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$EVWUDFW� Comovements among asset prices have received a lot of attention for several reasons. For 
example, comovements are important in cross−hedging and cross−speculation; they determine capital 
allocation both domestically and in international mean–variance portfolios and also, they are useful in 
investigating the extent of integration among financial markets. In this paper we propose a new 
methodology for the non–linear modelling of bivariate comovements. Our approach extends the ones 
presented in the recent literature. In fact, our methodology outlined in three steps, allows the evaluation 
and the statistical testing of non−linearly driven comovements between two given random variables. 
Moreover, when such a bivariate dependence relationship is detected, our approach solves for a 
polynomial approximation. We illustrate our three–steps methodology to the time series of energy related 
asset prices. Finally, we exploit this dependence relationship and its polynomial approximation to obtain 
analytical approximations of the Greeks for the European call and put options in terms of an asset whose 
price comoves with the price of the underlying asset. 
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1RQOLQHDU�%LYDULDWH�&RPRYHPHQWV�RI�$VVHW�3ULFHV���
7KHRU\�DQG�7HVWV�

 

 

��� ,QWURGXFWLRQ�
 

Comovements among asset prices as a topic of research have received a lot of attention for several 

reasons: 
 

− First, the knowledge of a dependence relationship between the prices of two assets allows one to 

use publically available information for one asset to deduce forthcoming information for the 

codependent asset. Moreover, comovement is useful in cross−hedging and cross−speculation. 

− Second, the presence of dependence in the form of correlation among the prices of certain assets 

traded domestically or across different countries is of interest to investors who wish to allocate 

their capital in mean–variance portfolios since comovements diminish the effectiveness of 

diversification strategies. 

− Third, dependence among globally traded assets may influence the coordination of economic 

policies; 

− Fourth, scholars and policy makers are interested in comovements among asset prices as an 

indication of the degree of financial integration. 

− Finally, comovements of economic variables are the focus of economic analysis in business 

cycles, global trade, labor economics, regional economics and several other areas. 
 

The increasing interest in the topic of comovements in asset prices has resulted in a large 

volume of scientific contributions. In the next section we offer a short survey of the more recent 

contributions. In particular, in most of the papers to be reviewed, the authors follow the well-

accepted methodologies based on autoregressive heteroskedastic (ARCH) models, error correction 

models (ECMs), generalized ARCH (GARCH) models, Granger causality based tests, multivariate 

cointegrations, structural vector autoregressive (VAR) systems, lag–augmented VAR (LA–VAR) 

systems, forecast error variance decomposition (VDC) approaches, and vector error−correction 

models (VECMs). 
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In this paper, we first, investigate the phenomenon of comovements among asset prices by 

proposing a new methodology that goes beyond the ones just listed above. In fact, our approach 

allows for both the evaluation and statistical testing of non–linearly driven comovements between 

two given random variables. Moreover, when such a nonlinear bivariate dependence relationship is 

detected, our approach also gives a polynomial approximation. 

     In addition, in this paper we also apply our three–step new methodology to the time series of 

three energy related assets (crude oil, gasoline, and heating oil prices) and use the bivariate 

dependence relationship and its polynomial approximation in order to obtain analytical 

approximations of the Greeks for the (vanilla) European call and put options in terms of an asset 

whose price comoves with the price of the underlying of the investigated option. By so doing, we 

attain what we call cross–Greeks. 

The remainder of this paper is organized as follows. In the next section we present a short 

review of the recent literature. In section ���we outline in detail our three−step novel methodology. 

In section �� we apply the proposed methodology to the time series of three energy related assets 

traded in the U.S. In section ���we present some theoretical results regarding the cross−Greeks and 

finally, in section �� we conclude with certain remarks. 

 

 

��� $�VKRUW�UHYLHZ�RI�WKH�UHFHQW�OLWHUDWXUH�
 

In this section we present a short survey of the recent literature about the comovements among asset 

prices. We emphasize that our survey is brief and selective rather than exhaustive and detailed. 

In Eun and Shim (1989) the mechanism of international transmission of stock price 

movements is investigated by using a nine–market VAR system. In particular, the authors trace out 

the dynamics of the responses in a given market to the innovations verified in another one. Deb, 

Trivedi and Varangis (1996) use univariate and multivariate GARCH models to show that the prices 

of several unrelated markets reveal a persistent tendency to comove, even after accounting for the 

effects of macroeconomic shocks. Malliaris and Urrutia (1996) identify both short–term and long–

term dependence relationships among the prices of six agricultural futures traded at the Chicago 

Board of Trade by using an error-correction model (ECM). In Hamori and Imamura (2000), the 

investigation of interdependencies among stock prices is performed by using a LA–VAR system 

based approach. A significant advantage of such a methodology is the fact that it can be applied 

regardless of the presence, or lack of cointegration among the considered stock prices. In Algren 

and Antell (2002) cointegration among stock prices traded in different countries is investigated. In 
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particular, the authors find evidence that the likelihood ratio tests of Johansen are sensitive to the 

specification of the time lag amplitude in the VAR system. 

Some other methodologies that are worth mentioning are the ones able to detect the 

presence, or lack of common cycles among asset prices. Broome and Morley (2000) use a 

cointegration technique for testing the presence of long–run common trends among stock prices and 

the risk free interest rate and perform dependence analyses to investigate the presence and features 

of short–run common cycles among the same quantities. In Chen and Wun (2004) linear and 

non−linear Granger causality based tests are used to examine the dynamical dependence 

relationships between spot and future prices. Finally, in Schich (2004) proper measures of 

dependence among European stock markets are evaluated by using the multivariate extreme value 

theory. 

 

 

��� 2XU�WKUHH�VWHS�PHWKRGRORJ\�
 

In this section we present in detail our novel methodology for the non–linear evaluation of bivariate 

comovements. Since our approach relies on the concept of comonotonicity, before of all we spend 

some words about this notion. Comonotonicity is one of the strongest measures of dependence 

existing among random variables. Limiting our interest to the bivariate case, given two random 

variables ()⋅1;  and ()⋅2; , both defined on the same probability space ( )3)  , ,Ω , they are said to be 

comonotonic if there exists, with probability 1, a subset $  of )  such that 

( ) ( )[ ] ( ) ( )[ ] $$;;;; ������ ×∈∀≥−− ωωωωωω  ,  02211 .1 

In an analogous way, given two random variables ( )W;1  and ( )W; 2 , both defined on [ ]10  , WW  

with 10 WW < , we say they are codependent if: 

 

( ) ( )[ ] ( ) ( )[ ] [ ]1032323222322131  , ,   :  ,  0 WWWWWWWWW;W;W;W; ∈∧≠∀≥−− . 

 

A few remarks about the relationship of codependence are appropriate: 
 

− First, two random variables are codependent if they always vary over the support (time, in our 

case) in the same direction, besides the quantitative laws describing the dynamic behaviour of 

each of them; 

                                                           
1 For other equivalent definitions of comonotonicity see Jouini and Napp (2003, 2004), and Wei and Yatracos (2004). 
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− Second, codependence as comonotonicity, is an ON/OFF concept. Actually, if there is a unique 

pair 2W  and 3W  for which ( ) ( )[ ] ( ) ( )[ ] 022322131 <−− W;W;W;W; , then we say that ( )W;1  and 

( )W; 2  are not codependent. 
 

 Our methodology is articulated in three steps. Before these steps are outlined, we briefly 

describe each: 
 

− In the first step we propose a simple index able to evaluate any intermediate degree of bivariate 

dependence from full counterdependence2 to full codependence, and we provide some 

theoretical results about it. 

− Next, this simple index provides only a point estimation of the bivariate dependence while in the 

second step we propose a procedure to test the statistical meaningfulness of the index itself; 

− Finally, in the third step we propose an algorithm to provide a polynomial approximation of the 

unknown bivariate dependence relationship. 

 

����7KH�VLPSOH�LQGH[�
 

Let we start by considering two discrete–time time series, ( ){ }�WWWW;  , , , 11 �=  and 

( ){ }�WWWW;  , , , 12 �= . The simple index we propose for evaluating the bivariate dependence 

between the random variables ( )W;1  and ( )W; 2  is defined as follows: 
 

 
( ) ( ) ( ) ( )[ ] ( ) ( )[ ]

( ) ( )[ ] ( ) ( )[ ]



≥−−−−
<−−−−−

=∆∆
−

= ∑
= 011 if 1

011 if 1
 ,

1
1

2211

2211
2,12,12,1

2
W;W;W;W;
W;W;W;W;WW1

��

��
δ . (1) 

 

 Some remarks about this index: 
 

− It is easy to prove that [ ]1 ,12,1 −∈δ . In particular, any two random variables are 

counterdependent if 12,1 −=δ , and are codependent if 12,1 =δ ; 

− It is also easy to prove that 2,1δ  is defined for every pair of discrete–time time series (property 

of existence), and that 1,22,1 δδ =  (property of symmetry). Therefore, 2,1δ  is a scalar measure of 

dependence in the sense illustrated in Szegö (2005) at section �; 

− The fact that 2,1δ  belongs to [ ]1 ,1−  makes this index of dependence directly comparable with 

the well known and widely used Bravais−Pearson linear correlation coefficient 2,1ρ .3 
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      For the theoretical properties between 2,1δ  and 2,1ρ  we state and prove the proposition below. 

 

3URSRVLWLRQ� �� /HW� () ++ →⋅ 55:I  EH� WKH� ELYDULDWH� GHSHQGHQFH� UHODWLRQVKLS� EHWZHHQ� ( )W;1 � DQG�
( )W; 2 , ( ) ( )( ) ( )WW;IW; ε+= 21 ��ZKHUH� ( )Wε �LV�D�VWDQGDUGL]HG�HUURU�WHUP��DQG�OHW� ()⋅I �EH�LQILQLWHO\�

GLIIHUHQWLDEOH�LQ� ( )( )W;(P 22 = ��,I�
 

 ( )( )( ) 2   , ,2   , ,0 :  ,  0
! 2

2 ≥−∧∞+=∧∞+=∀=− − MLMLMLPL
PI ��

�

�� , (2) 

 

ZKHUH� ( )()⋅
�I � LQGLFDWHV� WKH� L±WK� GHULYDWLYH� RI� ()⋅I �� WKHQ� WKH� ELYDULDWH� GHSHQGHQFH� UHODWLRQVKLS� LV�

DIILQH��
 

3URRI� As ()⋅I  is infinite times derivable in 2P , we can expand it in Taylor’s series about 2P  itself 

as follows: 
 

 
( )( )

( )( ) ( )( )
( )( ) ( )( )∑ ∑

∑
∞+

= =

−

∞+

=

−





=

−=

0 0
22

2

0
22

2
2

.
!

!

	

	






	
	

	

	
	

PW;M
L

L
PI

PW;L
PIW;I

 (3) 

 

 After some algebraic manipulations, we can rewrite equation (3) as follows: 
 

 
( )( )

( )( ) ( ) ( )∑ ∑
∞+

=

∞+

=

−












−





−

=
0

22
2

2 !�

�

��

��
�

W;PML
L

L
PIW;I . (4) 

 

 Now, by substituting relationship (2) into (4) we obtain the following affine bivariate 

dependence relationship between ( )W;1  and ( )W; 2 : 
 

 
( )

( )( ) ( )
( )( ) ( ) ( ) ( )WW;PL

L
L
PIPL

L
L
PIW; 
















ε+







−





−

+−





= −

∞+

=

∞+

=
∑∑ 2

1
2

1

2
2

0

2
1 1!!

.  (5) 

 

 Notice that, if relationship (2) is extended also to 1=M , then relationship (5) will become 
 

( )
( )( ) ( ) ( )WPL

L
L
PIW; �

�

�

ε+−





= ∑

+∞

=
2

0

2
1 !

, 

                                                                                                                                                                                                 
2 Given two random variables ( )W; 1  and ( )W; 2 , both defined on [ ]10  , WW  with 10 WW < , we say they are counterdependent 

if ( ) ( )[ ] ( ) ( )[ ] 022322131 <−− W;W;W;W;  for all 2W  and 3W  such that 32 WW ≠  and 2W , [ ]103  , WWW ∈ . 
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L�H� ( )W;1  and ( )W; 2  are independent. 

 The simple index we proposed here provides only a point estimation of the investigated 

bivariate dependence. In order to overcome this drawback, in the next subsection we propose a 

procedure able to statistically test the meaningfulness of the index itself. 

 

����7KH�WHVWLQJ�SURFHGXUH�
 

The intuition of the approach we propose here for testing the statistical meaningfulness of 2,1δ  is 

similar to the one suggested in Kaboudan (2000). 

 In the remainder of this subsection we present our testing procedure: 
 

− Firstly, we define the index 2,1;
�δ  as the index (1), but applied to ( ){ }�WWWW;  , , , 11 �=  and 

( ){ }�WWWW;  , , , 12 �=  once both these time series have been shuffled according to the same 

independent and identical uniform distribution (notice that, as the shuffling removes any 

dependence relationship between ( )W;1  and ( )W; 2 , 2,1;
�δ  equals 0 ); 

− Secondly, we define the random variable 2,1;2,1 �δδδ −=∆ , and generate the series 

( ){ }0MM  , ,1 , �=∆δ  by shuffling, for 0  times, ( ){ }�WWWW;  , , , 11 �=  and ( ){ }�WWWW;  , , , 12 �=  

as previously described. Notice that, if ( )W;1  and ( )W; 2  were 2,1δ –dependent, then δ∆  should 

be different from 0 ; 

− Thirdly, we determine estimations of the sample mean and of the sample standard deviation of 

δ∆ , δ∆P  and δ∆V  respectively, as follows: 

 

( )∑
=

∆ ∆=
�

�
M0P

1

1 δδ  and ( )( )∑
=

∆∆ −∆
−

=
�

�
PM0V

1

2

1
1

δδ δ ; 

 

− Fourthly, recalling from basic statistics that 
 

( )1 ,0
1

10V
P �

→
−

∆−

∆

∆

δ

δ δ
 as +∞→0 , 

for 0  large enough we can perform the following bilateral W –test: 
 

                                                                                                                                                                                                 
3 Also 2,1ρ  is a scalar measure of dependence in the sense illustrated in [sze] at section �. 



 8 

 ( ) ( )
( ) ( )




−≠
=

∆

∆

dependent are  and  .. ,0 :
t independen are  and  .. ,0 :

2,1211

210

δδ

δ

W;W;HLP+
W;W;HLP+

; (6) 

 

in particular, the acceptance interval for the null hypothesis is ( ,12 −− ∆ 0WV αδ  
)12 −∆ 0WV αδ , where 2αW  is the value taken by a W –distributed random variable in 

correspondence of a pre–established confidence interval α  for given degrees of freedom; 

− Finally, if the null hypothesis is rejected, then we perform two more unilateral W –tests in order 

to verify whether the 2,1δ –dependence between ( )W;1  and ( )W; 2  is negative or positive. In 

particular, both such tests differ from the one introduced in the previous point only in the 

alternative hypothesis, which is 0 :1 <∆δP+  in the negative 2,1δ –dependence case, and is 

0 :1 >∆δP+  in the positive 2,1δ –dependence case. 

 

 Notice that, in order to reduce the amplitude of the acceptance intervals, L�H� to reduce 

1−∆ 0V δ  to ( )1−∆ 0FV δ , with 1>F , one has to increase 0  to ( ) 112 +−0F .4 Because of 

that, profitable applications of our methodology could be sometimes time–consuming. 

 

����7KH�SRO\QRPLDO�DSSUR[LPDWLRQ�
 

If at the end of the testing procedure the null hypothesis has been rejected in favour of the 

negative/positive 2,1δ –dependence between ( )W;1  and ( )W; 2 , then we begin to model analytically 

the unknown bivariate dependence relationship ( ) ( )( ) ( )WW;IW; ε+= 21 . In particular, we search for 

a polynomial approximation of ()⋅I  which is a properly truncated version of equation (4), L�H� 
 

 ( )( ) ( ) ( ).UW;DW;I
�

�

�
� += ∑

=0
22 . (7) 

 

where .  is the truncation order of the Taylor's series (4), 
( )( ) ( )∑ =

−−





−

=
�
��

��
�

� PML
L

L
PID 2

2

!
, and 

( ).U  is a suitable remainder function. 

 Of course, in this approach a crucial role is played by . . In order to detect its “optimal” 

value, we propose an algorithm whose search procedure is based on a standard cross–validation 

technique, as suggested in Poggio and Smale (2003) in section �: 
 

                                                           
4 ⋅  is the minimal integer which exceeds the value taken by the expression inside the notation itself. 
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− In particular, we begin by considering as a starting data set '  the discrete–time bivariate time 

series ( ) ( )( ){ } WWWW;W;  , , , , 121 �= ; 

− Scondly, we suitably split '  into two data subsets, the learning one !'  and the validation one 

"' , such that ''' #$ =∪  and 0/=∩ %& '' ;5 

− Thirdly, we consider a finite series of polynomials of the form in (7) with ..  , ,0 �= , where 

.  is a pre–established integer value; 

− Fourthly, for each of the polynomials considered in the previous point we estimate the 

parameters 'DD  , ,
0
�  YLD ordinary least square regression by using the data subset (' , and 

evaluate the index 2,1δ  between ( ) ( )∑ =
=

)
*

*
* W;DW;

0 21 ˆˆ  and ( )W; 2  by using the data subset +' ;6 

− Finally, we choose as “best” approximating polynomial the one associated with the highest 

absolute value of 2,1δ . 

 

 Notice that identifying the “optimal” approximating polynomial is accomplished by using a 

cross–validation approach.  That is, we perform ordinary least squares by using the learning data 

subset and evaluate the validation criterion 2,1δ  by using the validation data subset.  

 

 

��� $SSOLFDWLRQV�WR�HQHUJ\�DVVHW�SULFHV�WLPH�VHULHV�
 

In this section we give the empirical results of the three–step methodology to the time series of 

three energy related prices. 

 In general terms, for each empirical computation we do the following: 
 

− We start by considering the discrete–time bivariate time series ( ) ( )( ){ },WWWW;W;  , , , , 121 �= ; 

− We split chronologically the last 10  per cent of the realizations of the time series introduced in 

the previous point in order to utilize them as forecasting data subset -'  at the end of the 

application for performing a simple out–of–sample check. We use the remaining 90  percent of 

the discrete–time bivariate time series as the starting data set ' ; 

                                                           
5 The way in which to suitably split '  is made clear in subsection ���. 
6  ̂⋅ indicates the estimator of the quantity below. 
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− We split '  into the learning data subset .'  (the chronologically first 70  per cent of its 

realizations) and the validation data subset /'  (the chronologically last 30  per cent of its 

realizations);7 

− Finally, we apply our methodology by using .'  and /' . 

 

����7KH�GDWD�
 

Each discrete–time univariate time series we utilize here contains 026,2  daily spot closing prices 

for three energy assets traded in U.S.A.: crude oil, gasoline, and heating oil. Such prices have been 

collected from January 3, 1994 to February 6, 2002. In the remainder of this subsection and in the 

next one, we refer to these time series respectively as ( ){ }026,21  , , , WWWW; 021 �= , 

( ){ }026,21  , , , WWWW; 3 �= , and ( ){ }026,21  , , , WWWW; 465 �= . Notice that, given the percentages indicated 

earlier for the data subsets used in each application, the cardinalities of these same data subsets are: 

277,1=7' , 547=8' , and 202=9' . 

 The discrete–time bivariate time series whose non–linear comovements we investigate here, 

come from the simple discrete–time univariate time series listed as: 

( ) ( )( ){ }026,21  , , , , WWWW;W; :;2<
�= , ( ) ( )( ){ }026,21  , , , , WWWW;W; =6>? > �= , ( ) ( )( ){ , , , , 1 �WWW;W; @2AB =  

}026,2W , ( ) ( )( ){ }026,21  , , , , WWWW;W; C6DE
�= , ( ) ( )( ){ }026,21  , , , , WWWW;W; F2GH G �= , and ( ) ( )( ){ , , W;W; IJ6K  

}026,21  , , WWW �= . 

 7DEOH�� reports some standard descriptive statistics for each of the discrete–time univariate 

time series. 
 

<7DEOH�� from here beyond (if possible, approximately here)> 

 

����7KH�UHVXOWV�
 

The exposition of the results from the application of our three–step methodology to the discrete–

time bivariate time series is organized in two tables, and in six figures. 

 The columns of  7DEOH�� are described as follows: 
 

− The first column indicates the two random variables that specify the discrete–time bivariate time 

series which has investigated; 

                                                           
7 The percentages we set for L'  and M'  are the ones usually utilized in several empirical works using cross–
validation techniques as in Belcaro, Canestrelli and Corazza (1996) and their references. 



 11 

− The second column reports the value of the simple index NO ,δ , with L , { }+2*&2M  , ,∈  and 

ML ≠ , evaluated on the learning data subset P'  (see, for more details, subsection ���); 

− The third column provides the response of the bilateral W –test (6):8 label “$”  or label “5”  for, 

respectively, the acceptance or the rejection of the null hypothesis (see, for more details, 

subsection ���); 

− If the null hypothesis of the bilateral W –test (6) is rejected, then the fourth column gives the 

response of the check, based on two more unilateral W –test,9 whether the QR ,δ –dependence, with 

L , { }+2*&2M  , ,∈  and ML ≠ , between the two investigated univariate time series is negative or 

positive: label “1”  or label “3”  respectively (see, for more details, again subsection ���); 

− The fifth column gives the value of the Bravais–Pearson linear correlation coefficient ST ,ρ , with 

L , { }+2*&2M  , ,∈  and ML ≠ , evaluated on the learning data subset U'  (we report the value of 

this coefficient for possible comparisons). 
 

 Finally, we recall that the property of symmetry holds for the simple index (1), L�H� 
VWWV

,, δδ =  for all L  and M  such that L , { }+2*&2M  , ,∈ . 

 

<7DEOH�� from here beyond (if possible, approximately here)> 

 

 A few remarks about the results reported in 7DEOH��: 
 

− The fact that XY ,δ  is statistically significantly different from 0  for all L  and M  such that L , 

{ }+2*&2M  , ,∈  and ML ≠  (see jointly the second and the third column of 7DEOH��) indicates 

the existence of a bivariate dependence relationship between ( )W; Z  and ( )W; [  for all the 

considered L  and M ; 

− Recalling that the Bravais–Pearson coefficient measures only the linear correlation, the fact that 

\]
,δ  is significantly different from ^_ ,ρ  for all L  and M  such that L , { }+2*&2M  , ,∈  and ML ≠  

(see jointly the second and the fifth column of 7DEOH��) offers evidence of non–linearity in the 

bivariate dependence relationships; 

− The fact that `a ,δ  and bc ,ρ  are both positive for all L  and M  such that L , { }+2*&2M  , ,∈  and 

ML ≠  (see jointly the second and the fifth column of 7DEOH�� again) can be interpreted as an 

                                                           
8 In performing this bilateral test we set 100=0  and %5=α . 
9 Also in performing these unilateral tests we set 100=0  and %5=α . 
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indicator of the positiveness of the dependence between ( )W; d  and ( )W; e  for all the considered 

L  and M . 
 

 We next turn to 7DEOH���and describe its columns: 

− The first column indicates the two random variables that specify the discrete–time bivariate time 

series which is investigated; 

− The second column provides the estimation of the “ best”  polynomial approximation of the 

unknown bivariate dependence relationship between ( )W; d  and ( )W; e  for all L  and M  such that 

L , { }+2*&2M  , ,∈  and ML ≠  (see, for more details, subsection ���). 
 

<7DEOH�� from here beyond (if possible, approximately here)> 

 

 Some remarks about the results reported in 7DEOH��: 
 

− The fact that the degree of the “ best”  polynomial approximation is greater than 1 in a significant 

percentage of the considered cases confirms the presence of non–linearities in some of the 

investigated bivariate dependence relationships; 

− With specific regard to the fifth polynomial approximation, the fact that the coefficients 

associated to the highest powers of ( )W; f2g  are evidently close to 0 , L�H� the fact that their 

“ explanatory contributions”  are probably negligible, L�H� the fact that the degree of the 

approximating polynomial is probably unnecessarily high, can be interpreted as a symptom of 

the need that the validation procedure we propose and use here has to be probably a little bit 

refined. 
 

 Finally, at the end of this section we utilize all the polynomial approximations reported in 

7DEOH�� applying each of them to the corresponding data subset h' . By so doing, we provide an 

out–of–sample visual check (see )LJXUH� � to )LJXUH� �) of the goodness of our three-step 

methodology. 
 

<)LJXUH�� from here beyond (if possible, approximately here)> 
 

<)LJXUH�� from here beyond (if possible, approximately here)> 
 

<)LJXUH�� from here beyond (if possible, approximately here)> 

 

 Notice that, although in the graph on the right of )LJXUH�� the polynomial approximation of 

( )W; i6j  in k'  is generated by the approximating polynomial whose degree is probably 
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unnecessarily high, only the estimation ( )21l̂6m;  is evidently poor. We can interpret it as an 

indication of the robustness of our three-step methodology. 

 

 

��� &URVV�*UHHNV�
 

In this section we present some theoretical results concerning a possible utilization of the proposed 

polynomial approximation of the vicariate dependence relationship in one of the research field in 

which the co movements among asset prices show to play a role of evident importance, L�H� the 

research field of option contracts. In particular, given two assets whose prices are ( )W;1  and ( )W; 2  

respectively, both defined on [ ]10  , WW  with 10 WW < , and given the polynomial approximation of their 

vicariate dependence relationship ( )( ) ( )∑ =
=

n
o

o
o W;DW;;

0 221 , with 01∈.  and 5∈pD , we provide 

the analytical approximations in terms of ( )W; 2  the Greeks of the (vanilla) European call and put 

options for which the price of the underlying is ( )W;1 . Notice that such results, beyond their 

theoretical significance, also appear of some operative interest, like, for instance, in the case of 

definition of strategies of cross–hedging, cross–speculation, and so on (see, for instance, the last 

section of Malliaris and Urrutia (1996)). 

 Before to present our theoretical results, we need to specify our notation in order to 

formulate and prove such results: 
 

− we denote the O –the derivative of ( )( )W;; 21  by 
 

 ( ) ( )( )
( )

( )( ) ( )∑ ∏
=

−

=

−−==
q

rs

r

t

rs
ssr

r
r ;MLDW;;WG;

GW;;
1

0
22

2
21 , 51 ∈∧∈ uD. 0   

 

 

− we denote the function of the cumulative probability distribution of a standard normally 

distributed random variable and its first derivative, respectively by 
 

 ( ) GWH[
vxw

∫
∞−

−
=Φ 2

2

2
1
π

 and ( )( ) 21

2

2
1

y

H[ −
=Φ

π
;  

 

− we denote the strike of the considered option, the volatility of the underlying, the time until the 

expiration of the considered option and the (continuously compounded) risk free interest rate of 

return, respectively by 
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 ; , σ , τ , and U .  

 

����&URVV–*UHHNV�IRU�WKH�(XURSHDQ�FDOO�RSWLRQ�
 

In this subsection we provide the theoretical results regarding the cross–Greeks of the (vanilla) 

European call option. 
 

3URSRVLWLRQ��� /HW�WKH�XVXDO�K\SRWKHVHV�FRQFHUQLQJ�WKH�%ODFN–DQG–6FKROHV�HQYLURQPHQW�KROG��DQG�
OHW� ( )W;1 �DQG� ( )W; 2 �EH�WKH�SULFHV�RI�WZR�DVVHWV��ERWK�GHILQHG�RQ�[ ]10  , WW �ZLWK� 10 WW < ��,I�

� ( )( ) ( )∑
=

=
z

{

{
{ W;DW;;

0
221 , 51 ∈∧∈ |D. 0 � (8) 

WKHQ�

( ) ( ) ( )( )W;;GGHOWDFURVV }�~�� � 2
1

1
*
1Φ=− ��

( )( )
( )( )

( ) ( )( )[ ] ( ) ( ) ( )( )W;;GW;;W;;
GJDPPDFURVV ����� � 2

2
1

*
1

2
2

1
1

21

*
1

1

Φ+Φ=−
τσ ��

( )( ) ( )( )*
1

1
21 GW;;YHJDFURVV ����� � Φ=− τ �10�

( )( ) ( )( ) ( )*
2

*
1

121

2
G;UHGW;;WKHWDFURVV �

����� � Φ+Φ=− − τ

τ
σ �DQG�

( )*
2GH;UKRFURVV �

����� � Φ=− − ττ ��

ZKHUH� ( )( )( )
τσ

τστ 2log 2
21*

1
++= U;W;;G �DQG� τσ−= *

1
*
2 GG ��

 

3URRI� As the usual hypotheses concerning the Black–and–Scholes environment hold, we can attain 

the usual Black–and–Scholes valuation formula for the (vanilla) European call option for which the 

price of the underlying is ( )W;1 , defined on [ ]10  , WW  with 10 WW < , L�H� 
 

 ( ) ( ) ( ) ( )2111 G;HGW;WF �
Φ−Φ= − τ ,  (9) 

 

where 
( )( )

τσ
τστ 2log 2

1
1

++= U;W;G  and τσ−= 12 GG . 

 Then, by substituting relationship (8) into (9) we obtain the following approximation in 

terms of ( )W; 2  of the valuation formula (9): 
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 ( ) ( )( ) ( ) ( )*
2

*
121

*
1 G;HGW;;WF �

Φ−Φ= − τ ,  (10) 
 

 At this point, by determining in the ways which follow the first and (when necessary) the 

second order partial derivatives of relationship (10) with respect to ( )W; 2 , σ , τ  and U  

respectively, we obtain the investigated cross–Greeks: 
 

 
( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )( ) ( )

( )( ) ( ) ;                         *
2

2

*
2

1

*
1

2

*
1

1
21

*
12

1
1

*
1

2

GW;G;H

GW;GW;;GW;;WFW;GHOWDFURVV
�

����� �

∂
∂−

−
∂

∂+=
∂

∂=−

− Φ

ΦΦ

τ
 (11) 

 

now, noting that ( ) ( )
( ) ( )( )

( )( ) τσW;;
W;;GW;GW; 21

2
1

1*
2

2

*
1

2

=
∂

∂=
∂

∂
, by substituting this relationship and the 

expression of ( )()⋅Φ 1  into (11), after some algebraic manipulations, we obtain that 

( ) ( ) ( )( )W;;GGHOWDFURVV ����� � 2
1

1
*
1Φ=− ; 

 

 ( ) ( ) ( )
( )( ) ( )

( ) ( )( ) ( ) ( ) ( )( );                             2
2

1
*
12

1
1

*
1

2

*
1

1

2

*
12

2

2

W;;GW;;
GW;GGHOWDFURVVW;WFW;JDPPDFURVV ����� ������ �

Φ

Φ

+⋅

⋅
∂

∂=−
∂

∂=
∂

∂=−
 (12) 

 

now, noting that ( )
( ) ( )( )

( )( ) τσW;;
W;;GW; 21

2
1

1*
1

2

=
∂

∂
, by substituting this relationship into (12), after some 

algebraic manipulations, we obtain that 
( )( )
( )( )

( ) ( )( )[ ] ( )⋅Φ+Φ=− *
1

2
2

1
1

21

*
1

1

GW;;W;;
GJDPPDFURVV ����� �

τσ
 

( ) ( )( )W;; 2
2

1⋅ ; 

 

 ( ) ( )( ) ( )( ) ( )( ) *
2

*
2

1*
1

*
1

1
21

*
1 GG;HGGW;;WFYHJDFURVV  

¡�¢�£ £
σσσ

τ

∂
∂Φ−

∂
∂Φ=

∂
∂=− − ; (13) 

 

now, noting that ( )( ) ( )( ) ( )( )
;

W;;HGG ¤ 21*
1

1*
2

1 τΦ=Φ  and that τ
σσ

−
∂
∂=

∂
∂ *

1
*
2 GG , by substituting 

these relationships into (13), after some algebraic manipulations, we obtain that 

( )( ) ( )( )*
1

1
21 GW;;YHJDFURVV ¥�¦�§ § Φ=− τ ; 

 

                                                                                                                                                                                                 
10 Notice that vega is not a letter of the Greek alphabet. 
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( ) ( )( ) ( )( ) ( ) ( )

( )( ) ;                      *
2

*
2

1

*
2

*
1

*
1

1
21

*
1

GG;H
GU;HGGW;;WFWKHWDFURVV

¨

¨
©�ª�« «

τ
Φ

Φ
τ

Φ
τ

τ

τ

∂
∂−

−−−
∂
∂=

∂
∂=−

−

−

 (14) 

 

now, noting that ( )( ) ( )( ) ( )( )
;

W;;HGG ¬ 21*
1

1*
2

1 τΦ=Φ  and that 
τ

σ
ττ 2

*
1

*
2 −

∂
∂=

∂
∂ GG , by substituting 

these relationships into (14), after some algebraic manipulations, we obtain that 

( )( ) ( )( ) ( )*
2

*
1

121

2
G;UHGW;;WKHWDFURVV ­

®�¯�° ° Φ+Φ=− − τ

τ
σ

; 

 

 
( ) ( )( ) ( )( ) ( ) ( )

( )( ) ;                       *
2

*
2

1

*
2

*
1

*
1

1
21

*
1

GUG;H
G;HGUGW;;WFUUKRFURVV

±

±
²�³�´ ´

∂
∂−

−−−
∂
∂=

∂
∂=−

−

−

Φ

ΦτΦ

τ

τ

 (15) 

 

now, noting that ( )( ) ( )( ) ( )( )
;

W;;HGG µ 21*
1

1*
2

1 τΦ=Φ  and that *
1

*
2 GUGU ∂

∂=
∂
∂

, by substituting these 

relationships into (15), after some algebraic manipulations, we obtain that 

( )*
2GH;UKRFURVV ¶

·�¸�¹ ¹ Φ=− − ττ .  

 

����&URVV–*UHHNV�IRU�WKH�(XURSHDQ�SXW�RSWLRQ�
 

In this subsection we provide the theoretical results concerning the cross–Greeks of the (vanilla) 

European put option. 
 

3URSRVLWLRQ��� /HW�WKH�XVXDO�K\SRWKHVHV�FRQFHUQLQJ�WKH�%ODFN–DQG–6FKROHV�HQYLURQPHQW�KROG��DQG�
OHW� ( )W;1 �DQG� ( )W; 2 �EH�WKH�SULFHV�RI�WZR�DVVHWV��ERWK�GHILQHG�RQ�[ ]10  , WW �ZLWK� 10 WW < ��,I�

� ( )( ) ( )∑
=

=
º

»

»
» W;DW;;

0
221 , 51 ∈∧∈ ¼D. 0 � (16) 

WKHQ�

( )[ ] ( ) ( )( )W;;GGHOWDFURVV ½2¾À¿ 2
1

1
*
1 1−Φ=− ��

( )( )
( )( )

( ) ( )( )[ ] ( )[ ] ( ) ( )( )W;;GW;;W;;
GJDPPDFURVV ÁÃÂÅÄ 2

2
1

*
1

2
2

1
1

21

*
1

1

1−Φ+Φ=−
τσ

��

( )( ) ( )( )*
1

1
21 GW;;YHJDFURVV ÆÃÇÅÈ Φ=− τ ��



 17 

( )( ) ( )( ) ( )[ ]1
2

*
2

*
1

121 −Φ+Φ=− − G;UHGW;;WKHWDFURVV É
ÊÃËÍÌ τ

τ
σ �DQG�

( )[ ]1*
2 −Φ=− − GH;UKRFURVV Î

Ï2ÐÀÑ ττ ��

ZKHUH� ( )( )( )
τσ

τστ 2log 2
21*

1
++= U;W;;G �DQG� τσ−= *

1
*
2 GG � 

 

3URRI� As the usual hypotheses concerning the Black–and–Scholes environment hold, we can attain 

the usual Black–and–Scholes valuation formula (9) and the usual put–call parity relationship 

between the prices of a (vanilla) European put option and of a (vanilla) call option for both of which 

the price of the underlying is ( )W;1 , defined on [ ]10  , WW  with 10 WW < , L�H� 
 

 ( ) ( ) ( )W;;HWFWS Ò
111 −+= − τ . (17) 

 

 Then, by substituting relationships (9) and (16) into (17) we obtain the following 

approximation in terms of ( )W; 2  of the put–call parity relationship 
 

 ( ) ( ) ( )( )W;;;HWFWS Ó
21

*
1

*
1 −+= − τ . (18) 

 

 At this point, by determining in the ways which follow the first and (when necessary) the 

second order partial derivatives of relationship (18) with respect to ( )W; 2 , σ , τ  and U  

respectively, we obtain the investigated cross–Greeks: 
 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( )( );                        2
1

1

21
22

*
1

2

*
1

2

W;;GHOWDFURVV
W;;W;;HW;WFW;WSW;GHOWDFURVV

Ô�Õ�Ö Ö

×
ØÃÙÍÚ

−−=

=
∂

∂−
∂

∂+
∂

∂=
∂

∂=− − τ

 (19) 

 

now, by substituting the expression of Û�Ü�Ý ÝGHOWDFURVV −  into (19), after some algebraic 

manipulations, we obtain that ( )[ ] ( ) ( )( )W;;GGHOWDFURVV Þ2ßÀà 2
1

1
*
1 1−Φ=− ; 

 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( )( );                            2
2

1

212
2

2

2
2

2
*
12

2

2
*
12

2

2

W;;JDPPDFURVV
W;;W;;HW;WFW;WSW;JDPPDFURVV

á�â�ã ã

ä
åÃæÍç

−−=

=
∂

∂−
∂

∂+
∂

∂=
∂

∂=− − τ

 (20) 
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now, by substituting the expression of è�é�ê êJDPPDFURVV −  into (20), after some algebraic 

manipulations, we obtain that 
( )( )
( )( )

( ) ( )( )[ ] ( )[ ]⋅−Φ+Φ=− 1*
1

2
2

1
1

21

*
1

1

GW;;W;;
GJDPPDFURVV ëÃìÅí

τσ
 

( ) ( )( )W;; 2
2

1⋅ ; 

 

 
( ) ( ) ( )( )

( )( ) ( )( )*
1

1
21

21
*
1

*
1

                        GW;;YHJDFURVV
W;;;HWFWSYHJDFURVV

î�ï�ð ð

ñ
òÃóÍô

Φ=−=
∂
∂−

∂
∂+

∂
∂=

∂
∂=− −

τ
σσσσ

τ
;  

 

 
( ) ( ) ( )( )

( );                        

21
*
1

*
1

U;HWKHWDFURVV
W;;;HWFWSWKHWDFURVV

õ
ö�÷�ø ø

õ
ùÃúÍû

−+−=

=
∂
∂−

∂
∂+

∂
∂=

∂
∂=−

−

−

τ

τ

ττττ  (21) 

 

now, by substituting the expression of ü�ý�þ þWKHWDFURVV −  into (21), after some algebraic 

manipulations, we obtain that 
( )( ) ( )( ) ( )[ ]1

2
*
2

*
1

121 −Φ+Φ=− − G;UHGW;;WKHWDFURVV ÿ
����� τ

τ
σ

; 

 

 
( ) ( ) ( )( )

( );                      

21
*
1

*
1

ττ

τ

−+−=

=
∂
∂−

∂
∂+

∂
∂=

∂
∂=−

−

−

�
���
	 	

�
����


;HUKRFURVV
W;;U;HUWFUWSUUKRFURVV

 (22) 

 

now, by substituting the expression of ���
� �UKRFURVV −  into (22), after some algebraic manipulations, 

we obtain that ( )[ ]1*
2 −Φ=− − GH;UKRFURVV �

����� ττ .  

 

 

��� )LQDO�UHPDUNV�IRU�IXWXUH�UHVHDUFK�
 

We conclude this paper by presenting few remarks for possible extensions of our work: 
 

− First, the approximating fifth order polynomial reported in 7DEOH�� is probably unnecessarily 

high. Some aspects of the validation procedure, like, for instance, the determination of the 

validation data subset or the specification of the validation criterion need to be carefully verified 

by means of further applications of our three–step methodology and, on the basis of the 

information obtained further refinements are desirable. 

− Second, in subsection ��� we provide an out–of–sample check which is only visual.  It is 

probably suitable to develop it in a more formal way (like, for instance, the one given by a set of 

proper indices) in order to get more objective validation information; 
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− Finally, we have shown that our approach offers opportunities for possible generalizations. In 

fact, our three–step methodology can be developed in order to analyze, beyond time no–lagged 

bivariate dependence relationships like ( ) ( )( ) ( )WW;IW; ε+= 21 , also time lagged bivariate 

dependence relationships like, for instance, ( ) ( ) ( )( ( )) ( )W7W;W;W;IW; ε+−−= 2221  , ,1 , � , 

with 01∈7 , time no–lagged multivariate dependence relationships like, for instance, 

( ) ( ) ( ) ( )( ) ( )WW;W;W;IW; � ε+=  , , , 321 � , with 01∈, , and time lagged multivariate dependence 

relationships like, for instance, ( ) ( ) ( ) ( )( ( ), , , ,1 , 322221 W;7W;W;W;IW; −−= �  

( ) ( ) ( ) ( ) ( ))���� 7W;W;W;7W;W; −−−−  , ,1 , , , , ,1 333 ��� , with , , 0
1  , , 1∈�77 � . Moreover, 

also our theoretical results concerning the cross–Greeks can be generalized in order to take into 

account, beyond “ standard”  underlyings of the investigated (vanilla) European options, and also 

underlyings like, for instance, currencies and futures contracts. 
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7DEOH����
 

Energy asset: crude oil 
Set 0LQLPXP� 0D[LPXP� Mean Median Stan. dev. Skewness Kurtosis 

�'  10.8000 26.6100 18.4145 18.4100 3.2108 0.0862 –0.1969 
�'  11.3600 37.0000 25.6444 26.6700 5.9660 –0.5178 –0.5487 
�'  17.4800 32.3000 24.2956 26.0200 3.8651 –0.2215 –1.4887 
'  10.8000 37.0000 20.9529 19.7600 5.3571 0.6041 –0.2614 

 

Energy asset: gasoline 
Set 0LQLPXP� 0D[LPXP� Mean Median Stan. dev. Skewness Kurtosis 

�'  0.2907 0.7639 0.5339 0.5319 0.0925 –0.1089 –0.3639 
�'  0.2930 1.1093 0.7330 0.7514 0.1775 –0.4763 –0.5422 
�'  0.4622 1.0120 0.6860 0.6679 0.1527 0.5196 –0.7952 
'  0.2907 1.1093 0.6028 0.5750 0.1564 0.6909 0.0246 

 

Energy asset: heating oil 
Set 0LQLPXP� 0D[LPXP� Mean Median Stan. dev. Skewness Kurtosis 

�'  0.3008 0.7990 0.5121 0.5010 0.0964 0.3598 0.2283 
�'  0.2842 1.1052 0.7046 0.7389 0.2019 –0.1637 –0.8480 
�'  0.4691 0.8512 0.6626 0.6881 0.1020 –0.2607 –1.3261 
'  0.2842 1.1052 0.5791 0.5350 0.1602 0.8369 0.3973 
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7DEOH����
 

Random variables �� ,δ  Bilateral W –test Check on the 2,1δ –dep.  ! ,ρ  

( )W; "$# , ( )W; %  0.35407 5� 3� 0.40761 
( )W; &$' , ( )W; (*)  0.39259 5� 3� 0.49802 
( )W; , ( )W; (*)  0.48642 5� 3� 0.58000 
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7DEOH����
 

Random variables Polynomial approximation 
( )W; ) , ( )W;  ( ) ( )W;��W; +,$- 3619831687311ˆ +=  

( )W; .$/ , ( )W; 0*1  ( ) ( ) ( ) ( )W;�W;�W�;��W; 2*32*32*34 3
32 0393763509081169851697383809ˆ +−+−=  

( )W; 5 , ( )W; 6$7  ( ) ( )W;����W; 8$9: 026870038030ˆ +=  

( )W; , ( )W; ;*<  ( ) ( )W;��W; =*>? 794070129430ˆ +=  

( )W; ;*< , ( )W; @$A  
( ) ( ) ( ) ( )

( )W;�
W;�W;�W;��W;

B$C

B$CB$CB$CD C

4

32

000030               
002400068790877430806253ˆ

−
−+−+−=

 

( )W; A , ( )W; E  ( ) ( ) ( ) ( )W;�W;�W�;�W; FFFG*H 32 89758198411237713.2199870ˆ +−+−=  
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)LJXUH��� 

 

 
In both the graphs, the continuous uneven line represents the behaviour of ( )W; IKJ  in the out–of–sample data subset 
L' . In the graph on the right, the dotted uneven line represents the behaviour in L'  of the polynomial approximation 

of ( )W; IKJ  in terms of ( )W; M , L�H� ( ) ( )W;��W; NOKP 3619831687311ˆ += . In the graph on the left, the dotted uneven line 

represents the behaviour in L'  of the polynomial approximation of ( )W; QKR  in terms of ( )W; S�R , L�H� 
( ) ( ) ( ) ( )W;�W;�W�;��W; T�UT�UT�UV U 32 0393763509081169851697383809ˆ +−+−= . 
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In both the graphs, the continuous uneven line represents the behaviour of ( )W; W  in the out–of–sample data subset ' . 

In the graph on the right, the dotted uneven line represents the behaviour in X'  of the polynomial approximation of 

( )W; W  in terms of ( )W; , L�H� ( ) ( )W;����W; YKZ[ 026870038030ˆ += . In the graph on the left, the dotted uneven line 

represents the behaviour in X'  of the polynomial approximation of ( )W; \  in terms of ( )W; ]�^ , L�H� 
( ) ( )W;��W; _�`a 794070129430ˆ += . 
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In both the graphs, the continuous uneven line represents the behaviour of ( )W; b�c  in the out–of–sample data subset 

' . In the graph on the right, the dotted uneven line represents the behaviour in '  of the polynomial approximation 

of ( )W; b�c  in terms of ( )W; dKc , L�H� ( ) ( ) ( ) ( )−+−+−= W;�W;�W;��W; eKfeKfeKfg f 32 002400068790877430806253ˆ  

( )W;� hKi4000030− . In the graph on the left, the dotted uneven line represents the behaviour in j'  of the polynomial 

approximation of ( )W; k�l  in terms of ( )W; m , L�H� ( ) ( ) ( ) ( )W;W;�W�;�W; nnno�p 32 89758.198411237713.2199870ˆ +−+−= . 


