk+1 ∗ W2

⋮

xh+1 ∗ wh+1 ∗ W3

⋮

xn ∗ wn ∗ W3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
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Finally, the FVI values are masked using the built-up area layer of the year of interest. FVI 
is obtained with a score between 0 and 1, where 1 represents high vulnerability and 0 no 
vulnerability.

A further step is performed for the sake of presenting the results at a census level in a 
suitable form for a potential policy maker using this analysis. Specifically, FVI values have 
been weighted over a census cell (i) based on the percentage of built-up area on the total 
area of the cell:

3 � Data and case study

3.1 � Census data

Census data for Italy come every ten years. We decided to consider the census data of 
1991, 2001 and 2011 to have an overlap with the EO dataset, in particular the Land-
sat data available from 1984 until today (as presented in the next subsection). The data 
have been retrieved from the Italian National Institute of Statistics (ISTAT) (ISTAT, Dati 
Censimento).

These data provide a wide range of information about demography, education, employ-
ment, characteristic of buildings. Data are aggregated at census cell level, which are very 
detailed subdivisions of municipalities. Their dimensions can go from few hundreds square 
metres in case of densely populated city centres, to several tens of square kilometres for 
mountainous area with little population.

It has to be noted that census surveys changed slightly in the years, with new indicators 
added in the most recent census (as explained in Sect. 2.1) and with minor changes in the 
division of municipalities and census cells. This latter problem is overcome by the fact that 
our analysis is pixel-based and not area-based; therefore, the different boundaries of the 
cells in different years are not affecting our analysis.

Income of each family is also collected by the census and it would be a useful indicator 
of the capacity of each family to take adaptation actions. Unfortunately, these data are not 
freely accessible due to privacy reasons and therefore they could not be used. Neverthe-
less, given the level of wealth in the area analysed, this is not a limitation and it has been 
hypothesized that a similar discriminant in terms of AC can be the percentage of rented 
houses.

3.2 � EO data

EO data have been used to derive three vulnerability indicators, as specified in detail 
in the Methodology section. The EO product (produced by the Smart Cities and Spatial 
Development team of the German Aerospace Centre (DLR)) on which these indicators 
are based are: (i) the settlements extent maps for year 1991–2016 at 5 years interval at 

(2)FVI
(
SWI1,… , SWIn

)
=

n∑
i=1

hibi

(3)FVIwgt = FVI ∗
Builtupi

Areai
.
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30 m resolution, (ii) the corresponding maps estimating the percent impervious surface 
(PIS) per pixel and (iii) spatial networks whose nodes are the centroids of the detected 
settlements and edges connect each node with all neighbour nodes located within a 
given distance buffer (used to ultimately estimate the relevance of difference settle-
ments at regional level for each target year).

The settlement extent maps have been extracted from the World Settlement Foot-
print (WSF) evolution dataset (Marconcini et  al. 2019), a novel global layer outlin-
ing—on a yearly basis—the settlement growth from 1985 and 2015, derived by exploit-
ing temporal statistics of specific spectral indices computed from Landsat archived 
imagery. On top of these, the corresponding PIS has been calculated according to the 
method presented by Marconcini et  al. (2015). Specifically, each pixel is ultimately 
associated with the estimated percentage of the corresponding surface at the ground 
covered by buildings (intended as structures having a roof supported by columns or 
walls and intended for the shelter, housing or enclosure of any individual, animal, pro-
cess, equipment, goods or materials of any kind) or paved surfaces (intended as any 
level horizontal surface covered with paving material, i.e. asphalt, concrete, concrete 
pavers or bricks but excluding gravel, crushed rock and similar materials).

Finally, spatial networks have been produced starting from the abovementioned set-
tlement extent maps following the approach described in Esch et al. (2014); in particu-
lar, these have been generated for multiple distance buffers, namely 5, 4, 3, 2 and 1 km. 
Different relevance measures are computed to characterize the importance of different 
nodes in the network; among these, in this study we considered the mean Euclidean 
distance among the given node and its 3 nearest neighbours as a proxy for the settle-
ment compactness.

3.3 � Memory of past floods

A database of historical information about floods and landslides occurred in Italy 
has been maintained by the National Research Council, known as AVI archive (Aree 
storicamente Vulnerate da calamità Idrogeologiche (areas affected by hydrogeologic 
vulnerability)). The archive contains information starting from 1917 until 2002 (Guz-
zetti and Tonelli 2004) reporting past flood events, the municipalities affected and the 
duration of the events. Unfortunately, the archive is not maintained anymore, and data 
are not up to date.

For a VA study, Roder et al. (2017) and Sofia et al. (2017) updated the archive for 
the Veneto region up to 2015 by mean of several sources of information, such as news-
papers, civil protection reports, etc. From this updated archive, we used the list of flood 
events occurred in the Veneto region from 1950 until today, in particular the munici-
palities affected, the dates of the events and their duration, to model the memory effect, 
which affects the social component of vulnerability. In fact, once a community experi-
ences an adverse event (which affected people and caused damages), it builds a mem-
ory of the event that contributes to increase its coping capacity for a future adverse 
event. The memory effect will have a higher contribution to the coping capacity right 
after an adverse event, which will decrease with time until the community has no more 
memory of any past event.

The model employed for deriving this indicator is explained in detail in the supple-
mentary materials–“Sect. 1. Vulnerability Dynamics: Memory Effect”.
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3.4 � Case study

For our analysis, we selected the three administrative regions that belong to the macro-
region of Northeast Italy, Veneto, Trentino-Alto Adige and Friuli-Venezia Giulia, an area 
of about 18,400 km2. The area is densely populated especially in the southern and south-
eastern part, characterized by a flat and highly built-up land. The northern area is covered 
by the Prealps and Alps, making it barely populated with the exception of few towns and 
cities, such as Trento, Bolzano and Belluno.

The whole area has been affected by numerous flood events in the past. Many of these 
occurred in the last decade causing enormous impacts, both in terms of people affected and 
in terms of economic losses, making this area of high interest in terms of flood risk assess-
ment and risk reduction, for which understanding vulnerability is fundamental (Cian et al. 
2018a,b).

3.5 � Analysed scenarios

The time steps analysed are six and correspond to the years 1991, 1996, 2001, 2006, 2011 
and 2016. They can be divided in two main groups based on their different nature: the 
“census” and “inter-census” scenarios, depending if they fall on the year of a census survey 
or not.

The choice to analyse inter-census scenarios is based on the fact that RS data are avail-
able on a yearly basis and allows for an update on certain characteristics of the vulner-
ability (mainly in relation to the built environment) without waiting for a new census. To 
exploit this advantage, particularly important in urban areas affected by rapid and signifi-
cant changes, it has been chosen to create scenarios in between two census surveys, there-
fore at year 1996, 2006 and 2016.

The census data have been kept constant (to the previous time step) in the “inter-census” 
scenarios.

4 � Results

4.1 � FVI values across space and time

The FVI has been computed for six different years (from 1991 to 2016 at 5-year time step) 
for three different decision marker’s profiles (balanced, risk taker, risk averse). The result-
ing maps are reported in Figures S3–S38. For each profile, we present the FVI and FVIwgt 
results for a total of 12 maps each.

Figure  3 shows the FVIwgt map for 2016 balanced profile on a colour scale from 
0 to 0.7 (the max FVI value reached in the region), with 0 meaning no vulnerability 
and 1 full vulnerability, and the evolution of FVIwgt from 1991 to 2016 for the subarea 
comprising the cities of Venice, Treviso, Padova and Vicenza, one of the most popu-
lated zone of Triveneto. The white areas, indicating no vulnerability, correspond mainly 
to mountainous areas and water bodies, where there is no presence of population. We 
observe higher values of vulnerability in correspondence to the urban areas, especially 
in bigger cities in their historical and productive centres. We can also notice a sensitive 
decrease of FVI values in time, indicating that some of the changes occurred to society 
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or to the physical environment had a positive effect on vulnerability. The introduction of 
the indicator of “Number of multi-storey buildings” from the 2001 census contributes to 
lower the vulnerability especially in the city centres where most of the buildings have 
more than one floor.

Nevertheless, it has been included in the assessment to improve the quality of the most 
recent maps. For operational implementations, sensitivity analysis could be applied to 
decide about its inclusion, or, for example, the use of 2001 data also for earlier dates.

Analysis of results obtained in specific areas helps understanding the significance of 
the results obtained (see the zooms in Fig.  3). For example, in certain areas of the his-
torical centre of Padova, a much higher number of empty buildings and the increase in 
the memory of population, results in a consistent decrease of vulnerability. This should be 
a combined result of previous flooding (occurred in 2010 and 2012) and the effect of the 
economic crisis, pushing people to other areas, cheaper and safer. A second example can 
be taken from the San Giobbe neighbourhood of Venice (north-west of the city), and the 
improved capacity of society is driving the decrease of vulnerability, specifically by a bet-
ter dependency ratio, an increase in employment and education level and the increase of 
owned property. The last factor could be taken as an example where the knowledge of the 
local stakeholder can be important in the tailoring of the FVI, an idea that drove our design 
of the index. In fact, it is known that in cities like Venice, with a high number of students 
and tourists, there are cases of illegal renting in properties where people instead declare to 
be resident. If this is known to be a significant phenomenon, the indicator could be dropped 
or assigned to a smaller weight. A last example can be found nearby the historical centre 
of Vicenza, to the southeast, where a significant decrease of FVI is due to the increase of 
memory (the city in 2010 has been severely hit by a flood (Viero et al. 2013)), an increase 
of empty building, a smaller percentage of children and/or elderly people, better education 
and more employment. The latter may also due to smaller percentage of illegal worker, 
known to be higher in the 90s in the region.

Table  3 shows the mean values of FVI for the whole Triveneto area from 1991 to 
2016 for the three risk profiles. We can observe a continuous decrease of the FVI values 
for the three profiles with an almost identical magnitude, about 17% relative decrease 
from 1991 to 2016.

The inter-census values (i.e. 1996, 2006 and 2016) are slightly higher (2–4%) than 
their corresponding census values in case of 1996, practically identical in 2006 and 
slightly lower (−0.5 to −1.3%) in 2016. This tells us that the main driver of change is 
not due to the information derived from EO data, i.e. urban growth as proxy of newcom-
ers, imperviousness and compactness.

Compared to 1991 values, in 1996 the risk taker profile sees an increase of 2% of 
mean FVI value compared to the 4% increase of the risk averse profile. This tells us that 
the indicators derived from EO performed relatively bad and therefore were taken into 
account with a greater magnitude by the risk averse profile, suggesting a bigger impact 
of the physical development of the areas (i.e. construction of new buildings).

Table 3   Average values of the 
flood vulnerability index in the 
Triveneto region for the three 
different risk profiles analysed 
from 1991 to 2016

1991 1996 2001 2006 2011 2016

Risk averse 0.484 0.505 0.449 0.45 0.405 0.403
Balanced 0.467 0.482 0.43 0.43 0.39 0.387
Risk taker 0.45 0.459 0.411 0.41 0.375 0.37
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With each new census (i.e. 2001 and 2011), we see a decrease of FVI of about 7–8%, 
suggesting an average trend of improvement in terms of flood vulnerability.

What the EO data is telling us is how the land-use change is affecting the overall FVI 
values. In fact, all the EO-derived indicators are connected to built-up areas in the region. 
The increase of FVI from 1991 to 1996 is suggesting that the growth in built-up areas (as 
can be noticed from the built-up growth data itself) are increasing the value of vulner-
ability, assuming a constant capacity of the society (given by census data that are static). 
Vice versa, the decrease that we observe from 2011 to 2016 is suggesting that the built-up 
growth has slowed down (contributing to a smaller extent to the value of vulnerability), 
with census-based indicators considered with a greater weight in the OWA.

The improvement coming from urban growth in the last years (i.e. a slowing down in 
urban growth and therefore the relative indicators contributing less to the final value of 
FVI) is one of the reasons of a higher decrease of the FVI values in the last census update 
(i.e. 2011). Social factors are also playing an important role, by improving the capacity of 
society in coping and adapting to floods.

4.2 � FVI dynamics and territorial clusters

In order to derive synthetic information about the combinations of FVI values in the study 
area and their temporal variability, we used the ISODATA cluster analysis technique (itera-
tive self-organising data analysis technique), which is a consolidated k-clustering method 
used for identifying land classes from stacks of multiple images in RS studies (Johnson 
and Wichern 2007; Richards 2012). The map of ISODATA clusters provides a synthesis of 
multivariate spatial variability of the evolution of FVI over time (six dates of FVI) and can 
be considered as a preliminary support for the identification of a series of different zones 
characterized by relative internal homogeneity, thus requiring specific approaches in terms 
of policies and measures for managing flood risk in the area. Cluster analysis has been 
applied to the multi-temporal stack of the six final FVI maps reported in Fig. 2.

Cluster 1 identifies areas with no or very limited presence of settlements, i.e. the vast 
majority of the study area, where the FVI is very low because of limited presence of peo-
ple, such as mountain areas (Table S2 provides the average values of the FVI in each clus-
ter over time). Cluster 5 is similar to 1, and the FVI shows average values around 0.02 in 
1991, slowly increasing up to 0.03 in 2015. In practice, this cluster identifies rural areas at 
the periphery of cities. Cluster 3 and 4 are similar, showing increasing FVI over time and 
the identify areas of development of new settlements in and around the historical urban 
settlements. Cluster 3 has values increasing over time from 0.06 to 0.19, while cluster 4 
increases from 0.14 to 0.29. Cluster 6 identifies spots where the FVI has decreased over 
time. Figure  3 presents a zoom of the ISODATA map in the central area of the Veneto 
region, including the cities of Venezia, Treviso and Padova.

4.3 � Analysis of sensitivity of FVI under the effect of aggregation

In order to explore the sensitivity of the results of the FVI to the OWA algorithm 
and in particular to the ordered weight vector, three parallel calculations of the AC, 
CC, susceptibility and FVIs were performed per each date. The results discussed so 
far were obtained for the balanced profile, giving relative higher weight in the final 
aggregation to both indicators with good performances (higher values obtained with 
SAW weights) and bad ones (lower values of weighted indicators). That produced a 
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Fig. 2   Multi-temporal maps of flood vulnerability index
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U-shaped set of weights with highest weights being approximately 40% higher than 
the lowest ones, with gradual changes between the two extremes, applied on a pixel per 
pixel basis (see Figure S2). Two other cases were considered: the case of a risk taker 
(or optimistic) decision maker who is satisfied with those results in which at least a 
subset of indicators have good performances; the case instead of a decision maker who 
is risk averse (or pessimistic) and thus weights more the indicators with bad perfor-
mances. In the first case, the OWA weights were defined with a linear increase from 
bad indicators to those with best performances, thus weighting the best performing 
indicator approximately as much as twice the worst. The opposite was applied in the 
case of risk averse attitude.

For each date, “difference maps” were calculated (risk averse minus risk taker map 
values) to explore the effects of changing attitudes to risk on vulnerability mapping. 
The case of 2011 FVI is selected here to exemplify the sensitivity of results: the maxi-
mum difference value of FVI is 0.17, with an average difference of 0.0028 (the first 
map having an average FVI value of 0.034, while the second having 0.031), and a 
sample standard deviation of 0.01). In operational implementation of the proposed 
approach, these sensitiveness will be of great interest for decision makers, because they 
allow for the identification of the areas in which the inherent subjectivity of risk atti-
tudes may generate higher variability of results. Risk attitude is only one of the sources 
of uncertainty and such possibility of efficient sensitivity analyses would become very 
important for decision makers when the proposed methodology would be adopted for 
flood risk management planning and zoning.

Fig. 3   Clusters of flood vulnerability index, resulting from ISODATA analysis of the six multi-temporal 
maps
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5 � Conclusions

A method for assessing multi-temporal flood vulnerability to people has been presented 
and demonstrated in Northeast Italy. One of the novelties of the method is the pro-
posed multi-temporal combination of both census and EO data, which contributes to 
the understanding of the dynamic evolution of vulnerability over time and makes it pos-
sible to go beyond the limited time resolution of census surveys, which for Italy comes 
every ten years. EO data allows to create intermediate time steps and thus contribute to 
explore and understand, the evolution of the vulnerability.

The proposed method and the obtained results can be an important instrument for 
local stakeholders and policy makers. In particular, the proposed vulnerability index 
could be used to analyse the effect of societal evolution and past urban planning and/
or DRR, measured through the multi-temporal sequence of vulnerability maps. The 
vulnerability maps should then be combined with coherent spatial descriptions of haz-
ard and exposure to allow for comprehensive assessments of flood risk over space and 
time. Very importantly, the method could be easily adapted for analysing not only the 
past, but also future scenarios and thus contribute to assess the expected effectiveness 
of future policies or measures under consideration by policy makers. Moreover, desired 
targets in the social and/or physical domain could be defined, allowing the stakeholder 
to understand where it is more effective to invest in order to reduce the vulnerability of 
people and subsequently the risks to which they are exposed.

The current implementation of the proposed approach has an academic feature. In 
order to move towards a consolidated FVI mapping for planning purposes, a new sub-
stantial component should be added to the procedure, i.e. the involvement of relevant 
stakeholders and decision makers. Only the implementation of a sound approach for 
the identification and involvement of stakeholders would allow for the consideration of 
their preferences in terms of indicator weighting and risk attitude. As a result of the par-
ticipatory process, one should expect a multitude of parallel runs, producing subjective 
declinations of the same algorithm. The proposed approach, being fully implemented 
in a transparent and reproducible GIS macro, would thus allow for efficient treatment 
of different sources of uncertainty through the parallel execution of multitude of runs. 
Sensitivity analysis supported by statistical and data mining techniques would eventu-
ally allow to understand the possibility of adopting average results and their robust-
ness, identifying also crucial elements of sensitivity, in terms of critical indicators and 
weights, and those areas in which the subjectivity of judgements may affect the orienta-
tion of planning instruments.
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