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Abstract
This study considers a set of state-of-the-art seasonal forecasting systems (ECMWF, MF, UKMO, CMCC, DWD and the cor-
responding multi-model ensemble) and quantifies their added value (if any) in predicting seasonal and monthly temperature 
and precipitation anomalies over the Mediterranean region compared to a simple forecasting method based on the ERA5 
climatology (CTRL) or the persistence of the ERA5 anomaly (PERS). This analysis considers two starting dates, May 1st 
and November 1st and the forecasts at lead times up to 6 months for each year in the period 1993–2014. Both deterministic 
and probabilistic metrics are employed to derive comprehensive information on the forecast quality in terms of association, 
reliability/resolution, discrimination, accuracy and sharpness. We find that temperature anomalies are better reproduced than 
precipitation anomalies with varying spatial patterns across different forecast systems. The Multi-Model Ensemble (MME) 
shows the best agreement in terms of anomaly correlation with ERA5 precipitation, while PERS provides the best results 
in terms of anomaly correlation with ERA5 temperature. Individual forecast systems and MME outperform CTRL in terms 
of accuracy of tercile-based forecasts up to lead time 5 months and in terms of discrimination up to lead time 2 months. All 
seasonal forecast systems also outperform elementary forecasts based on persistence in terms of accuracy and sharpness.
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1  Introduction

Seasonal forecasts of atmospheric variables like near-surface 
air temperature and precipitation are attractive for a variety 
of applications in different economic and socially relevant 
sectors, including hydropower and wind energy production 
(Torralba et al. 2017; Clark et al. 2017), management of 
water resources (Svensson et al. 2015), fire risk, agriculture, 
transports (Palin et al. 2016) and shipping, health (Lowe 
et al. 2017), and in general, hazardous weather events which 
can cause serious economic damages (Morss et al. 2008). 
In all these cases, a reliable indication of mean climate con-
ditions a few months ahead can be associated with a well 
defined economic value (Bruno Soares et al. 2018, and ref-
erences therein). Several recent and ongoing research pro-
jects explore the potential of seasonal forecasts in providing 
added value to specific applications in different economic 
sectors (Graça 2019; Hewitt et al. 2013). To this end, the 
first step is to test whether seasonal forecasts of the main 
climatic variables have some skill per-se, i.e. whether they 
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can predict the observed climate anomalies better than cli-
matology, in a specific area of study.

Previous literature findings show that seasonal climate 
prediction has progressed considerably in the last decades. 
The tropics remain the region where seasonal forecasts are 
most successful (Doblas-Reyes et al. 2013); outside this 
region, predictability is generally lower, and forecast skill 
can drop considerably. For example, seasonal predictability 
over the Mediterranean region is influenced by the North 
Atlantic Oscillation (Athanasiadis et al. 2017; Dunstone 
et al. 2016), by other teleconnections such as El Niño (Frías 
et al. 2010), by processes taking place in the stratosphere and 
by specific initialisation of soil moisture (Prodhomme et al. 
2016) and sea ice (Guemas et al. 2016). However there is 
little understanding of the incremental skill gained through 
teleconnections and which are the still missing sources of 
predictability and mechanisms responsible for low forecast 
skill (National Academies of Sciences Engineering and 
Medicine 2010). For example, Mishra et al. (2019) assessed 
temperature and precipitation ensemble seasonal forecast of 
the EUROSIP multi-model forecasting system (Stockdale 
2012) over Europe and found, on average, limited predic-
tion skills for precipitation. Sánchez-García et al. (2018) 
provided a detailed report of different probabilistic scores 
for temperature and precipitation forecasts over different 
European regions, comparing previous generation forecast 
systems and finding higher scores for temperature rather 
than for precipitation. A more recent paper by Johnson 
et al. (2019) provided a worldwide analysis of the skill of 
ECMWF System 5 with respect to System 4, mainly focus-
ing on the spatial distribution of the continuous rank prob-
ability score and of the anomaly correlation at the global 
scale. They report a decrease in the skill of the SST forecast 
in the Northwest Atlantic, which may impact the prediction 
of the North Atlantic Oscillation. While the prediction of 
ENSO is quite good, issues in the lower stratosphere and at 
the tropopause are also reported, which could influence the 
ability to extend forecast skill to the extra-tropics. Dunstone 
et al. (2016) and Scaife et al. (2014) focused their work on 
the predictability of the North Atlantic Oscillation, which 
profoundly influences North American and European winter 
climate, finding the UKMO and the HadGEM3-GC2 models 
to have skill in NAO prediction up to the following season.

Other interesting results come from research projects 
aiming at bridging the gap between research and appli-
cations and exploring the potential of seasonal forecasts: 
DEMETER (Palmer et al. 2004) pointed at developing a 
well-validated European coupled multi-model ensemble 
forecast system for reliable seasonal to interannual predic-
tions; ENSEMBLES (van der Linden and Mitchell 2009) 
focused on the assessment of climate model uncertainties; 
EUPORIAS (Hewitt et al. 2013) and MEDGOLD (Graça 
2019) developed working prototypes of climate services 

addressing the need of specific users, with the latter being 
focused on sustainable agriculture and food systems. An 
additional recent project, ERA4CS MEDSCOPE, of which 
this work is a part (https://​www.​medsc​ope-​proje​ct.​eu/), 
focuses on the evaluation of the seasonal climate predict-
ability over the Mediterranean region and the exploitation 
of seasonal forecasts for the development of climate services 
for different economic sectors.

Given their probabilistic nature, seasonal forecasts 
describe a range of possible evolutions of climate and 
require appropriate ensemble verification tools to assess 
their quality. Many different metrics have been developed 
(Vannitsem et al. 2018; Jolliffe and Stephenson 2011; Wilks 
2011), each of which addresses a different characteristic of 
the forecast, i.e. reliability, resolution, ability to discriminate 
events and non-events, ability to reproduce a meaningful 
ensemble, among others. Standard scoring metrics of proba-
bilistic forecasts are affected by (i) improper estimates of 
probabilities from small-sized ensembles, (ii) an insufficient 
number of forecast cases, and (iii) imperfect reference values 
due to uncertainties in observation and reanalysis data (Dob-
las-Reyes et al. 2003). These issues can be partly alleviated 
using a suitably large area, the longest available hindcast 
period and different scoring rules for evaluating the features 
of a probabilistic forecast from different perspectives (as also 
suggested by, i.e.,WMO 2018; Wilks 2011; Murphy 1993).

In this paper we focus on the Mediterranean region, an 
area of transition representative of the mid-latitudes, where 
seasonal forecasts are challenging and where accurate inves-
tigation of the skills and limits of the current seasonal fore-
cast systems is crucial to improve models. Moreover the 
Mediterranean is well known as a hotspot area for climate 
change, where enhanced warming is expected to impact food 
security, water availability and ecosystems (Cramer et al. 
2020). In this context reliable seasonal predictions are essen-
tial to provide early warning on extreme seasons and to ena-
ble decision-makers to take actions that reduce the impacts. 
With this analysis we aim to: (i) provide an assessment of 
the skill of current state-of-the-art seasonal forecast systems 
at predicting temperature and precipitation anomalies over 
the Mediterranean region, focusing on the winter and sum-
mer seasons which are relevant for many applications in the 
energy sector, water management, agriculture and Alpine 
ski sector; (ii) evaluate the evolution in time of the forecast 
skill at the monthly resolution, to identify the maximum 
lead time at which the forecast can still be considered useful; 
(iii) provide both model developers and stakeholders with 
detailed information on the skill and limitations of the cur-
rent seasonal forecast models over the Mediterranean region, 
to be used as a guidance for improving forecast systems and 
making the best use of their outputs in practical applications.

We consider the seasonal forecast systems available 
in the Copernicus Climate Data Store (C3S) archive, and 
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we perform a multi-model assessment of the skill of near-
surface air temperature and precipitation forecasts over the 
Mediterranean domain, evaluating a selection of representa-
tive skill scores, each of which can test a different feature 
of the forecast ensemble. The skill of the forecast systems 
is quantified with respect to a simple forecasting method 
based on climatology, and the added value of the forecast 
systems is assessed at different lead times. In addition to 
the analysis of individual forecast systems, we evaluate the 
Multi-Model Ensemble (MME) stacking together all the 
members (equally-weighted) of all forecast systems. Com-
pared to previous studies (Mishra et al. 2019), this analysis 
at a monthly scale allows to look with a finer temporal detail 
at the differences among the forecast systems, and sets the 
basis to narrow the effort in searching for different sources 
of predictability through the individuation of the time scale 
at which seasonal forecasts become drastically less skilful 
(Board et al. 2016). We also assess the impact of the ensem-
ble size and of temporal averaging on the forecast system 
performances. Linking the performances of the seasonal 
forecast systems to their modelling schemes requires a deep 
knowledge of individual forecast systems and is out of the 
scope of the paper.

The paper is structured as follows: Sect.  2 briefly 
describes the seasonal forecast systems, the two simple 
forecasting methods based on climatology and persistence, 
and the reference data used in this study; Sect. 3 presents the 
different skill scores used and which questions they address; 
Sect. 4 shows the results of the evaluation of temperature 
and precipitation anomaly forecasts; Sections 5 and 6 dis-
cuss the results and draw the conclusions.

2 � Data

2.1 � Model datasets

The present analysis considers five seasonal forecast sys-
tems available in the C3S archive (retrieved on October 
18th, 2018) which provide near-surface air temperature 
and precipitation data at monthly temporal resolution and 
at 1 ◦ by 1◦ spatial resolution: European Centre for Medium-
range Weather Forecast System 5 (ECMWF), Météo France 
System 6 (MF), UK Met Office GloSea5-GC2 (UKMO), 
Centro Euro-Mediterraneo sui Cambiamenti Climatici SPS3 
(CMCC) and Deutscher Wetterdienst GCFS 2.0 (DWD); 
please refer to Table 1 for the model details. For all forecast 
systems, we consider all available hindcasts initialised on 
May 1st and November 1st, and issued for the 6 months 
ahead. We indicate as lead time 0 the month in which the 
forecast is initialized (May or November). Lead time 1 is 
the 1st month after the initialization (June or December), and 
so on. When dealing with seasonal anomalies, we never use 
the term “lead time” as it would be confusing: DJF and JJA 
seasonal anomalies are calculated considering the monthly 
values from the forecasts initialized in November and May, 
respectively. We analyse the longest period common to all 
systems, i.e. 22 years from 1993 to 2014.

In addition, we also consider blended forecast systems 
and simpler approaches defined as follows:

–	 The multi-model ensemble (MME) including all the 
available ensemble members of the seasonal forecast 
systems cited above (148) transformed into anomalies 
with respect to each model’s climatology

–	 The multi-model ensemble small (MMES), similar to 
MME but including only five ensemble members for each 
seasonal forecast system randomly chosen among all the 
available members (25 ensemble members in total)

Table 1   Seasonal forecast 
systems and simpler approaches 
considered in this study

Acronym Prediction system Institution Ens. size References

ECMWF SEAS5 European Centre for 
Medium-Range 
Weather Forecasts

25 Johnson et al. (2019)

MF System 6 Météo-France 25 Dorel et al. (2017)
UKMO GloSea5-GC2 UK Met Office 28 Maclachlan et al. (2015)
CMCC CMCC-SPS3 Centro Euro-Mediterra-

neo sui Cambiamenti 
Climatici

40 Sanna (2017)

DWD GCFS 2.0 Deutscher Wetterdienst 30 Fröhlich et al. (2020)
MME Multi-Model Ensemble – 148 Section 2.1
MMES Multi-Model Ensemble Small – 25 Section 2.1
PERS Persistence – 30 Section 2.1
CTRL Control – 21 Section 2.1
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–	 A persistence forecast (PERS) generated from the ERA5 
anomaly at lead time 0: the forecast for each following 
month is the ERA5 anomaly at lead time 0, to which we 
applied a Gaussian anomaly kernel-dressing to obtain an 
ensemble forecast (Smith et al. 2015). The kernel dress-
ing is performed for each starting date, lead time and 
grid point by estimating a Gaussian distribution using 
2 parameters: (1) the mean, represented by the deter-
ministic persistence forecast (the ERA5 anomaly at lead 
time 0), and (2) the standard deviation, represented by 
the root mean square of the residuals of the determin-
istic persistence forecast (difference between the ERA5 
anomalies at that lead time and the ERA5 anomalies at 
lead time 0) calculated over the remaining 21 starting 
dates following an out-of-sample approach. From the 
resulting distribution 30 values are randomly selected 
to generate the ensemble. We verified that the use of a 
Gaussian distribution for generating the PERS ensemble 
forecasts is adequate for both temperature and precipita-
tion by performing a Kolmogorov-Smirnov test on the 
residuals. The residuals follow a Gaussian distribution 
for both temperature and precipitation

–	 A climatological control forecast (CTRL) generated 
from the ERA5 anomalies by choosing, for each starting 
date and lead time, all the historical ERA5 values except 
for the one corresponding to that date, in order to form 
an ensemble of 21 members (1 less than the number of 
forecasts). This simple forecast, based on the observed 
climatology, is also employed as the reference forecast 
for the evaluation of the skill scores (see Sect. 3)

We consider and analyse all these datasets at monthly scale.

2.2 � Reference dataset

To evaluate the seasonal forecast systems and simpler 
approaches described in Sect. 2.1, we employ the ERA5 
reanalysis (Hersbach et al. 2020) as a reference dataset. 
ERA5 2-m air temperature and total precipitation data 
at 0.25◦ spatial resolution and monthly temporal resolu-
tion have been downloaded from the Copernicus Climate 
Data Store archive and upscaled to match the grid of the 

seasonal forecast systems at 1 ◦ resolution. The upscaling 
has been performed with a first-order conservative remap-
ping using the Climate Data Operator command line tools 
(Schulzweida 2019). In order to compare forecast and 
reanalysis data, temperature and precipitation fields are 
considered in ◦ C and mm/day, respectively.

2.3 � Domain of study

We focus on the Mediterranean area as the domain of 
study (11◦W–37◦ E; 31◦N–52◦N). Seasonal forecast fields 
include 22 gridpoints in latitude by 49 gridpoints in lon-
gitude, each representing an area of 1 ◦ by 1◦.

3 � Forecast verification methods

Probabilistic forecasts can be evaluated considering their 
quality, i.e the correspondence between the forecasts and 
the matching observations, and/or their value, i.e. the 
incremental economic value and/or other benefits real-
ised by decision-makers through the use of the forecast 
(Murphy 1993). This study will focus on the “quality” 
aspect. An assessment of the “value” is fundamental but 
also specific for many sectorial applications and we leave 
it outside the scope of our analysis.

Table 2 summarises the scores used in this paper to 
assess the quality of the forecast. Each score is an attempt 
to measure one or more “attributes” of the forecast quality, 
following Murphy (1993).

The overall analysis is conducted considering for each 
forecast system and for simpler approaches monthly anom-
alies of air temperature and precipitation. Temperature and 
precipitation anomalies are calculated as the difference 
between a forecast and the corresponding model climatol-
ogy. In order to remove the effects of temporal trends on 
the forecast skill, detrended anomalies are employed. For 
each forecast system, ensemble member, lead time and 
gridpoint, the anomalies are detrended by removing a lin-
ear function of time, obtained by least-squares regression 
of the model ensemble mean over time.

Table 2   List of metrics 
considered in this study with the 
target features addressed and the 
main references

Score Attribute References

ACC​ Association Jolliffe and Stephenson (2011), Wilks (2011)
RKH Ensemble quality Hamill and Colucci (1997), Anderson (1996)
BS Resolution, reliability, accuracy Wilks (2011), Mason (2004)
AUC​ Discrimination Jolliffe and Stephenson (2011)
CRPS Accuracy, sharpness Hersbach (2000)
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3.1 � Anomaly correlation coefficient (association)

The anomaly correlation coefficient (ACC) describes the 
strength of the linear relationship between forecast and 
observed anomalies (also referred to as association). It 
is widely exploited in seasonal forecast verification and 
is the only deterministic score considered in this paper. 
Here it is intended as the Pearson correlation computed 
in time between the ensemble mean forecast anomalies 
and the ERA5 reference anomalies at each point of the 
domain, for the winter and the summer seasons. ACC 
ranges between −1 and 1. ACC is not sensitive to bias, so 
it does not guarantee accuracy. The confidence interval is 
computed by a Fisher transformation and the significance 
level relies on a one-sided student-T distribution. Signifi-
cance is assessed at 95% confidence level.

3.2 � Rank histograms (ensemble quality)

Rank histograms (RH, Hamill and Colucci 1997; Ander-
son 1996) measure the ensemble quality, and, in detail, 
whether the probability distribution of observations is 
well represented by the ensemble. Rank histograms show 
the frequency of the rank of the observed value relative 
to values from the ensemble forecast, sorted in increasing 
order. If the forecast distribution reliably reproduces the 
distribution of possible outcomes, then the observed value 
should be a random draw from this same distribution, 
and it should occur in each of the bins an equal number 
of times (Hamill 2002). Therefore, the proportion of the 
total number of observations in each bin should follow a 
uniform distribution (Troccoli et al. 2008), and the per-
fect RH should be flat, with each bin assuming the same 
value. U-shaped and reversed U-shaped distribution sug-
gest a too narrow ensemble spread (underdispersion) and 
too wide ensemble spread (overdispersion), respectively. 
An asymmetric shape means that the ensemble under- or 
overestimates the reference value. RHs are normalised 
with respect to the perfect value 1∕(n + 1) , where n is the 
number of ranks that is equal the number of ensemble 
members) for the sake of comparison among different 
forecast systems. RHs give information on the ensemble 
quality, highlighting possible issues of over- or under-
dispersion and biases. RHs do not indicate skillful or 
sharp forecasts, in fact climatological forecasts show flat 
rank histograms (by definition) but they are not useful. 
For this reason, RHs have to be used in combination with 
other metrics for a comprehensive skill assessment. In 
our analysis, to summarise information over the different 
lead times, RHs are presented in the form of heatmaps as 
a function of rank and lead time.

3.3 � Brier score (accuracy, reliability, resolution, 
uncertainty)

The Brier score (BS) is a strictly proper scoring rule for fore-
cast verification, and it represents the mean square error of 
the probability forecast for a binary event, for example rain/
no rain (Wilks 2011; Mason 2004, and references therein). 
It is a measure of the overall accuracy of the forecast, that 
is the average correspondence between individual forecasts 
and the observations (Wilks 2011). It can be partitioned 
into three components: (i) reliability, i.e. the extent to which 
forecast probabilities match the observed relative frequen-
cies and the associated error is small, (ii) resolution, i.e. the 
degree to which a forecast can separate different outcomes 
(a forecast based on climatology has no resolution), (iii) the 
uncertainty, i.e. the degree of variability in the observations, 
which is independent of the forecast (Hersbach 2000).

A common way to display seasonal predictions is by 
means of tercile-based forecasts, showing the probabilities 
to have anomalies in the lower, middle or upper tercile of 
the distribution (WMO 2018). In our analysis we transform 
continuous forecasts into tercile-based forecasts and then we 
test their overall accuracy using the original definition of the 
Brier Score for multi-category forecasts (Brier 1950, eq. 2). 
This scalar is a measure of accuracy and it is calculated for 
each model, lead time and grid point.

3.4 � Area under the ROC curve (discrimination)

The area under the receiver operating characteristic (ROC) 
curve, abbreviated as AUC (Jolliffe and Stephenson 2011), 
allows to evaluate binary forecasts, similarly to the Brier 
Score.

The AUC measures the discrimination, i.e. the ability of 
the forecast to discriminate between events and non-events. 
If forecast probabilities issued when an event occurs tend to 
be higher than those issued when such event does not occur, 
the probability forecasts have discrimination (Bradley and 
Schwartz 2011; Bradley et al. 2019). AUC is not sensitive 
to bias, so it does not provide information on the forecast 
reliability. A biased forecast may still have good discrimi-
nation and produce a good ROC curve, which means that it 
may be possible to improve the forecast through calibration. 
The ROC can thus be considered as a measure of potential 
usefulness.

Given an ensemble forecast for a binary event, for exam-
ple temperature anomaly in the upper tercile, the ROC curve 
shows the hit-rate (HR) against the false-alarm rate (FAR) 
for different probability thresholds. The Area Under the 
ROC Curve (AUC) resulting from the display of the pairs of 
HR and FAR for different thresholds is calculated separately 
for each tercile and then averaged over the three terciles.
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3.5 � Continuous ranked probability score (accuracy, 
sharpness)

The continuous ranked probability score (CRPS) is a 
measure of the overall accuracy of the ensemble forecast 
(Bradley et al. 2019). It indirectly measures also the sharp-
ness of the forecast, in that among several accurate fore-
casts it rewards those with smallest ensemble spread. The 
CRPS is defined as the difference between the cumulative 
distribution function (CDF) of a forecast and the respec-
tive observation, the latter being represented by a Heavi-
side step function. When the CDF of the forecasts well 
approximates the step function, it produces relatively small 
integrated squared differences, resulting in good CRPS 
score. Brier score and CRPS are complementary measures: 
the former provides information on the accuracy of tercile-
based forecasts, the latter evaluates the overall accuracy 
and sharpness of the forecast distribution, considering 
the entire permissible range of values for the considered 
variable. A drawback of the CRPS is that an increasing 
ensemble size inflates it (Ferro 2014; Ferro et al. 2008). 
Therefore the Fair CRPS (FCRPS), a modified version of 
the CRPS addressing this issue, is implemented and con-
sidered in this study.

3.6 � Skill scores

In this study, unless expressly noted otherwise, the scores 
are presented as skill scores (SS). The skill scores directly 
indicate the skill of the forecast with respect to the clima-
tological forecast (CTRL, see Sect. 2.1 for details). Values 
of the skill scores generally range between negative (per-
formances worse than climatological forecast) and positive 
values (improvements with respect to the climatological 
forecast). A value of 1 indicates perfect forecasts while null 
values indicate no improvements with respect to the clima-
tological forecast. The choice of using the climatology as 
a benchmark is widely diffused, but persistence could be 
another possibility (not explored in this study).

BS and FCRPS are calculated for each starting date, lead 
time and grid point, then averaged over all starting dates and 
converted into skill scores as follows:

where SS is the value of the skill score, S is the value of 
the score of the forecast against the observations, Sref  is the 
value of the score of the climatological forecast against the 
observations and Sperf  is the value of the score in the theo-
retical case that forecasts perfectly match observations. The 
score of the climatological forecast Sref  is calculated using 

(1)SS =
S − Sref

Sperf − Sref
,

the CTRL approach (Sect. 2.1). We will call the resulting 
skill scores BSS and FCRPSS respectively in the following.

The AUC Skill Score (AUCSS), instead, is derived using 
the following formula (Wilks 2011, Equation 8.46):

The spatial variability of the BSS, FCRPSS and AUCSS as 
a function of the lead time is presented in the form of maps 
and summarised by means of boxplots, where for each box, 
the lower hinge, the median, and the upper hinge correspond 
to the first, second, and third quartiles of the distribution, 
respectively, while the lower and upper whiskers extend 
from the bottom and the top of the box up to the furthest 
datum within 1.5 times the interquartile range. If there are 
any data beyond that distance, they are represented individu-
ally as points.

All the analyses are performed in R v3.6.3 (R Core Team 
2019) using the following packages: s2dverification v2.9.0 
(Manubens et al. 2018), easyVerification v0.4.4 (Bhend et al. 
2017), SpecsVerification v0.5-3 (Siegert 2020) and verifi-
cation v1.42 (NCAR - Research Applications Laboratory 
2015).

4 � Results

In this Section, we present the results obtained for the dif-
ferent skill scores defined in Sect. 3. The skill scores are 
calculated with respect to the reference forecast based on 
the climatology (CTRL) and using ERA5 as reference for 
the observed climate. Anomaly correlation coefficients are 
obtained from seasonal anomalies, while the other scores are 
calculated on a monthly basis (Sect. 3).

4.1 � Anomaly correlation

4.1.1 � Winter

For each forecast system considered in this study Fig. 1 
shows the time correlations of the ensemble mean tem-
perature anomaly forecasts with respect to ERA5 for the 
winter season. Figure 2 shows the same plots but for pre-
cipitation. They have been derived using forecasts initialised 
on November 1st and averaging over the December–Janu-
ary–February period, i.e. lead times 1–3. All models show 
significant temperature correlation patterns in the Western 
Mediterranean and off the Atlantic coast. Most models also 
show a significant correlation pattern over North Africa, 
except for the ECMWF model. UKMO shows widespread 
and significant temperature anomaly correlation over central 
Europe (Northern Italy, France and Germany), including the 
Alpine region. Large and significant correlations are often 
found over the sea. Since sea-surface temperature (SST) 

(2)AUCSS = 2 ⋅ AUC − 1.
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affects the overlying air temperature, the slower variabil-
ity of sea-surface temperature with respect to land-surface 
temperature is likely to improve air temperature predict-
ability over the sea. The slow variability of air tempera-
ture anomalies over the few months following the forecast 
initialisation date is supported by the high and significant 
correlation obtained when forecasts are based on persistence 
(PERS) (Fig. 1f). Indeed, the forecasts based on persistence 
outperform those provided by the seasonal forecast systems 
in terms of anomaly correlation. 

Anomaly correlations of winter precipitation with 
respect to ERA5 are patchier compared to those found for 

temperature (Fig. 2). A common feature among all fore-
cast systems and the two Multi-Models Ensembles (MME, 
MMES) is the relatively high and significant anomaly cor-
relation over the Iberian Peninsula and the Eastern Medi-
terranean. Most of them (MF, CMCC, UKMO, MME and 
MMES) show high and significant correlations also over 
the Alpine mountain range. ECMWF shows poor corre-
lation with observations over the Central Mediterranean. 
Winter precipitation forecasts based on persistence (PERS) 
show no significant correlation with ERA5 except for few 
gridpoints over the Iberian peninsula/Atlantic coast and 
North Africa/Central Mediterranean.

Fig. 1   Anomaly correlation coefficients of winter (DJF) near-surface 
air temperature forecasts with respect to ERA5, for all the forecast 
systems and simpler approaches listed in Table 1. Significant correla-
tions (95% confidence level) are indicated by stippling. Forecasts are 

initialised on November 1st and refer to the hindcast period 1993–
2014. The  ACC map for CTRL is omitted since it provides trivial 
information
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4.1.2 � Summer

Similarly to Fig. 1, Fig. 3 shows the correlation between 
air temperature anomaly forecasts and ERA5 for each 
model, but for the summer season, i.e. using forecasts ini-
tialised on May 1st and averaging monthly values over the 
June–July–August period, respectively lead time 1–3. Fig-
ure 4 shows the same plots but for precipitation.

All models show high and significant summer tempera-
ture anomaly correlations over the Eastern Mediterranean 
and Eastern Europe, and most of them also over the Iberian 
peninsula and North Africa. The best performing model in 
terms of summer temperature ACC is CMCC, which shows 
high and significant correlations over most of the domain. 
The persistence forecast (PERS) produces significant and 
widespread correlations over most of the Mediterranean 
domain, outperforming many forecast systems.

Correlations of summer precipitation anomalies (Fig. 4) 
are more patchy, nonetheless significant over some parts the 
Mediterranean region. All models show significant positive 
correlation over the Iberian peninsula, however this area 
receives scarce precipitation in summer and correlations 
based on very low precipitation values should be considered 
with caution. Some models show also significant positive 
correlation over Eastern Europe and the Black Sea coast. 
Significant correlations over these areas are also present in 
the MME and MMES, which outperform many individual 
models. Forecasts based on persistence (PERS) provide 
significant correlations at fewer gridpoints compared to the 
MME.

In conclusion, temperature anomaly forecasts based on 
persistence (PERS) have a high and significant correlation 
with ERA5 over most of the Mediterranean area in both win-
ter and summer, outperforming individual seasonal forecast 

Fig. 2   The same as Fig. 1 but for DJF precipitation
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systems and the multi-model means. Compared to tempera-
ture, precipitation anomaly forecasts based on persistence 
(PERS) show lower correlations over most of the domain. 
By contrast, precipitation forecasts obtained with the multi-
model mean (MME) show areas with significant correlation 
with observations, outperforming many individual forecast 
systems.

4.2 � Rank histograms

Rank histograms for winter and summer temperature anom-
aly forecasts are reported in Fig. 5 panels a and b, respec-
tively. For winter temperature anomalies, most models for 
most lead times show flat rank histograms, similarly to the 

case of a perfect forecast. The ensemble quality seems to be 
more a characteristic of a given model rather than a time-
dependent feature (see, for example, ECMWF, MF and 
UKMO). Few are the exceptions: DWD and, to a smaller 
extent, CMCC show a U-shaped pattern at lead time 0, sug-
gesting a too small ensemble spread at the beginning of the 
forecast. For summer temperature anomalies, CMCC and, 
to a smaller extent, UKMO, MME and MMES at lead times 
0 and 1, show a reverse U-shaped pattern, indicating a too 
large ensemble spread and too large interannual variability.

RHs for winter precipitation anomalies are generally flat 
(Fig. 6a), except for CMCC and ECMWF, which present 
a peak at rank zero indicating that observed anomalies are 
more often lower than the forecast anomalies.

Fig. 3   Anomaly correlation coefficients of summer (JJA) near-surface 
air temperature forecasts with respect to ERA5, for all the forecast 
systems and simpler approaches listed in Table 1. Significant corre-
lations (95% confidence level) are indicated by stippling. Forecasts 

are initialised on May 1st and refer to the hindcast period 1993–2014. 
The ACC map for CTRL is omitted since it provides trivial informa-
tion
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For summer precipitation anomalies (Fig. 6b), DWD, 
CMCC and to a lesser extent UKMO, show a U-shaped 
RH, indicating that the ensemble is underdispersive. These 
models generally underestimate the interannual variability 
of precipitation anomalies and the intensity of summer 
precipitation extremes (both dry and wet). On the other 
hand, ECMWF, MF, MME and MMES share an asym-
metric pattern indicating that the observed anomalies are 
often lower than forecast anomalies: these models tend 
to overestimate the observed precipitation anomalies, and 
thus the amount of summer precipitation.

Overall, the MME and MMES ensembles show the best 
agreement with the observations, despite an overestima-
tion of summer precipitation anomalies and a slight ten-
dency towards overdispersion at lead times 0 and 1 for 
summer temperature.

For all seasons and variables, DWD has a strongly 
U-shaped histogram at lead time 0, suggesting a systematic 
underdispersion of the model ensemble at the beginning 
of the forecasting period.

Forecasts based on the climatology (CTRL, not shown) 
are by construction well calibrated for all variables and 
seasons. In fact, the CTRL ensemble forecast is made 
using ERA5 climatological values, and the outcome is a 
random value from the ensemble forecast. Forecasts based 
on persistence (PERS) are also well calibrated: this seems 
to suggest that an ensemble forecast built on the ERA5 
anomaly at lead time 0 following the method described 
in Sect. 2.1 is well balanced compared to the observed 
anomalies at longer lead times.

Fig. 4   The same as Fig. 3 but for JJA precipitation. Forecasts are initialised on May 1st
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4.3 � Brier skill score

Figure 7 summarises the Brier skill score statistics for tem-
perature and precipitation anomaly forecasts for each model, 
season and lead time. We recall that positive BSS values 
indicate an improvement of the forecast system with respect 
to the climatological forecast (CTRL). The boxplots show 
the statistics of the distribution of the BSS values over the 

Mediterranean domain, so they are representative of the 
spatial variability of the skill score. For almost any fore-
cast system, variable, season and lead time, positive BSS 
values are found in 75% up to 100% of the gridpoints. This 
percentage is lower, however above 50% , only for DWD at 
lead time 0, for which we have already presented an issue 
of underdispersion of the model ensemble for any variable 
and season (Sect. 4.2). Overall, all forecast systems show a 

Fig. 5   Rank histograms as a function of lead time for temperature 
anomaly forecasts for each model and for November 1st (a) and May 
1st (b) starting dates. The color indicates the normalized frequency 

of the rank of observations with respect to the ensemble. The forecast 
based on persistence (PERS) is not available at lead time 0, and it is 
reported in grey. CTRL is not shown
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clear added value compared to the climatological forecast in 
terms of forecast error.

Generally, seasonal forecast systems have their highest 
BSS at lead time 0, then they show lower but stable values 
for longer lead times. The multi-model ensembles (MME 
and MMES) show comparable or higher median BSS with 
respect to individual models for each variable and lead time. 
In addition, MME has a smaller spread compared to any 
other forecast system, and positive BSS values are found 

for almost 100% of the gridpoints of the domain. MME 
shows a clear improvement with respect to the climatologi-
cal forecasts in almost any point of the domain and for both 
temperature and precipitation. Temperature forecasts based 
on persistence (PERS) have progressively lower BSS, thus 
larger errors, at longer lead times. The median BSS for 
PERS temperature forecasts is positive at lead time 1 and 
close to zero or negative at longer lead times. The median 
BSS for PERS precipitation forecasts is negative for any 

Fig. 6   The same as Fig. 5 but for precipitation
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Fig. 7   Brier skill score of win-
ter (a) and summer (b) tempera-
ture, winter (c) and summer (d) 
precipitation anomaly forecasts, 
for all models and lead times. 
The boxplots summarise the 
statistics of the distribution of 
the BSS over the Mediterranean 
domain

Fig. 8   Spatial pattern of the BSS for the Multi-Model Ensemble (MME) temperature anomalies forecasts for starting date November 1st and 
lead times 0–5
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starting date and lead time, indicating that for most of the 
domain, the forecasts based on persistence are less reliable 
and with lower resolution than the climatological forecasts.

The spatial patterns of the BSS for the MME temperature 
anomalies forecasts initialised on November 1st for the 6 
months ahead are shown in Fig. 8. The BSS is positive over 
all the domain at all lead times, confirming an added value 
of the MME forecast with respect to the CTRL forecast. At 
lead time 0 the MME approach shows positive BSS values, 
especially over the Southern and Eastern Mediterranean Sea 
and the Atlantic Ocean. At longer lead times, BSS is still 
positive with a more homogeneous pattern, indicating that 
the forecast error is slightly variable over the domain.

4.4 � Area under the ROC curve skill score

The AUC skill score (AUCSS) quantifies the forecast 
discrimination, i.e. the ability of the forecast to discrimi-
nate between events and non-events, in our case to predict 
whether of not anomalies will fall in a given tercile. AUCSS 
statistics for each model, variable, season and lead time, 
averaged over the three terciles, are reported in Fig. 9 and 
the spatial pattern of MME at different lead times is depicted 
in Fig. 10.

Figure 9 shows that positive AUCSS values are obtained 
at lead time 0 for 75–100% of the domain for each variable, 

each season and for almost all models (except for MF, for 
which this percentage is slightly lower). At longer lead times 
the median AUCSS decreases: it remains positive or close to 
zero up to lead time 2, and it is generally higher for tempera-
ture than for precipitation. From lead time 3 models show 
both positive and negative median AUCSS values depending 
on the season, variable and lead time. Compared to BSS, 
AUCSS shows larger variability among different models and 
lead times.

Temperature forecasts based on persistence (PERS) pro-
vide comparable or slightly better scores than individual 
models up to lead time 3. In winter overall best results are 
obtained with the persistence model over Western Europe/
Western Mediterranean and, to a lesser extent, over the East-
ern Mediterranean (positive values up to lead time 2, not 
shown). Precipitation forecasts based on persistence have 
median AUCSS comparable to 0 at all lead times, for both 
winter and summer, revealing no added value with respect 
to the climatological forecast.

Compared to the BSS, the AUCSS of the seasonal fore-
cast systems shows limited improvement with respect to the 
simple climatological forecasts. However, the skill is neither 
uniform in space nor over the three terciles, with higher val-
ues for the lower/upper terciles than for the middle tercile. 
As an example, we report the spatial pattern of AUCSS for 
temperature anomaly forecasts based on the MME, start date 

Fig. 9   Area under the ROC 
curve skill score (AUCSS) of 
winter (a) and summer (b) tem-
perature, winter (c) and summer 
(d) precipitation anomaly fore-
casts, for all models and lead 
times. The boxplots summarise 
the statistics of the distribution 
of the AUCSS over the Mediter-
ranean domain
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November 1st, lead time 0, for the three terciles (Fig. 11). 
While for the middle tercile the mean AUCSS over the 
domain is 0.10, for the lower and upper terciles it reaches 
values of 0.41 and 0.44 respectively. When the AUCSS is 
averaged over the lower and upper terciles only, the median 
AUCSS over the domain slightly increases, especially for 
temperature, but also in this case the added value of the 
forecasts compared to the climatological forecast is visible 
up to lead time 2.

This analysis shows that seasonal forecasts provide a clear 
improvement with respect to the climatological forecast in 
terms of discrimination at lead time 0 and limited improve-
ments up to lead time 2.

4.5 � Fair continuous ranked probability skill score

The analysis of the FCRPSS is used to evaluate the overall 
accuracy and sharpness of the forecast. The forecast systems 
considered in this study show similar FCRPSS evolution 
for both temperature and precipitation and slight differences 
depending on the season (Figs. 12, 13).

At lead time 0 the median FCRPSS is generally positive, 
except for DWD for which we have already discussed low 
skill in terms of RH and BSS at the beginning of the forecast 
period. So, apart from this model, forecast systems gener-
ally have higher accuracy compared to the climatological 
forecast at lead time zero. At longer lead times the median 

Fig. 10   Spatial pattern of the AUCSS for the multi-model ensemble (MME) temperature anomalies forecasts for the starting date November 1st 
and lead times 0–5

Fig. 11   AUCSS maps for MME temperature anomaly forecasts at lead time 0, starting date November 1st and for the three terciles: below nor-
mal (a), near normal (b), above normal (c)
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Fig. 12   Fair continuous 
ranked probability skill score 
(FCRPSS) of winter (a) and 
summer (b) temperature, winter 
(c) and summer (d) precipita-
tion anomaly forecasts, for all 
models and lead times. The box-
plots summarise the statistics of 
the distribution of the FCRPSS 
over the Mediterranean domain

Fig. 13   Spatial pattern of the FCRPSS for the multi-model ensemble (MME) temperature anomalies forecasts for starting date November 1st and 
lead times 0–5
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FCRPSS is generally positive up to lead time 2 in winter and 
close to zero with both positive and negative values in sum-
mer. In particular, the analysis of FCRPSS confirms some 
limitations of the forecast systems in predicting the correct 
distribution of summer precipitation anomalies, as already 
highlighted in Sect. 4.2 after the analysis of rank histograms.

The multi-model ensembles (MME and MMES) median 
FCRPSS show slightly better performances than the forecast 
systems in winter, with positive values up to lead time 4, 
and comparable performances in summer. The persistence 
forecast (PERS) show negative scores, decreasing in time, 
for both the median and the 75% percentile FCRPSS, indicat-
ing remarkably lower skill than individual seasonal forecast 
systems and MME over most ( > 75% ) of the domain. This 
analysis reveals that forecast systems outperform simple 
forecasts based on persistence at all lead times in terms of 
accuracy and sharpness.

5 � Discussion

The present study provides an overall assessment of the skill 
of five state-of-the-art seasonal forecast systems at forecast-
ing monthly temperature and precipitation anomalies over 
the Mediterranean region at different lead times. The main 
question which we addressed in this study is whether the 
most advanced seasonal forecast systems, or multi-model 
ensembles based on them, outperform elementary forecast 
approaches: (i) a climatological forecast (CTRL), which has 
been set as the benchmark; (ii) a persistence forecast (PERS) 
based on the persistence of ERA5 anomalies at lead times 
after the first month.

5.1 � Overview on skill scores

Our results shows that seasonal forecast systems generally 
have higher skills in predicting temperature rather than pre-
cipitation anomalies, in agreement with previous studies 
(Sánchez-García et al. 2018). We find different correlation 
patterns depending on the season and variable. In winter 
(DJF) we find significant temperature anomaly correlations 
between the seasonal forecast systems and ERA5 over the 
Atlantic, Western Mediterranean, Iberian peninsula and 
Alps, which are areas typically influenced by the NAO (Hur-
rell 1995; Rodriguez-Puebla et al. 1998; Qian et al. 2000; 
Goodess and Jones 2002; Trigo et al. 2004; Terzago et al. 
2013; López-Moreno and Vicente-Serrano 2008; Lopez-
Bustins et al. 2008); in summer (JJA) significant temperature 
anomaly correlations are mainly over the Eastern Mediter-
ranean, an area of intense land-atmosphere coupling where 
a reliable initialization of soil moisture can help improving 
summer air temperature forecasts (Ardilouze et al. 2017), 
and over the Iberian peninsula.

Precipitation anomalies are predicted with more limited 
skills than temperature anomalies: precipitation anomalies 
are significantly correlated in winter (DJF) at few gridpoints 
over the Iberian Peninsula, the Alps, Eastern Mediterranean 
and the Black Sea coasts; in summer (JJA) over the Iberian 
Peninsula and the Black Sea coasts. The highest correla-
tion with the ERA5 reference is found for the multi-model 
mean (MME) that generally outperforms individual models. 
Precipitation forecasts based on PERS show no significant 
correlation over most of the domain, indicating that PERS is 
not a reliable method for precipitation forecasts.

Significant correlations of winter precipitation anomalies 
are found over the Alps and over the Iberian Peninsula, both 
areas affected by the NAO (Hurrell 1995; Rodriguez-Puebla 
et al. 1998; Qian et al. 2000; Goodess and Jones 2002; Trigo 
et al. 2004; Terzago et al. 2013; López-Moreno and Vicente-
Serrano 2008; Lopez-Bustins et al. 2008) which is skillfully 
predicted by most seasonal forecast systems (Lledó et al. 
2020). Over the Iberian peninsula temperature and precipita-
tion anomalies are as well generally significantly correlated 
with ERA5, although summer precipitation is generally low 
and correlation scores based on very low precipitation values 
should be considered with caution. Overall, these results 
indicate that the climate of the Iberian Peninsula is more 
predictable than others in the Mediterranean area, probably 
owing to the influence of teleconnections like NAO and 
ENSO, that has been found to increase the predictability of 
dry events in spring/winter and hot events in summer (Frías 
et al. 2010).

This analysis highlighted specific features and limitations 
of individual forecast systems. For example, ECMWF for 
the winter season shows no significant correlation over most 
of the Mediterranean area, probably owing to limitations in 
reproducing the sea-surface temperatures in the Northwest 
Atlantic and the North Atlantic Oscillation (Johnson et al. 
2019).

The ensemble spread of the seasonal forecast systems is 
generally appropriate, as shown by rank histograms. There 
are few exceptions: (i) the DWD forecast system, showing 
underdispersion at the beginning of the forecasting period 
(lead time 0) for all seasons and variables; (ii) summer pre-
cipitation ensemble forecasts are found to be underdispersive 
or to overestimate the observed anomalies. Since this sig-
nal is generalised for all forecast systems excluding MF, the 
issue could also be in the reference ERA5 data that may not 
be well suited to evaluate summer precipitation of forecast 
systems running at a coarser resolution (Rivoire et al. 2021).

Tercile-based forecasts from seasonal forecast systems 
show overall lower forecast errors and higher accuracy com-
pared to the climatological forecast, as shown by the positive 
median BSS for almost any model, variable, season and lead 
time. When considering the MME we observe positive BSS 
in almost 100% of the gridpoints of the domain, so MME 
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performs even better than individual models, which show 
an improvement with respect to the reference forecast in 
75–100% of the gridpoints.

Moving from the evaluation of the accuracy of tercile-
based forecasts (through the BSS) to the evaluation of the 
accuracy of the forecast distribution (through the FCRPSS), 
in this second case we find that the improvement with 
respect to the climatological forecast is evident for lead time 
0, limited up to lead time 2 and null for summer precipitation 
for selected models.

Combining the results for BSS and FCRPSS, the added 
value of the seasonal forecast systems compared to simpler 
methods is clear when predicting the probability of each 
tercile, while it is more limited when predicting the prob-
abilities for the entire permissible range of values for the 
considered variables at lead times longer than 0.

When looking at the skill scores for the Mediterranean 
region (boxplots), they are generally stable from lead time 
1 to 4. However some fluctuations from month to month 
can also be found: for example, winter temperature AUCCS 
at lead time 2 is higher than at lead time 1 for most mod-
els. This might be related to the monthly resolution of this 
analysis that amplifies the noise with respect to the signal. 
Please refer to Sect. 5.3 for a discussion of the impact of 
time averaging on the skill scores.

Another interesting feature is that tercile-based forecasts 
show better scores (higher accuracy, higher discrimination) 
for the upper and lower terciles than for the central tercile, 
see for example Fig. 11. This has been found also in other 
studies (Athanasiadis et al. 2017) and it has been related to 

the better performances of the models at forecasting large- 
rather than small-amplitude anomalies.

5.2 � The persistence approach

Temperature anomaly forecasts based on PERS show high 
and significant correlation with observations, often outper-
forming individual models. On the contrary, precipitation 
anomaly forecasts based on PERS show no significant cor-
relation over most of the domain. Tercile-based forecasts 
based on persistence have generally larger errors and lower 
accuracy than the climatological forecasts over most of the 
domain at long lead times for temperature, and at all lead 
times for precipitation. Despite the fact that PERS forecasts 
have been proven to have well balanced ensembles (flat 
rank histograms), the distribution of all PERS forecast val-
ues (for all starting dates, all lead times, all ensemble mem-
bers and all gridpoints) has a different shape with respect to 
that of observations, with lower amplitude and higher tails 
(not shown). Overall, despite its simplicity the persistence 
forecast is of limited usefulness for climate services since it 
might be inaccurate and it does not provide a reliable meas-
ure of uncertainty.

5.3 � Sensitivity of skill scores to temporal averaging

The analysis of anomaly correlation coefficients (ACCs) 
between seasonal forecast systems and ERA5 presented 
in this study has been performed on seasonal means, i.e. 
monthly temperatures and precipitation are averaged over 

Fig. 14   Differences between 
the ACC calculated on seasonal 
anomalies and the ACC com-
puted as the average of the three 
corresponding monthly ACCs 
for winter (a) and summer (b) 
temperature, winter (c) and 
summer (d) precipitation, for 
the multi-model ensemble
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DJF and JJA and then transformed into seasonal anoma-
lies. Since we are also interested in the forecast skills at the 
monthly scale (as we did for the other skill scores which we 
considered), we also evaluated monthly ACCs, then aver-
aged them over the DJF and JJA seasons and finally com-
pared them to the seasonal anomalies of Figs. 1, 2, 3 and 4. 
Figure 14 shows the differences between seasonal ACCs and 
seasonally-averaged monthly ACCs for MME temperature 
and precipitation forecasts in both seasons. The differences 
are generally small and patterns depend on the specific sea-
son and variable considered. In order to clarify the difference 
between seasonal ACCs and the corresponding seasonally-
averaged monthly ACCs we summarize the statistics of the 
two scores over the Mediterranean domain by means of 
boxplots. Moreover we extend the analysis to the other skill 
scores considered in the study: BSS, AUCSS, FCRPSS. In 
Fig. 15 for each skill score and each forecast system we 
compare (i) the scores obtained from seasonally-averaging 
monthly scores, to (ii) seasonal scores, for temperature. The 
width of the boxplot shows the spatial variability of the score 
over the Mediterranean domain. In general, seasonal scores 
have slightly higher median (in the case of ACC) or compa-
rable median and larger spread compared to seasonally-aver-
aged monthly scores. These considerations generally apply 
to any forecast system and season (with few exceptions) and 
are valid also for precipitation (not shown). These results 
only partially agree with Buizza and Leutbecher (2015), 
who showed that the forecast skill horizon (i.e the lead time 
when the ensemble forecast ceases to be more skillful than 
the climatological distribution) of medium range/monthly 
ensemble forecasts is considerably longer for time- and 
spatially-averaged fields than for grid-point, instantane-
ous fields. Their analysis concluded that time- and space-
averaging are a basic way to filter out the less predictable 
components of the climate system and to focus on the more 
predictable components. In our analysis a relative improve-
ment related to time averaging is found only for ACC, while 
for the probabilistic scores the difference is small, at least in 
average, over the Mediterranean region. So, we do not find 
a clear advantage of using seasonal anomalies rather than 
seasonally-averaged monthly anomalies. Our results seems 
to leave some room for the exploitation of seasonal predic-
tions at the monthly time scale without systematically losing 
forecast skills. 

5.4 � Sensitivity of skill scores to trend removal

All our analyses are performed on time-detrended tem-
perature and precipitation anomalies. In a similar paper by 
Mishra et al. (2019) seasonal anomalies were not detrended 
before calculating ACC. Limited to UKMO temperature 
ACC we can compare the results of the two studies. We 

observe a different behaviour depending on the season: in 
summer we obtain similar temperature correlation patterns 
but with a notable reduction of the areas with significant 
correlation; in winter we obtain remarkably different pat-
terns with correlations of the opposite sign for example 
over the Alps. It is important to note that in the previous 
study the reference data were ERA-Interim instead of ERA5: 
part of the difference we find might be explained by the 
different reference data used, although the two reanalyses 
are expected to have similar behaviours. In any case, dis-
crepancies among the results of these studies suggest the 
importance of removing the trend from the original data in 
order to avoid overestimation of the anomaly correlation, as 
also suggested by Sánchez-García et al. (2018). In particular 
that work emphasised the importance of detrending anoma-
lies specifically when considering long timeseries of hind-
casts; in the detailed results for different regions, they found 
the trend removal to be either responsible for a decrease in 
the overall skill or completely ineffective. We analysed the 
effects of detrending on the ACC of temperature and pre-
cipitation forecasts. We evaluated the difference between 
ACC calculated on (i) the original seasonal forecast data 
(without detrending) and (ii) the residuals (detrended data). 
Results (not shown) indicate that at lead time 1, the differ-
ence is generally very small, meaning that ACCs of original 
and detrended data are comparable. At longer lead times the 
difference becomes positive over most of the domain, and 
higher ACC is obtained when data are not detrended. The 
trend in the original data artificially increases the correlation 
between two variables, masking the real correlation. The 
trend contributes to improving the overall skill of the model, 
especially at longer lead times, when the skill of the model is 
lower, and especially for temperature. Precipitation, instead, 
is less affected by the trend removal being its trend actually 
smaller than for temperature.

5.5 � MME and sensitivity to the ensemble size

The choice of the detailed scheme for constructing the Multi 
Model Ensemble (MME) and the Multi Model Ensemble 
Small (MMES) has been affected by the scientific com-
munity’s debate around this topic. In their review paper 
Tebaldi and Knutti (2007) state that seasonal forecasts have 
better skill, higher reliability and consistency when several 
independent models are combined. The most significant 
benefit is seen in the consistently better performance of the 
multi-model when considering all aspects of the predictions 
(Hagedorn et al. 2005). Different authors have compared 
equally and unequally weighting schemes (Hemri et al. 
2020; Vigaud et al. 2019; Mishra et al. 2019; Weisheimer 
et al. 2009; Pavan and Doblas-Reyes 2000), never reaching 
strong conclusions. Due to this ongoing discussion spanning 
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Fig. 15   Seasonally-averaged monthly skill scores (_m) compared to seasonal scores (_s) for each forecast system, for summer (left column) and 
winter (right column) temperature 
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the last 20 years and more, in this study the MME and the 
MMES have been built with an equally weighting scheme. 
In order to consider the different ensemble sizes of the mod-
els, the MMES has been built using a subset of 5 ensemble 
members randomly chosen for each model, leading to an 
equally weighting scheme (ensemble size wise). The advan-
tage of this approach is twofold: first, it allows to obtain an 
ensemble with comparable size as the other forecast systems; 
second, it enables the estimation of how much the ensemble 
size impacts on the skill scores retrievals through the com-
parison of MME to MMES. The latter tries to deal with the 
limitations imposed by computational power, counting 25 
ensemble members instead of 148 and allowing the estima-
tion of the skill with a smaller ensemble.

The MME well summarizes correlation patterns com-
mon to several individual models, often providing higher 
correlations than individual models, especially in the case 
of precipitation. According to our results, MMES, which is 
assembled with 25 ensemble members randomly chosen in 
the number of 5 from each model, shows similar temperature 
and precipitation anomaly correlation coefficient patterns 
as MME (including all 148 members from the 5 different 
models). Winter precipitation ACC pattern is slightly more 
widespread in MMES than in MME, with more significant 
values over the Eastern and Northern part of the domain. On 
the contrary, MMES shows slightly lower ACC values for 
summer temperature and a slightly less widespread pattern 
for winter temperature, compared to MME.

Forecast errors of the seasonal forecast systems consid-
ered in this study are generally lower than that of the clima-
tological forecast. When considering the MME we observe 
better performances with respect to the climatological 
forecast in almost 100% of the gridpoints of the domain, so 
MME shows a clear added value in almost any point of the 
domain and for both temperature and precipitation. MMES 
shows comparable median score and larger spread compared 
to MME. MME and MMES rank histograms are similar to 
each other for both variables. Comparable values are also 
found for BSS and FCRPSS, which accounts for differences 
in the ensemble size. All these features suggest that forecasts 
based on MME or on a subset of each model’s ensemble 
members (MMES) provides overall similar performances, 
and the use of MMES would reduce the computational time 
needed for analysis and the data storage requirements, keep-
ing many of the advantages of the MME.

5.6 � Seamless predictions: sub‑seasonal to seasonal 
forecasts

There is a general tendency toward a seamless prediction 
approach that would join different timescales, from meteoro-
logical to subseasonal to seasonal. An example of such an 
approach is discussed in Dirmeyer and Ford (2020) in which 

a weighting scheme for the transition from forecast at dif-
ferent timescales is proposed. This “weather-climate predic-
tion gap” (Mariotti et al. 2018) lies at the lower edge of the 
seasonal forecast timescale and the upper edge of the mete-
orological one. The approach chosen in this article allows 
us to make available to the scientific community a monthly 
analysis that can be more easily compared to subseasonal 
forecasts (from 2 weeks to 2 months) helping in filling this 
time gap. Concurrently, the monthly analysis allows looking 
with a finer detail at the differences in response among the 
forecast systems, setting the basis for narrowing the effort 
in searching for different sources of predictability by iden-
tifying the time scale at which seasonal forecasts become 
drastically less skilful (Board et al. 2016).

6 � Conclusions

This study provides an overview of the skill of 5 state-of-
the-art seasonal forecast systems (ECMWF, MF, UKMO, 
CMCC, DWD) and the corresponding Multi-Model Ensem-
bles (MME and MMES) at forecasting monthly temperature 
and precipitation anomalies over the Mediterranean region, 
focusing on the winter and summer seasons. All our analy-
ses are performed on detrended temperature and precipita-
tion anomalies. The work has been carried out in the frame 
of the ERA4CS MEDSCOPE project (https://​www.​medsc​
ope-​proje​ct.​eu/) and it is motivated by the increasing inter-
est in the use of seasonal forecasts for developing climate 
services, and the consequent need to assess added value and 
limitations of these products over the specific domain of 
interest. We assess the improvement of each forecast system 
compared to a very simple forecast based on the climatol-
ogy, which is set as a benchmark, and we used a multi-score 
approach to evaluate different features of the probabilistic 
forecast in relation to the lead time.

Temperature anomalies are found to be more predictable 
than precipitation anomalies. Anomaly correlation patterns 
vary across different forecast systems however some fre-
quently occurring features can be highlighted. Temperature 
anomaly correlations are significant over large areas mainly 
over the Western Mediterranean in winter and over the East-
ern Mediterranean in summer. Precipitation correlations are 
lower and patchier, although significant over some regions: 
in winter at few grid points over the Iberian Peninsula, the 
Alps and Eastern Mediterranean; in summer over the Iberian 
Peninsula and the Black Sea coasts.

Individual forecast systems are found to outperform the 
reference forecast based on climatology in the following 
features:

https://www.medscope-project.eu/
https://www.medscope-project.eu/
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–	 higher accuracy (lower forecast errors) for tercile-based 
forecasts for any variable, season and lead time, in 75% 
up to 100% of the gridpoints of the domain;

–	 higher discrimination up to lead time 2 months in most 
( > 50% ) of the domain and on average over the three 
terciles. However, the discrimination is higher for the 
lower/upper terciles than for the middle tercile.

Since forecast skill varies in space and time across differ-
ent models, for climate services applications we recommend 
the use of an ensemble of models, together with the MME 
forecast. In fact, MME summarizes the common features 
of individual forecast systems, often outperforming single 
models in terms of anomaly correlations with respect to the 
ERA5 reference. MME generally provides the best anomaly 
correlation with observed precipitation anomalies.

A simple forecast methods based on persistence has been 
found to outperform seasonal forecast systems in terms of 
anomaly correlation with temperature observations. How-
ever, the persistence method shows no skill in forecasting 
precipitation anomalies. Moreover the persistence ensemble 
forecast has lower accuracy and lower sharpness than the 
reference forecast and individual models.

Overall, despite their limitations, seasonal forecast sys-
tems show an added value with respect to simple forecast 
methods based on the climatology or persistence, although 
the added value is not uniform over the Mediterranean area.

The present evaluation of the climate predictability on 
seasonal time scales over the Mediterranean can set the basis 
for the development of applications and tools for climate 
services dedicated to various end-users in the water man-
agement, agriculture, and energy production, enhancing the 
awareness of strengths and limitations of individual seasonal 
forecast system outputs.

Further steps beyond this analysis should go towards an 
assessment of the sources of predictability responsible for 
the skill score patterns: in particular it would be interesting 
to explore the predictability in the Mediterranean area con-
ditioned on NAO+/NAO- and El Niño/ La Niña conditions.

A limitation of this and similar studies is the length of the 
hindcasts period: the availability of a larger set of forecasts 
would allow for more robust performance evaluations. This 
issue should be taken into account when planning hindcast 
simulations.

Concerning the idea of the persistence forecast, many 
methods for kernel dressing at a different level of complexity 
are available, and a more thorough analysis should be carried 
out since the use of different approaches could affect the skill 
of the resulting model. Regarding applications, an economic 
value assessment could be carried out to better focus the 
attention on different climate service sectors. However such 
evaluations are left for a separate in-depth analysis.
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