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Abstract. The phenomenon of comovements among asset prices has
received a lot of attention for several reasons (see, for some examples,
section 1). The increasing interest in this topic has been the reason of the
production of a large number of contributions. In this paper we propose
an investigating methodology for the non-linear modelling of bivariate
comovements. OQur approach leaves the ones presented in the recent lit-
erature. In fact, our approach, which is articulated in three steps, allows
the evaluation and the statistical testing of non-linearly driven comove-
ments between two given random variables. Moreover, when such an
(unknown) bivariate dependence relationship is detected, our approach
allows also to provide a polynomial approximation of it. Finally, we ap-
ply our three-steps methodology to some energy asset prices time series
traded in the U.S.A.. The goodness of the results is encouraging given
the novelty of the proposed investigating approach.

Keywords. Comovement, asset price, bivariate dependence, non-linear-
ity, comonotonicity, t-test, polynomial approximation, energy asset.
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1 Introduction

The issue regarding the phenomenon of comovements among asset prices has
received a lot of attention for several reasons:

— firstly, the knowledge of dependence relationships among the prices of given
stocks allows to obtain information about a not-ready-to—observe stock price
by suitably using the ready—to—observe ones. Moreover, it make also possible
cross—hedging and cross-speculation approaches;

— secondly, the presence, or less, of dependence in form of correlation among
the prices of assets traded in different countries is of interest to investors
who wish to allocate their capitals in mean—variance portfolios since, as
known, international diversification strategies work well when the considered
markets are little integrated;
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— thirdly, dependence among stock prices traded in different countries is of
interest to policy makers as such comovements can affect domestic consump-
tions;

— last, scholars and various institutions are interested in establishing and in
investigating the extent of integration level among financial markets.

The increasing interest in the topic of comovements in asset prices has been
the reason of the production of a large number of contributions in the spe-
cialized literature. In the next section we provide a short survey of the more
recent of such contributions. In particular, in most of these studies the various
authors make use of investigating approaches mainly based on autoregressive
heteroskedastic (ARCH) models, error correction models (ECMs), generalized
ARCH (GARCH) models, Granger causality based tests, multivariate cointe-
grations, structural vector autoregression (VAR) systems, lag-augmented VAR
(LA-VAR) systems, forecast error variance decomposition (VDC) approaches,
and vector error—correction models (VECMs).

As far as concerns the investigating methodology we propose in this paper,
it leaves the approaches listed above. In fact, our approach, which is articulated
in three steps, allow the evaluation and the statistical testing of non-linearly
driven comovements between two given random variables. Moreover, when such
an (unknown) bivariate dependence relationship is detected, our approach allows
also to provide a polynomial approximation of it.

The remainder of this paper is organized in the way which follows. As prem-
ised, in the next section we present a short review of the recent literature. In
section 3 we propose in detail our three-steps methodology. In section 4 we
provide the results of some applications of the proposed methodology to time
series of the prices of energy assets traded in U.S.A.. Finally, In section 5 we
give some concluding remarks.

2 A short review of the recent literature

In this section we give a short survey of the recent literature about the comove-
ments among assets prices.

Before to begin, notice that a significant percentage of the published contri-
butions concern cross-country dependence relationships.

In [6] the mechanism of international transmission of stock prices movements
is investigated by using a nine-market VAR system. In particular, the authors
trace out the dynamics of the responses in a given market to the innovations in
another given one. In [5], by using univariate and multivariate GARCH mod-
els, it is shown that the prices of several (to all apparencies) unrelated markets
reveal a persistent tendency to comove, even after accounting for the effects of
macroeconomic shocks. In [11] long-term and short-term dependence relation-
ships among the prices of six agricultural futures traded at the Chicago Board
of Trade are analyzed by using the ECM. In [7] the investigation of interde-
pendencies among stock prices is performed by using a LA-VAR system based
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approach. A significant advantage of this methodology consists in the fact that
it can be applied regardless of the presence, or less, of cointegration among the
considered stock prices. In [1] cointegration among stock prices traded in differ-
ent countries is investigated. In particular, the authors put in evidence that the
likelihood ratio tests of Johansen are sensitive to the specification of the time
lag amplitude in the VAR system.

Some other methodologies which are worth while mentioning are the ones
able to detect the presence, or less, of common cycles among asset prices. In (3]
a cointegration technique is utilized for testing the presence of long-run common
trends among stock prices and the interest rate, and co-dependence analyses are
performed for investigating the presence and the features of short-run common
cycles among the same quantities. In [4] linear and non-linear Granger causality
based tests are used to examine the dynamical dependence relationships between
spot and future prices. Finally, in [13] proper measures of dependence among
European stock markets are evaluated by using the multivariate extreme value
theory.

3 Our three—steps methodology

In this section we present in detail our methodology for the non-linear evaluation
of bivariate comovements. Since our approach is (softly) based on the concept
of comonotonicity, before of all we spend some words about this notion.

Comonotonicity is one of the strongest measure of dependence existing among
random variables. Limiting our interest to the bivariate case, given two random
variables X (t) and X,(t), both defined in [to, t1] with tg < 1, they are said to
be comonotonic if and only if:!

[Xl (t3) - X1 (tz)] [XQ (tg) - X‘z (tz)} >0 Y to, t3 : to 7—L t3 N\ 1o, 3 € [to,tl].
A few remarks about this relationship:

— two random variables are comonotonic if and only if they always vary over the
support (time) in the same direction, besides the quantitative laws describing
the dynamic behaviour of each of them;

— comonotonicity is an ON/OFF concept, in fact it is sufficient the existence
of a unique pair #5 and t3 for which [X; (t3) — X1 (t2)] [X2 (t3) — X2 (t2)] <0
to state that X; and X5 are not comonotonic. Of course, in such a case it
should be hard to uphold that, as X;(¢) and X5(¢) are not more comonotonic,
they are also not more dependent in some sense (in profiling our approach
we start from this latest remark).

Our methodology is articulated in three steps. Before to present in detail
each of them, we give a brief description of their contents:

! For other equivalent definitions of comonotonicity see (8}, [9] and [15].
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— in the first step we prcoose a simple index able to evaluate any interme-
diate degree of bivariate dependence from full countermonotonicity? to full
comonotonicity, and we provide some theoretical results about it;

— as this simple index provides only a point estimation of the considered bi-
variate dependence, in the second step we propose a procedure by which to
test the statistical meaningfulness of the index itself;

— once the statistical meaningfulness of the simple index has been proved,
in the third step we propose an a!gorithm able to provide a polynomial
approximation of the unknown bivariate dependence relationship.

3.1 The simple index

Let we start by considering two discrete-time time series, {Xi(t), t = t1, ...,
tn} and {X5(t),t =t1, ..., tn}. The simple index we propose for evaluating the
bivariate dependence between the random variables X;(¢) and X5 (¢) is defined
as follows:

TR SEIONS
A= X () =X t—_tlz)] [Xo(t) = X2 (6 —1)] <0 R
Br2=19 1 i (X1 (t) = X1 (¢ =) [Xa(8) = X2 (¢ '

Some remarks about this index:

— it is trivial to prove that d;2 € [—1, 1]. In particular, the two random
variables are countermonotonic if and only if §; 2 = —1, and are comonotonic
if and only if §; 2 = 1;

— beyond the propzrty reported in the previous point (property of normaliza-
tion of the first tipe), it is also trivial to prove that ;2 is defined for every
pair of discrete-time time series (property of existence), and that d12 = d21
(property of symmetry). Therefore, 4,2 is a scalar measure of dependence
in the sense illustrated in [14] at section 6;

— the fact that & o belongs to [—1, 1] makes this index of dependence directly
comparable with the well known and widely used Bravais-Pearson linear
correlation coefficient p1 2.3

As far as theoretical properties between d; o and p; o are concerned, we give
the proposition which follows.

2 Two random variables X1(t) and X2(t), both defined in [to, t:1] with to < ¢1, are said
to be countermonotonic if and only if [X; (t3) — X1 (t2)] [X2 (t3) — X2 (t2)] < 0 for
all t2, t3 such that t2 % t3 and t2, t3 € [to,tl].

3 Also p1,2 is a scalar measure of dependence in the sense illustrated in [14] at section
6.
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Proposition 1. Let f(-): Ry, — Ry be the bivariate dependence relationship
between X1(t) and Xo(t), i.e. X1(t) = f (Xa(t)) +€(t), where e(t) has the usual
meaning, and let f(-) be infinite times derivable in my = E (X2(t)). If

(%) .
f—-;—m2<iij>(—m2)i_j20‘v’j:2,...,+oo, (2)

where £ (.) indicates the i—th derivatives of f(-), then the bivariate dependence
relationship is affine.

Proof. As f(-) € C*®, we can expand it in Taylor’s series about mz as follows:

F(Xa(t)) = 78 L24ma) (X, (t) — my)’
— Z+oo f(t)(mz) E:’ O( >X2'—J(t)(-—m2)

After some algebraic manipulations, we can rewrite equation (3) as follows:

(3)

+o0 | +00 (7_)m i o ‘
@)= Zf 2) < .)(—mz)w X3(t). (4)

1=
j=0 [ i=j

Now, by substituting relationships (2) into (4) we obtain the following affine
bivariate dependence relationship between X (¢) and Xz(¢):

w225 ()
~ [ZZ‘:’T f(i)f!m” (z ’ 1) (—mz)"‘l] Xa(t) +(t). O

Notice that, if relationship (2) were extended also to j = 1, then relationship
(5) should begin

(3)

B FO(mg) (i i

500 = 3 T () (et <0
1=

i.e. there not should be more any dependence relationship between X (t) and

Xo(t), i.e. X1(t) and X»(t) should be independent.

As premised, the simple index we proposed here provides only a point es-
timation of the investigated bivariate dependence. In order to overcome this
drawback, in the next subsection we propose a procedure able to statistically
test the meaningfulness of the index itself.

3.2 The testing procedure

The “philosophy” of the procedural approach we propose here for testing the
statistical meaningfulness of §; 5 is similar to the one of the procedural approach
proposed in [10].

In the remainder of this subsection we present in detail our testing procedure
in the itemized form which follows:



140

— firstly, we define the random variable ds.1 2 as the index (1) applied to the
time series {X;(t), t = t1, ..., tn} and {X2(t), t = t1, ..., ty} once both
the time series have been shuffled according to the same independent and
identical uniform distribution (notice that, as the shuffling should destroy
any dependence relationship between X (t) and X5(t), ds.1 2 should be equal
to 0);

— secondly, we define the quantity Ad(1) = d12—0s,1,2, and generate the series
{A6(j),5=1,..., M} by shufling {X;(¢),t =t1,..., tn} and {Xa(t),t = t1,

., ti } as described in the previous point for M times (notice that, if X (¢)
and X,(t) were ; o—dependent, then Ad(1) should be different from 0);

— thirdly, we determine the estimations of the sample mean and of the sample

standard deviation of Ad, mas and sas respectively, as follows:

M M
mas = Z (61,2 — 0s;1,2(J)) and sas = Z (65:1,2(5) = mas)”;

— fourthly, recalling from basic statistics that

mas — (01,2 — 0s;1,2)

SA&/\/_

<2, N(0,1) as M — +c0,

for M large enough, we can perform the following bilateral t—test:

Ho: mas =0, i.e. X;(t) and X»(t) are independent . (6)
Hi: mas#0, i.e. X;(t) and X,(t) are 6, o—dependent’

in particular, the acceptance interval for the null hypothesis is ((—sas -
tas2) [VM =1, (sas-taj2) /M —1), where ty /s is the value taken by a
t—distributed random variable in correspondence of a pre—established confi-
dence interval « for given degrees of freedom;

— finally, if the null hypothesis presented in the previous point is rejected,
then we perform two more unilateral t—tests in order to verify whether
the 6; 2—dependence between X;(t) and X5(t) is negative or positive. In
particular, both such tests differ from the one introduced in the previous
point only in the alternative hypothesis, which is H;: mas < 0 in the negative
01,2—dependence case, and is Hi: mas > 0 in the positive é; ;—dependence
case.

Notice that, in order to reduce the amplitude of the acceptance intervals,
i.e. to reduce sA,;/\/M to sA(;/(cx/M), with ¢ > 1, one has to increase M to

[cQM 1 .4 Because of that, profitable applications of our methodology sometimes
could be time-consuming.

4[] is the minimal integer which exceeds the value taken by the expression inside the
notation itself.
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3.3 The polynomial approximation

If at the end of the testing procedure the null hypothesis has been rejected
in favour of the negative/positive §; —dependence between X;(t) and Xs(?),
then we begin to model in analytical way the unknown bivariate dependence
relationship X;(t) = f (X2(t)) + €(¢). In particular, we search for a polynomial
approximation of f(-) which is a properly truncated version of the equation (4),
i.e.

J
F(Xa(t) =D a; X3 (t) +r(J + 1), (7)
=0

J f(i) (ma) )

where J is the truncation order of the Taylor’s series (4), a; = > ;_; —%

(;2;)(=m2)*7, and r(J + 1) is a suitable remainder function.

Of course, in such an approach a crucial role is played by J. In order to detect
its “optimal” value, we propose the following algorithm whose search procedure
is based on a standard cross-validation technique, as suggested for empirical

work in [12] at section 4:

— we begin by considering as starting data set D the discrete-time bivariate
time series {(X1(t), X2(t)), t =t1, ..., tn};

— secondly, we suitably split D into two data subsets, the learning one Dy, and
the validation one Dy, such that Dy, U Dy = D and Dy N Dy = 0;°

— thirdly, we consider a finite series of polynomials of kind (7) with J =0, ...,
J, where J is a pre-established integer value;

— fourthly, for each of the polynomials considered in the previous point we
estimate the parameters ao, ..., ay via ordinary least square regression by
using the data subset Dy, and evaluate the index 612 between Xi(t) =

Z};o ?ing (t) and X,(t) by using the data subset Dy ;®
— finally, we choose as “best” approximating polynomial the one to which is

associated the highest absolute value of ¢; ».

Notice that the fact of identifying the “optimal” approximating polynomial
by using a cross—validation approach, i.e. to perform the ordinary least square
by using the learning data subset and to evaluate the validation criterion [y o]
by using the validation data subset, allows to strongly avoid overspecialization
of the polynomial itself.

4 Applications to energy asset prices time series

In this section we give the results of some applications of our three-steps method-
ology to the prices time series of some energy asset traded in the U.S.A..
In general terms, for each application we act as follows:

> The way in which to suitably split D is made clear in subsection 4.2.
® . indicates the estimator of the quantity below.
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— we start by considering the discrete-time bivariate time series {(X1(f),
Xo(t), t=t1, ..., tN};

— from the time series introduced in the previous point we split the chronologi-
cally last 10 per cent of its realizations in order to utilize them as forecasting
data subset Dp at the end of the application for performing a rough out-of-
sample check. We use the rema:1ing 90 percent of the discrete .me bivariate
time series as the starting data set D;

— we split D into the learning data subset Dy (the chronologically first 70 per

cent of its realizations) and the validation data subset Dy (the chronologi-

cally last 30 per cent of its realizations);’

finally, we perform our methodology by using I’ and Dy .

4.1 The data

Each discrete-time univariate time series we utilize here is constituted by 2,026
daily spot closing prices of three energy assets traded in U.S.A.: the crude oil,
the gasoline, and the heating oil. Such prices have been collected from January
3, 1884 to February 6, 2002. In the remainder of this subsection and in the next
one, we refer to these time series respectively as {Xco(t), t = t1, ..., t2,026 )+
{.X(;'(t) ,t=1t1, ..., tg}ggs}, and {XHo(t), t=1t1, ..., tg’oge}.

As far as concerns the discrete-time bivariate time series whose non-linear
comovements we investigate here, we consider all the ones forecoming from the
simple disposition of the discrete—time univariate time series listed in the previ-
ous paragraph, i.e. {(Xco(t), Xs(t), t =11, ..., ta,026}, {(Xco(t), Xno(t)),
t=ty, ..., taozs}, {(Xa(t), Xco(t)), t =t1, ..., taoss}, {(Xc(t), Xnol(t)),
t = t1, ..., taozs}, {(Xro), Xco(t)), t = t1, ..., t202}, and {(Xno(?),
Xg(t), t=1t1, ..., t2026}

Notice that, given the percentages set in the previous itemization with regard
to the data subsets implied in each application, the cardinalities of these same
data subset are the following: #{Dr} = 1,277, #{Dv} = 547, and #{Dr} =
202.

4.2 The results

As premised, here we provide and illustrate the results of the applications of our
three—steps methodology to the discrete-time bivariate time series listed in the
previous subsection. The exposition of these results is organized in two tables,
and in some figures.

As far Table 1 is concerned, before to report it we need to specify the content
of each of its columns:

— the first column indicates the two random variables specifying the discrete—
time bivariate time series which has investigated;

" The percentages we set for Dy and Dy are the ones usually utilized in several empir-
ical works using cross-validation techniques (see, fc: example, [2] and the references
therein).
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— the second column reports the value of the simple index d; ;, with ¢, 7 € {CO,
G, HO} and i # j, evaluated on the learning data subset Dy, (see, for more
details, subsection 3.1);

— the third column provides the response of the bilateral t—test (6):8 label
“A” or label “R” for, respectively, the acceptance or the rejection of the null
hypothesis (see, for more details, subsection 3.2);

— if the null hypothesis of the bilateral t—test (6) is rejected, then the fourth
column gives the response of the check, based on two more unilateral t—tests,®
whether the §; o—dependence between the two investigated univariate time
series is negative, label “N”, or positive, label “P” (see, for more details,
again subsection 3.2);

— the fifth column gives the value of the Bravais-Pearson linear correlation
coefficient p; ;, with i, j € {CO, G, HO} and i # j, evaluated on the
learning data subset Dy, (we report the value of this coefficient for possible
comparisons).

Finally, we recall that the property of symmetry holds for the simple index
(1), i.e. 8;; = &;,; for all 4, j such that 1, j € {CO, G, HO}.

Table 1.

Random variables 0i,5 Bilateral t—test Check on the 61 2—dep.  pi;

Xco(t), Xa(t)  0.35407 R P 0.94139
Xco(t), Xuo(t) 0.39259 R P 0.91178
Xa(t), Xuo  0.48642 R P 0.85118

A few remarks about the results reported in Table 1:

— the fact that &;; is statistically significantly different from 0 for all ¢, j
such that 4, 5 € {CO, G, HO} and 1 # j (see jointly the second and the
third column of Table 1) indicates the existence of a bivariate dependence
relationship between X;(t) and X;(t) for all ¢, j such that 7, j € {CO, G,
HO} and @ # j;

— recalling that the Bravais-Pearson coeflicient measures only the linear cor-
relation, the fact that §; ; is significantly different from p; for all 4, j such
that i, j € {CO, G, HO} and 1 # j (see jointly the second and the fifth
column of Table 1) puts in evidence the presence of non-linearities in the
bivariate dependence relationships presented in the previous point;

— the fact that é; ; and p; ; are both positive for all 7, j such that ¢, j € {CO,G,
HO} and i # j (see jointly the second and the fifth column of Table 1 again)
can be interpreted as an indicator of the positiveness of the dependence

8 In performing this bilateral test we set M = 100 and o = 5%.
® Also in performing these unilateral tests we set M = 100 and o = 5%.
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between X;(t) and X;(t) for all 4, j such that 4, j € {CO, G, HO} and

i

Also as far Table 2 is concerned, before to report it we need to specify the
content of each of its columns:

— the first column indicates the two random variables specifying the discrete—
time bivariate time series which has investigated;

— the second column provides the estimation of “best” polynomial approxima-
tion of the unknown bivariate dependence relationship between X;(t) and
X;(t) for all 4, j such that ¢, j € {CO, G, HO} and i # j (see, for more
details, subsection 3.3).

Table 2.
Random variables Polynomial approximation
Xco(t), Xa(t) Xco(t) =1.68731 + 31.36198 X (t)

Xco(t) = —9.38380 + 97.98516 X yo(t) — 116.50908 X %5 (t)+
Xoo(t), Xaolt) +63.03937X 30 (1)
Xc(t), Xcol(t) Xa(t) =0.03803 + 0.02687Xco(t)
Xa(t), Xno(t) X (t) =0.12943 + 0.79407X gro (t)

Xno(t) = —3.80625 + 0.87743X co(t) — 0.06879X %o (t)+
Xuo(t), Xco(t) +0.00240X2 5 (¢) — 0.00003X 24 o ()
Xno(t) = —0.19987 + 2.37713X(t) — 2.98411X2(t)+

XHo(t), Xa(t) +1.89758X2.(t)

Some remarks about the results reported in Table 2:

— the fact that the degree of the “best” polynomial approximation is greater
than 1 in a significant percentage of the considered cases confirms the pres-
ence of non-linearities in some of the investigated bivariate dependence re-
lationships;

— with specific regard to the fifth polynomial approximation, the fact that
the coefficients associated to the highest powers of Xco(t) are evidently
close to 0, i.e the fact that their “explanatory contributions” are probably
negligible, i.e the fact that the degree of the approximating polynomial is
probably unnecessarily high, can be interpreted as a symptom of the need
that the validation procedure we propose and use here has to be probably a
little bit refined.

Finally, at the end of this section we utilize all the polynomial approximations
reported in Table 2 applying each of them to the proper data subset Dg. By so
doing, we provide an out-of-sample visual check (see Fig. 1 to Fig. 3) of the
goodness of our three-steps methodology.
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Fig. 1. In both the graphs, the continuous uneven line represents the behaviour of
Xco(t) in the out-of-sample data subset Dp. In the graph on the right, the dotted
uneven line represents the behaviour in Dr of the polynomial approximation of Xco(t)
in terms of X¢g(t), i.e. Xco(t) = 1.68731 + 31.36198X (). In the graph on the left,
the dotted uneven line represents the behaviour in Dr of the polynomial approxi-
mation of Xco(t) in terms of Xpo(t), i.e. Xco(t) = —9.38380 + 97.98516 X yo(t) —

116.50908X %o (t) + 63.03937X %0 (2).
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Fig. 2. In both the graph, the continuous uneven line represents the behaviour of X¢g(t)
in the out—of-sample data subset Dr. In the graph on the right, the dotted uneven line
represents the behaviour in Dg of the polynomial approximation of X¢(t) in terms of
Xco(t), i.e. Xg(t) = 0.03803 + 0.02687Xco(t). In the graph on the left, the dotted
uneven line represents the behaviour in Dg of the polynomial approximation of X (t)
in terms of XHo(t), i.e. Xg(t) = 0.12943 + 0.79407XHo(t).




Price
45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0B85 0.90
T T v - T

[

146

1
=

1.0

Price

05 06 07 08 09
T T - T

\

! /\\\"\\J\ /j\\\v\f:
/

) WAS

1/\ %4

2 9 17 27 37 47 57 €7 77 87 97 109 122 135 148 16

0.4

174 187 20C

Time Time

Fig. 3. In both the graph, the continuous uneven line represents the behaviour of
XHo(t) in the out—of-sample data subset Dp. In the graph on the right, the dotted
uneven line represents the behaviour in Dp of the polynomial approximation of X o (t)
in terms of Xco(t), i.e. Xmo(t) = —3.80625 + 0.87743Xco(t) — 0.06879X2,(t) +
0.00240X2 5 (t) — 0.00003X&o(t). In the graph on the left, the dotted une-en line
represents the behaviour in Dp of the polynomial approximation of Xgo(t: ia terms
of Xg(t), i.e. Xno(t) = —0.19987 + 2.37713 X (t) — 2.98411 X4 (t) + 1.89758X(¢).

Notice that, although in the graph on the right of Fig. 3 the pc..:omial
approximation of Xgo(t) in Dp is generated by the approximating polynomial
whose degree is probably unnecessarily high, only the estimation X go(21) is
evidently poor. We can interpret it as an indication of the robustness of our
three-steps methodology.

5 Final remarks and open items

In this last section we synthetically present a few remarks concerning possible
lines of investigation for future improvements and developments of the three—
steps methodology we propose and use here:

— firstly, recalling that the degree of the fifth approximating polynomial re-
ported in Table 2 is probably unnecessarily high, surely all the validation
procedure (determination of the validation data subset, specification of the
validation criterion, ...) needs to be carefully verified by means of further
applications of our three-steps methodology, and, on the basis of the infor-
mation forecoming from such applications, it possibly needs to be properly
refined;

— secondly, recalling that in subsection 4.2 we provide an out—of-sample check
which is only visual, it is surely suitable to develop it in a more formal way

2 917 27 27 47 57 67 77 B7 97 1C9 122 35 148 16% 174 187 200
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(like, for instance, the one given by a set of proper indices) in order to get
from it more objective validation information;

finally, we put in evidence that our three-steps methodology offers opportu-
nities for possible generalizations. In fact, our investigating approach can be
developed in order to analyze, beyond time no-lagged bivariate dependence
relationships like X (t) = f (X2(t)) +€(¢), also time lagged bivariate depen-
dence relationships like X1 (t) = f (Xa(t), X2(t —1), ..., Xo(t — N)) +€(t),
with N € N time no-lagged multivariate dependence relationships like,
for instance, Xi(t) = f(Xa(t), Xs(t), ..., X1(t)) + €(t), with I € NO
and time lagged multivariate dependence relationships like, for instance,
‘Xl(t) =7 (Xg(t) , Xg(t—-l), ce Xg(t—]\/.g), Xg(t), X3(t—1), RN Xg(t—Ng),
oo X1(2), Xi(t=1), ..., X1(t = Np)) +¢€(t), with I, N1, ..., N; € NO,
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