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Abstract - In this paper we propose a model for
mean-variance portfolio selection in form of a
non-linear mixed integer programming problem. We take
into account the transaction costs, taxes and limited
divisibility of the stock. For finding the optimal
solution the combination of sub-gradient methods and

branch and bound ones is used.
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1l. Introduction

The <classical approach to the selection of
mean-variance portfolio allows the distribution of a
given capital amount (which 1s wusually assumed as

equal to one) between n different assets (among which
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at most one 1s riskless) in order to minimize the
total risk of portfolio, measured by its variance,
provided the final rate of interest.

This approach 1is realized by solving quadratic
programming problem with linear constraints. It should
be noted that in order to allow the easy solution of
the optimization problem, in this approach some most
simplifying hypotheses are supposed to be true:

(1.1) unlimited possibility of short sales of the
assets;

(1.2) infinite divisibility of the assets;

(1.3) absence of transaction costs;

(1.4) absence of taxes.

The need to specify in more realistic way the

portfolio selection approach encouraged many authors
to pose the problem in corrected form, imposing the
hypotheses weaker than (1.1) - (1.4).
It 1s of particular interest to weaken the second
hypothesis, that 1is, to formulate a problem in the
terms of the quantities of lots of assets, supposing
the restrictions on the minimal number of lots to be
acquired.The optimization problem,posed in such a way,
has been recently studied in Avella (1990),
Canestrelli and Corazza (1992) and Corazza (1991),
where different branch and bound (B&B) methods of its
solution have been proposed and also in Consiglio
(1993) by using the methods of simulated annealing.

In the present paper we propose our version of
the problem and an algorithm for finding optimal solu-

tion, the four hypotheses mentioned above being wea-
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kened.

In particular, in section 2. a mathematical model for
the selection of mean-variance portfolio is proposed,
which does not require any of four hypotheses. 1In
section 3. the algorithm for its solution is described
and some theoretical results, concernihg its
convergence,are proved. In the section 4. we give a
simple numerical example, 1illustrating the solution
procedure and in section 5. some considerations and

concluding remarks are given.
2, The mathematical model.

In this section we formulate a mathematical model
of portfolio selection, assuming that four hypotheses,
mentioned in section 1,are weakened. In particular,

(2.1) we impose the non-negativity restrictions
on the number of lots to be acquired in order to avoid
the possibility of short sales,which concerns only
some particular categories of investors.

(2.2) the model is formulated in the terms of
numbers of lots of assets, instead of percentages of
capital,the presence of minimal number of lots on sale
is assumed, because of the necessity for the investors
Lo operate with lots, consisting of fixed number of
assets. In particular, we pose our problem as a
problem of non-linear mixed integer programming, which

allows to consider the reqguirement to buy only some

h

ixed quantities of lots (or do not buy nothing) .

(2.3). a non-linear constraint is added, which
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corresponds to the transaction costs.

(2.4) another non-linear constraint is 1included
into the model for taking some form of taxation in
account.

Given these pfemises, the mathematical model for

portfolio selection 1is a mixed integer programming

problem:
[vmin (x'Vx)
s.t. (LPtx)’r =z niC
(LPtx)’e = {l-a-B)C
(2.1) | B, %) = oC
fz(x) = pC
x =z 0
| x € N,
where

x - an unknown vector ((n+l)xl) of the numbers of
lots to be acquired (for each asset);

V - a known nxn matrix of variance and covariance
of interest rates of assets, it 1is simmetric and its
elements are of the form:

o (i,3) = s(i)s(3)1(1)1(3),
where s(i) 1s a mean quadratic deviation of interest.
rate for ith asset , 1(i) is a minimal number of 1lots
of ith asset , which can be acquired;

L. - known diagonal matrix,

1, = (1) , 1.=0 izj;

i J

P -the matrix of the prices of assets at time t:
P (t) =p (), P =0 i#3;
ii i ij

r - known vector of mean values of interest rates

of assets;
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m - the rate of interest, which an investor
expects to obtain from his portfolio. It is necessary
that

(l-a-B)m =n = (l-a-B)__;
min max

C - initial capital of the investor;

e - vector ((n+l)xl), all elements of which are
equal to 1;
-a,‘ B - the scalar parameters, indicating,

respectively, the maximal percentages of capital to be
spent for the transaction costs and taxes. The
investor must choose

' a >0, B>0, a+B < 1;

fl(x) - the function of transaction costs for a
given portfolio x;

fz(x) - the taxes to be paid for the acquist of
the portfolio x;

I - set of the indices, corresponding to discrete
assets, I<{0,1,...,n};

0- the vector ((n+l)xl) with zero components.

The model in this form does not require the
hypotheses like 1-4. However, we should note that if
all the assets are discrete, then often it 1is
impossible to distribute all the capital C, that is to
satisfy the constraint

'(L&kx)'e = (l-a-B)C
and the feasible set would be empty in such case.

In order to avoid this undesirable situation .we
suppose that at least one of the assets is real (infi-
nitely divisible). This asset can be risky or it can
be a riskless bond (it is not important).
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lw

The algorithm for solving problem (2.1) .

In order to find an optimal solution, we suppose
that the functions f1’f2 are strictly pseudoconvex.
Recall that a function f(x), defined on the euclidean
space E%,is called strictly pseudoconvex, if at any
point yeEn the inequality f(x)<f(y) implies

(£"(y),x-y) < 0
The algorithm can be generalized for non-differentiab-
le functions, ‘but then it is more difficult to imple-
ment it. Practically, we use the combination ofAthe
cutting plane methods [Kelley,Demyanov,Vasilyev] and
branch and bound [Nemhauser,Wolsey].

The solution procedure consists of two stages.
First, we find an initial point X s satisfying the

following constraints:

( (LP x )'r =z 1C
t o

(LPtxO)’e = (1l-a-B)C
(3.1) 1 x =20, x eN VieI, x eR VieI,
0 0i . 0i
X = (X__,X_,X__,..,X ).
00’'" 01’02 on

Usually, there exists a feasible point, inbwhich only
two components are different from 0, one of which cor-
responds to risky asset and another to a bond.
In this case we obtain the following conditions:
PkkaOk+ POLOXOO= (l-a-B)C

r PLx +r PLx = 1C
k k k Ok 0o 0 00

X eN, x eR, x =0, x =0.
ok 00 Ok 00
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As typically r <r, ,1t 1s reasonable to take

(l-a-B)C
X = EE—— ,
0Ok P L
kK k
(l-a-B)C - PkkaOk

o0~ ' !
P L
00
0,=0, i#zk, 1i#0. The brackets mean the maximal
1
integer, which does not exceed the expression inside.

If for some k such point satisfies (3.1),we take it as
initial feasible point.

However, it can happen that no one of such points
satisfies (3.1) and a solution still exists. We think
that this situation has little probability, which can
be illustrated by some examples. In this case we pro-

pose to solve a knapsack type problem:

max rPLy
ePLy = (l1l-a-B)C
yz0

y, €N VieI, Y €R vieI, {0)eI.

For solving it the standard methods can be used, see,
for example [Martello, Toth].

If in the optimal solution y' of (3.1)

rPLy* =z niC

then we can set X = y‘. Otherwise the feasible set of
initial problem is empty and at least one of the para-
meters (m,a,B) 1is to be revised.

Suppose now that X, has been found.The second
stage of the algorithm is as follows.
Step 0 Find an initial point X, Let k=0. If £ (x)
= aC, fz(xo) = BC then let
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Else f = +w.
Step 1 If fl(xo)>aC then g, f;(xk) and go to step 4.
Step 2 If fz(xo)>BC then g,.= fé(xk) and go to step 4.

Step 3 g, 2ka

Step 4 Find a solution of the system
([ rPLx = mC

ePLx = (l1-a-B)C
) (gi,x—xi) < 0 1=0,1,2,...,k
xijZO, xijem (jel), xije R (jeIl),
X = (X ,X ,...,X ).
1 10’ 11 in

Denote it z. If there are no solutions, go to step 6.
Step 5 1If z is feasible,that is

'f1(2) = aC, £ (z)zs bC
and if also f(z)<f then let x =z, f =f(x ).

Let k:=k+1 and go to step 1 with X =Z.

Step 6 If f'=+o then STOP, %" is an optimal solution.
Else STOP, the feasible set is empty.

Note that at step 4 we should find a solution of
the system of linear inequalities and equation with
atmost n integer and at least one real variable. It
can be found, if we use any known branch and bound
- techniques (see [Nemhauser, Wolsey] and the references
therein) .

Theorem. In a finite number of iterations the
algorithm either finds an optimal solution or indi-
cates that the feasible set is empty.

Proof. For any 1i=0,1,...,n the values Pi,L1 are
positive, so the number of the points, satisfying

(3.2) ePLx = (1l-a-B)C
: x=0; xiem VieIl; xgeR Viel
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is finite. Any point X, satisfies the conditions (3.2)
and cannot be found more then once, so the algorithm
terminates in a finite number of iterations.

Suppose that at step 6 we have f° = +o. It means
that g, was always equal to f;(xi) or fé(xi) and thus

all the points x are infeasible. But the feasible set

belongs to the polyhedron, defined on step 4 and thus

is empty.

Finally, let £f5 2 +o. By construction, 1t means
that f(x*) = f(xk) for any k such that X is
feasible.

Then the system:
( rPLx = mC
ePLx = (l1l-a-B)C

* *
(2Vvx ,x-x ) < O

(g,,x—xi) < 0 1i=1,2,...,k
1

xz0; xjem Viel; xjeR Viel
has no solutions. But this polyhedron contains the fe-
sible set, intersected with the level set

| { yeEn| v 'Vy < xVx },
so there are no feasible solutions with the objective
function less than x'Vx . It means that x is a mini-
mum point. Thus the theorem is proved.

In some cases the convergence of such algorithm
can be slow, so it may be necessary to use some tools
for providing faéter convergence. Certainly, much de-
pends on the choice of the solution on step 4,
if there are many.

Remark 1 If k becomes too large, we can throw away

some equations (gi,x—xi)<0, for example, those that
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always were 1inactive during a fixed number of
iterations.
Remark 2 We should choose the points, which are
"deep" enough inside the feasible set. Choose a system
of orthonormal vectors ui,orthogonal to theAvector ePL
and a parameter a>0. Then it would be wise to require
that any point x# Aui should be feasible (without the
requirement that its coordinates should be integer).
Remerk 3 Most known methods do not work with strict
inequalities. Thus we can write instead

(gi,x—xi) = -g 1=1,2,...,k ,
where >0 is a fixed small positive number. It is to
be chosen with care in order not to lose some feasible
points.
Remark 4 We can use some linear objective function at
step 4,for example, maximize (gk_l,x) in order to "go

away" from the previous point.

4. Numerical example.

Suppose that we have two risky discrete assets and the
data for the portfolio selection are the following:
p= (3;7); 1(1)=1(2)=1; C=100;
r = (0.2;0.4); mn=0.25; a=0.1; RB=0.2

f (x) = 2 (V x1 + V x2 )

1

f (x) = 2x + 2x
2 1 2

0.6 -0.5

V= | S0.5 1

Then the mathematical model can be written as the
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following mathematical programming problem:
max 0.6 X2 + x° - x x
. 1 2 1
s.t. 0.6 X, o+ 2.8 X, = 25
3x + 7x_ = 70
1 2

"4 x, o+ 4 X, <5

X + X = 10
1 2

2

X X, 20; X1’Xz€N'

Obviously, we can take as an initial feasible
point the wvector (0;10). For the functions of costs
and taxes the constraints are satisfied, so we should
calculate the gradient of the objective function,which
is equal to (-10;20), letting also x‘:(O;lO),f‘:lOO.

Then we . .add the inequality

—10x1 + 2Ox2 < 200.

The next feasible point, which can be taken, is (0;9).
All the constraints are satisfied, so we should calcu-
late again the gradient of the objective function, it
is the vector (-9;18). The value of the objective fun-
ction at this point is 81, so let x =(0;9),f =81.

Thus the second constraint to be added is:

| -9x + 18x < 162. -
One of the possible solutions of our auxiliary linear
system 1is (2;9). However, for this point the con-
straint,given by the function of the taxes,is violated
and we must calculate the gradient of fa' which is the
vector (1;1) and add the inequality
X +x, < 11.

The next solution is the point (1;9). All the con-
straints are satisfied, the value of objective func-
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tion is 72.6, so x =(1;9),f =72.6.

Adding again the inequality, corresponding to the

gradient of the objective function at this point:
—7.8x1+ 17x2< 145.2 ,
we see that the set of feasible solutions is empty.

As f #+w , % = (1;9) 1is a point of minimum of
our objective function. It means that the investor
should buy one lot of first asset and nine lots of
second one.

The minimal possible risk,measured by the varian—

ce of portfolio, is equal to 72.8.

5. Final conclusions and considerations.

In respect to the mathematical model, presented
in section 2. and to theoretical results from section
3. the following final conclusions and remarks can be
given:

(5.1) two constraints, introduced 1in order to
consider the presence of transaction costs and taxes
do not require any particular hypotheses,it is enough
to suppose the differentiability and pseudo-convexity
of corresponding functions;

(5.2) for the solution of the problems with
integer variables it 1s not necessary to elaborate
complicated specific methods, one can apply the
combination of well known branch and bound and cutting
planetechniques, adjusting it to non-linear programs;

(5.3) the algorithm does not require that the

objective function should be quadratic, it must be
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only differentiable and pseudo-convex;

(5.4) the method of portfolio selection provides
the information about the "economic compatibility" of
the wvalues of parameters o,B8,m , assigned by the
investor, with real economic situation, in which the
investor plans to act. Indeed,if the choice of these
parameters 1is incoherent with economico - financial
system , the sets of feasible solution will have
little financial sense or even can be empty.

The main directions of future developments of the
model and algorithm, presented in this paper, would be
the following:

(5.5) it is intended to generalize the model as
well as the numerical algorithm ,allowing to use the
objective function and functions of costs ,which are
not necessarily pseudo- or gquasi-convex;

(5.6) it is important to analyse the sensitivity
with respect to the minimal numbers of lots, which can
be acquired. These values are exogenous for the model
and prove to be a powerful instrument of financial
policy of the Authorities of Exchange,being able to
influence significantly the optimal portfolio
selection, effectuated by the investors.

(5.7) 1t 1is necessary to make a large number of
experiments with the algorithm for solving the problem
of portfolio selection with costs and taxes, thus
comparing it with classical portfolio selection
methods. The application of our method to real
problems will allow to verify its practical utility.
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