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Abstract
We give the map representing the evolution of a qubit under the action of non-dissipative
random external fields. From this map, we construct the corresponding master equation that in
turn allows us to phenomenologically introduce population damping of the qubit system. We
then compare, in this system, the time regions where non-Markovianity is present on the basis
of different criteria for both the non-dissipative and the dissipative case. We show that the
adopted criteria agree both in the non-dissipative case and in the presence of population
damping.

(Some figures may appear in colour only in the online journal)

1. Introduction

In quantum systems, the dynamics of decoherence, and
that of quantum correlations, is qualitatively different
if the environment is Markovian (without memory) or
non-Markovian (with memory) [1–3]. For example, for
composite quantum systems independent non-Markovian
environments, entanglement may present revivals [4–6]
or trapping [7, 8], defending it against sudden death [9].
Non-Markovian systems are utilized in several physical
contexts such as quantum optics [1], solid-state physics [10],
quantum chemistry [11] and quantum information
processing [12]. It is therefore essential to establish
criteria for identifying and quantifying the non-Markovian
behavior in an open quantum system. Among the criteria,
the one introduced by Breuer–Laine–Piilo (BLP) is based
on the concept of temporary flow of information from
the environment back into the system and quantifies
non-Markovianity as an increase in the distinguishability
of two evolving quantum states [13]. A second one, due to
Rivas–Huelga–Plenio (RHP), instead measures the deviation
of the dynamical map from divisibility [14]. A third one has
also been proposed by Andersson–Cresser–Hall (ACH) that
uses the negative decoherence rates appearing in the master
equation as a primary measure to completely characterize
non-Markovianity [15]. An all-optical experiment has

recently been developed to control transitions from Markovian
to non-Markovian dynamics [16].

A natural question is then whether the different criteria
agree in identifying non-Markovian behaviors in the system
dynamics. It has been shown that, for a qubit coupled
to environments via the Jaynes–Cummings or dephasing
models, the BLP and RHP criteria have exactly the same
non-Markovian time-evolution intervals and are therefore
equivalent [17]. In an analysis performed for a driven qubit
in a structured environment it has been suggested that the
two measures may disagree [18] and successively it has been
shown for both a classical and a quantum toy model [3].
Comparisons among the three criteria, including the ACH
one, showing possible non-equivalence in realistic systems are
instead still missing.

In this paper we address this issue. In particular, our
aim is to verify, for a realistic physical system made of a
qubit subject to random external fields both with and without
dissipation, whether the BLP, RHP and ACH criteria give
concordant results in individuating the non-Markovian time
regions in the system dynamics.

2. The model

We consider a realistic system made of a qubit subject to
random external fields both in a non-dissipative and in a
dissipative case. In the following, we describe the two cases.
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2.1. Non-dissipative random external fields

Our system is a qubit interacting with an environment
composed of a classical field mode with fixed amplitude
but with random phase equal either to zero or to π with
probability p = 1/2. This model has been introduced to study
the possibility of revivals of quantum correlations in the
absence of back-action [19] and describes a special case of
a qubit subject to a phase noisy laser [20, 21]. The dynamical
map is of the random external fields type [22, 23] and, in the
qubit basis {|1〉, |2〉}, is written as [19]

3(t, 0)ρ(0) =
1

2

2∑
i=1

Ui (t)ρ(0)U †
i (t), (1)

where

Ui (t) =

(
cos(λt) e−iφi sin(λt)

−eiφi sin(λt) cos(λt)

)
, (2)

with i = 1, 2 and φ1 = 0, φ2 = π . Ui (t) = e−iHi t/h̄ is the
time-evolution operator associated with the Hamiltonian Hi =

i h̄λ(σ+e−iφi − σ−eiφi ), where σ+, σ− are the qubit raising and
lowering operators and λ is the qubit–field coupling constant
that depends on the field amplitude. The Hamiltonian Hi

is given in the interaction picture (rotating frame) at the
qubit–field resonant frequency ω.

In order to use the non-Markovianity measures
introduced above, knowledge of both the dynamical map and
the master equation is required. In our model, we directly
have the map and we also have to construct the corresponding
master equation. To obtain the master equation, starting from
the map of equation (1) we follow the procedure proposed
in [20] which gives (the details of calculations are reported in
the appendix)

dρ/dτ = Lρ(τ) = tan 2τ(σyρσy − ρ), (3)

where τ = λt is a dimensionless time. It is worth noting that
this form of master equation, associated with our system,
presents a time-dependent rate, tan(2τ), which is the same
that has been previously introduced only formally in a general
master equation to study non-Markovian behavior [13, 14].

2.2. The dissipative case

The model of random external fields described above is
non-dissipative and can be generalized to a dissipative case.
Although it is not easy to introduce a source of dissipation
directly into the map, it is simple to do it into the master
equation. We phenomenologically add population damping
with rate γ , in the standard Lindblad form with generator
γ σ− [24], into the master equation of equation (3), which now
becomes

dρ/dτ = Lρ(τ) = tan 2τ(σyρσy − ρ)

+ γ̃ (σ−ρσ+ − ρσ+σ−/2 − σ+σ−ρ/2), (4)

where γ̃ = γ /λ is a dimensionless decay rate. In the
following, we shall use the map of equation (1) and the master
equations of equations (3) and (4) to analyze whether the
different criteria individuate the same time regions when a
non-Markovian behavior occurs.

3. Comparison among the criteria in the
non-dissipative case

We shall first apply the three non-Markovianity criteria (BLP,
RHP and ACH) to the case of non-dissipative random external
fields.

3.1. The BLP criterion

The BLP criterion is based on the distinguishability of two
evolving quantum states quantified by the trace distance [13],
that is, D(ρ1(t), ρ2(t)) =

1
2‖ρ1(t) − ρ2(t)‖1, where ‖ Â‖1 ≡

Tr
√

Â† Â, ρi (t) = 3(t, 0)ρi (i = 1, 2), whose variation rate is

σ(t) = dD(ρ1(t), ρ2(t))/dt. (5)

The dynamical map 3(t, 0) is non-Markovian, according to
BLP, if there exists a pair of initial states ρ1, ρ2 such that
for some time t > 0 the distinguishability of the two states
increases, that is, σ(t) > 0. This is interpreted as a flow of
information from the environment back to the system, which
enhances the possibility of distinguishing the two states.

Let us apply this criterion to the model of non-dissipative
random external fields. Choosing two arbitrary initial states

ρ1 =

(
ω α eiϕ1

α e−iϕ1 1 − ω

)
, ρ2 =

(
µ β eiϕ2

β e−iϕ2 1 − µ

)
(6)

and substituting them into equation (5), we obtain

σ(τ) = −
√

a sin(4τ)/|b|, (7)

where a = (µ − ω)2 + (α cos ϕ1 − β cos ϕ2)
2 and

b = cos2 2τ + α sin ϕ1 − β sin ϕ2. The sign of this quantity
does not depend on the value of the parameters of the
initial states and thus permits a general comparison with
the other criteria. In particular, it is readily found that
σ(τ) > 0 (i.e. the dynamics exhibits non-Markovianity) when
π/4 + k(π/2) < τ < (k + 1)π/2, where k is a non-negative
integer number.

3.2. The RHP criterion

The RHP criterion is based on the divisibility of a dynamical
map and is independent of the system state. If the map 3(t, 0)

is divisible, it satisfies the condition 3(t+ε,0) = 3(t+ε,t)3(t,0)

(ε is a time interval) that is usually attributed to Markovian
evolution. It is possible to show that the map 3(t, 0) is
completely positive, and then divisible, if and only if (3t+ε,t ⊗

12)|8〉〈8|> 0, where |8〉 is a maximally entangled state
of two qubits (one of them is subject to the map while the
other is the isolated ancilla) and 12 is the two-dimensional
identity matrix [14]. For a qubit subject to a master equation
dρ/dt = L t (ρ), where L t is a Lindblad operator, in the limit of
ε → 0 the solution (dynamical map) of this equation formally
tends to 3t+ε,t → eL t ε . Expanding this solution up to the first
order in ε, it is possible to introduce the quantity [14]

g(t) = lim
ε→0+

‖ [14 + ε(L ⊗12)] |8〉〈8|‖1 − 1

ε
, (8)

where ‖A‖1 indicates the trace norm. It is shown that g(t) > 0
if and only if the original map 3(t, 0) is indivisible, that is,
exhibits non-Markovian behavior.
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In our case of non-dissipative random external fields, by
identifying L t with that of the master equation of equation (3),
we obtain g(τ ) = −2 tan 2τ if tan 2τ < 0 and g(τ ) = 0
otherwise. It is immediately seen that a non-Markovian
behavior (g(τ ) > 0) occurs just in the same temporal regions
individuated above by the BLP criterion, that is, π/4 +
k(π/2) < τ < (k + 1)π/2.

3.3. The ACH criterion

This criterion is based on the property of complete positivity
(divisibility) of the dynamical map deduced through the sign
of time-dependent decoherence rates that may appear in the
master equation. This criterion is also independent of the
system state. Consider a qubit governed by a master equation
in the canonical (Lindblad-type) form, in the interaction
picture [15]

dρ

dτ
=

∑
k

γk(τ )
[

Lk(τ )ρL†
k(τ )

−
1

2
L†

k(τ )Lk(τ )ρ −
1

2
ρL†

k(τ )Lk(τ )

]
, (9)

where the traceless operators Lk(τ ), time dependent in
general, describe different decoherence channels and γk(τ )

are the corresponding decay rates that can also be time
dependent. The different decay channels are orthogonal in
the sense that Tr(L†

j Lk) = δ jk . If the γk(τ ) are positive at
all times, then the time evolution is completely positive in
any time interval with a Markovian behavior. On the other
hand, if some of the γk(t) are negative, the time evolution
exhibits non-Markovian behavior that can then be naturally
characterized by the function fk(τ ) = min[γk(τ ), 0] for each
decoherence channel [15]. This criterion is conceptually
similar to the RHP one and is convenient due to its immediate
application once we have the expression of the master
equation.

In the master equation of equation (3), associated with
our model of a qubit under non-dissipative random external
fields, the only (dimensionless) decay rate is tan 2τ . Once
again we find that the time regions where non-Markovian
behavior occurs correspond to the negative values of tan 2τ .

The above results show agreement among the three
criteria in individuating time regions of non-Markovianity
considered here, in the case of non-dissipative random
external fields.

4. Comparison among the criteria in the dissipative
case

We now analyze the RHP and ACH criteria in the case of
a qubit subject to random external fields and to population
decay, whose master equation is given in equation (4). We
do not consider the BLP criterion that requires knowledge of
the qubit evolution and therefore the solutions of the master
equation of equation (4): this will be treated elsewhere.

The function g(t) of equation (8) of the RHP criterion
now becomes

g(τ ) = −γ̃ /2 − γ̃1(τ )/2 + (
√

2/4)
[
g̃+(τ ) + g̃−(τ )

]
, (10)

Figure 1. Comparison between the function g(τ ) of the RHP
criterion (blue solid line) and the function f (τ ) of the ACH criterion
(red dashed line) as a function of the dimensionless time τ , for a
dimensionless decay rate γ̃ = 3. There is non-Markovianity when
g(τ ) > 0 according to RHP and when f (τ ) < 0 according to ACH.

where

g̃±(τ ) ≡

{
γ̃ 2 + [γ̃ + γ̃1(τ )]

[
γ̃1(τ ) ±

√
γ̃ 2 + γ̃ 2

1 (τ )

]}1/2

and γ̃1(τ ) ≡ 2 tan 2τ .
To use the ACH criterion, we put the master equation of

equation (4) into the canonical form of equation (9) by using
the procedure of [15]; two orthogonal decay channels arise
with rates

γ̃±(τ ) = (γ̃ + 2 tan 2τ ±

√
γ̃ 2 + 4 tan2 2τ)/2, (11)

and corresponding operators L± =
∑

i=1,2 U (±)
i σi/

√
2, where

σi (i = 1, 2) are the usual Pauli matrices and

U (±)
1 =

i(−2 tan 2τ ±
√

γ̃ 2 + 4 tan2 2τ)√
γ̃ 2 + (2 tan 2τ ∓

√
γ̃ 2 + 4 tan2 2τ)2

,

U (±)
2 = γ̃ /

√
γ̃ 2 + (2 tan 2τ ∓

√
γ̃ 2 + 4 tan2 2τ)2. (12)

Being γ̃−(τ )6 γ̃+(τ ) at any time, the non-Markovianity
regions according to ACH are characterized only by the
function f−(τ ) = min[γ̃−(τ ), 0]. From equation (11),
the condition γ̃−(τ ) < 0 is satisfied when 4γ̃ tan 2τ < 0
(i.e. π/4 + k(π/2) < τ < (k + 1)π/2). Therefore, the
ACH criterion in the dissipative case individuates
non-Markovianity in the same time regions of the previous
non-dissipative case.

In this dissipative case, the ACH criterion evidences
non-Markovian behavior in the same time regions
individuated by the RHP criterion. This is displayed in
figure 1, where it is seen that the function g(τ ) of the RHP
criterion is greater than zero exactly when the function f (τ )

of the ACH criterion is lower than zero.
All the above results are independent of the initial state of

the system.

5. Conclusions

In this paper, we have analyzed three different criteria
(BLP, RHP and ACH) identifying non-Markovian behaviors
in a realistic system made of a qubit subject to random
external fields, both in a non-dissipative and in a dissipative
evolution. We have first exactly obtained the master equation
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corresponding to the qubit dynamical map of random external
fields. We point out that the form of the master equation,
associated with our system, contains the time-dependent rate
tan(2τ) that has been previously inserted only formally into a
general master equation to study non-Markovian behavior [13,
14]. We have then phenomenologically introduced population
damping directly in the master equation associated with the
map of random external fields.

We have found, in the non-dissipative case, that the three
criteria agree in individuating non-Markovianity time regions.
For the model of random external fields with population
decay, both the RHP and ACH criteria individuate the same
time regions of non-Markovian behavior.

The results of this paper may provide new insight into
the topic of characterizing the non-Markovianity in a realistic
open quantum system.
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Appendix. The master equation associated with the
model of non-dissipative random external fields

In this appendix, we summarize the steps to obtain the master
equation of equation (3) from the map of random external
fields of equation (1) by following the general procedure
described in [20].

The general steps are as follows. Let us apply a map
3(t, 0) to the basis operators G i = σi/

√
2 (i = 0, . . . , 3),

where σ0 = 1 and the remaining σi are the Pauli matrices, and
define a matrix F with elements Fkl ≡ Tr[Gk3(t, 0)(Gl)].
The idea is to construct a matrix Ḟ F−1 (or, more generally,
Ḟ F̃ if F is not invertible). In our case F is invertible and it is
possible to calculate the matrix R, with elements defined by

Rab =

∑
rs

(Ḟ F−1)rs tr[Grτ
†
a Gsτb], (A.1)

where τa = |α1〉〈α2|, τb = |β1〉〈β2|, with |α1〉, |α2〉 and |β1〉,
|β2〉 being the qubit basis states |1〉, |2〉. The general
expression of the master equation is then

L(ρ(τ )) = ρ̇(τ ) ≡

∑
ab

Rab(t)τaρ(t)τ †
b , (A.2)

where the operators τ are τ0 = |2〉〈2| = σ+σ−, τ1 = |1〉〈1| =

σ−σ+, τ2 = |2〉〈1| = σ+ and τ3 = |1〉〈2| = σ−, with σ± =

(σ1 ± iσ2)/2. In our case of random external fields with the
map given in equation (1), we obtain the matrix F

F =


1 0 0 0
0 cos 2τ 0 0
0 0 1 0
0 0 0 cos 2τ

 , (A.3)

from which one easily obtains the matrices F−1, Ḟ
and therefore the matrix Ḟ F−1. Choosing the basis
{|2〉〈2|, |1〉〈1|, |2〉〈1|, |1〉〈2|} and using equation (A.1), we
find the R matrix as

R =


− tan 2τ − tan 2τ 0 0

− tan 2τ − tan 2τ 0 0

0 0 tan 2τ − tan 2τ

0 0 − tan 2τ tan 2τ

 . (A.4)

Finally, using equation (A.2) we obtain the desired master
equation

dρ/dτ = tan 2τ(σyρσy − ρ). (A.5)
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