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Abstract. In standard mean-variance portfolio selection, several simplifying hy-
potheses are usually assumed. On the contrary, in this paper we weaken some of the
most common of them, and we propose a problem of portfolio selection in which
the following realistic aspects are taken into account: the impossibility of short sale
of the assets; their not infinite divisibility; and the presence of transaction costs
and taxation. The mathematical formulation of this selection problem is given in
term of a mixed-integer non-linear programming one. In order to find its optimal
solution (if any), we developed a two-stage solving algorithm (which is based on
the branch and bound method, on the cutting plane one, and on the sub-gradient
method), and we prove its convergence in a finite number of iterations.
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1 Introduction

It is well known that the classical approach to the mean-variance port-
folio selection allows the distribution of a given initial capital (which
is usually assumed equal to 1) among n different assets (of which at
most one is riskless) in order to minimize the total risk of the portfolio
(which is measured by its variance) provided a proper rate of return
the investor whishes to obtain (see, for standard and advanced in-
troductions, [Szegd, 1980], [Elton et al., 1984}, [Markowitz, 1989] and
[Markowitz, 1991]). Generally, also in order to allow an easy solution
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of the corresponding programming problem, in such an approach sev-
eral simplifying (but unrealistic) hypotheses are usually assumed. In
particular, the most common are:

1.1 the possibility of short sale of the assets;
1.2 their infinite divisibility;

1.3 the absence of transaction costs;

1.4 the absence of taxation.

The need to specify in a more realistic (and also operative) way
the portfolio selection approach encouraged many Authors to consider
the corresponding problem in a more suitably general form, taking
into account hypotheses weaker than 1.1 to 1.4. In particular, there
already exist some portfolio selection models in which the hypothesis
1.2 is weakened and the corresponding programming problem is for-
mulated in terms of lots of assets' (see, for example, [Avella, 1990,
[Corazza, 1991], [Canestrelli et al., 1992] and [Corazza et al., 1999]).

In this paper we propose a portfolio selection problem, and solve
it, in which all the above listed hypotheses are weakened. In details: in
section 2 we present the mathematical programming problem related
to the considered mean-variance portfolio selection one; in section 3
we propose our two-stage solving algorithm and we give a theoretical
result on its.convergence; in section 4 we present a simple numerical
example; and in section 5 we give some final remarks.

2 The model

In this section we present our formulation of the mathematical pro-
gramming problem corresponding to the considered portfolio selection
model. In particular:

— we formulate the model in terms of number of lots instead of per-
centages of capital (weakening of the hypothesis 1.2); in details, we
pose our programming problem as a mixed-integer non-linear one;

— we consider non-negativity constraints on the number of lots, so
avoiding the possibility of short sales (weakening of the hypothesis
1.1);

— we take into account a first non-linear constraint associated to the
transaction costs (weakening the of hypothesis 1.3);

! A lot is the minimal prefixed (integer) quantity of a given asset which is possible
to buy or to sell.
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— we take into account a second non-linear constraint associated to
the taxation (weakening the of hypothesis 1.4).

Given these premises, we mathematically formulate the considered
portfolio selection problem as the following mixed-integer non-linear
programming one:

min f(z) =2'Vz
s.t. (LPz)'r >nC
fi(z) £ aC
fa(z) < BC (1)
(LPz)e=(1-a—-B)C
z; >0 ViE{l,...,’n}
z; € Nvijel
where
z € R™ is the unknown vector of the quantities of lots to buy;

V € R™ x R™ is the known matrix of variance and covariance of the
lot returns; its elements have the form

V(i,5) = [o(@)l@)][e (1)U)e 6 7),

in which o (v) is the standard deviation of the return of the v-th asset,
I(v) is the prefixed number of assets constituting the v-th lot, and
p(v,w) is the correlation coefficient between the return of the v-th
asset and the return of the w-th one;

L € N® x N” is the known diagonal matrix of the number of assets
constituting each lots; its elements have the form

. () e N\ {0} if 1=
L(i,g) = { (@ ENVOE =
0 if is#7
P e RTU{0})™ x (RT U{0})" is the known diagonal matrix of the
asset prices at the current time; its elements have the form

.. p(i) e RT\ {0} if i=3
P(i,j) = Q {0 e . s
0 if i#7
r € R™ is the known vector of the mean values of the asset returns;
7 is the known return rate which the investor wishes to obtain from

the portfolio; notice that, because of the presence of the non-negativity
constraints, it is necessary to impose

(]_ - — ﬁ)’rmm <7< (1 — - ;B)rmaxa



24 Mikhail Andramonov and Marco Corazza

in which 7qin = min{r;, ¢ = 1,...,n} and Tmax = max{r;, i =
1,...,n};

C is the initial capital available to the investor;

f1(-): R® — R is the non-linear function associated to the transaction
costs;

f2(): R™ — R is the non-linear function associated to the taxation;

a and 3 are known scalar parameters indicating the maximal percent-
ages of the initial capital which is possible to spent, respectively, for
the transaction costs and for the taxation; in particular, the investor
has to choose a and 3 such that

>0, B>0and a+8<1;?

e € R™ is a vector whose elements are all equal to 1;
T € N™, with m < n, is an unknown vector whose elements belong to
z.3

Notice that, in general, if m were equal to n, then it could be often
impossible to distribute all the capital (1 — a — 3)C among the assets,

that is (in equivalent terms) to satisfies the constraints
(LPz)'e= (1-a—-pP)C;

in such a case the feasible set should be empty.

In order to avoid this undesirable situation, we suggest, among
the others, the two following possible solutions (to use alternatively or
jointly):

— substituting the considered constraint with its “inequality version”
(LPz)e < (1 —a-pB)C;

— imposing the existence of at least an infinitely divisible asset.

3 The algorithm for solving problem (1)

In order to find an optimal solution of the mathematical programming
problem (1), on the following of this paper we assume:

2 Notice that without the third restriction, i.e. without a + 8 < 1, the considered
problem could become meaningless because fi(z)+ f2(z), which is equal to (o +
B)C, could be equal to or greater than the initial capital available to the investor.

3 On the following, we denote by I the set of the indexes corresponding to the not
infinitely divisible assets.
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— that the function f1(-) and fa(-) are both strictly pseudo-convex*
(notice that the solving algorithm we propose in this section could
be also generalized for non-differentiable fi(-) and fa(-), but that
the corresponding practical implementation should be more diffi-
cult than the one we present here);
— that all but at most one assets are not infinitely divisible; in par-
ticular, if such an infinitely asset there exists, then we let i=2
and I ={2,...,n};else weleti=1and I ={1,... , T}

To realize our algorithm we use a suitable combination of the
branch and bound method (see [Omprakash et al., 1985] and )[Nem-
hauser et al., 1988], of the cutting plane one (see [Kelley, 1960] and
[Demyanov et al., 1985]) and of the sub-gradient method. The final
solving procedure consists of two stages.

3.1 First stage

At first we find an initial point z¢ satisfying the system of constraints
which follows:

((LPz)'r > nC
(LPz)e=(1—-a—-pB)C (or (LPz)e< (1 —a-pF)C) (2)
z(i)>0Vie{l,...,n}

(
k:c(vj)EN\/iEI

In order to make easy the finding of this initial point, we assume
that an infinitely divisible asset exists, namely zo(1). Now, it is usually
easy enough to find an initial point characterized by only two compon-
ents which differ from 0. In fact, if there exists a k € {2,...,n} such

4 Recall that a real valued function f(-) on the Euclidean space E. is defined
strictly pseudo-convex if at any point y € En the inequality f(z) < f(y), with
z € E,, implies the inequality (V(f(y)),z —y) < 0, in which (-,-) indicates the
inner product operator.
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that

(p(1)1(1)z0(1)r(1) + p(k)l (k) zo(k)r(k) > nC

p(1)U1)zo(1) + p(k)l(k)zo(k) = (1 — a = B)C (or p(1)I(1)zo(1)+

) +p(k)l(k)zo(k) < (1 - — B)C)
zp(1) >0

zo(k) >0

\.’Eo(k‘) eN

(3)

then we obtain such an initial point in which

. _|a-a-p)C
wo(k) = | T
T (1) _ (1 - — ﬂ)c - l<k)p(k)x0(k)
o 1(0)p(0) !

zo(i) =0V ie{2,...,n}\ {k}

where

|| means the maximal integer value which does not exceed the value
-of the expression inside.

Of course, it could happen that the system (3) is not satisfied for
any k € {2,...,n} but that an initial point satisfying the system
(2) still exists. Although we conjecture that this occurence is highly
unlikely, in order to find the related initial point we propose to solve
the knapsack type problem which follows (by using standard methods
like the ones presented in [Martello et al., 1990)):

max (LPy)'r

st. (LPy)e=(1—-a—-p0B)C (or (LPy)e<(1—-a-p)C)
vy >20vVie{l,...,n} '
yy €NV el

If the optimal solution y* of this problem is such that (LPy*)'r >
7C, then we let zg = y*; else it results that the corresponding feasible
set is empty and at least one of the (financial) parameters 7, o and 3
has to be properly revised.
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3.2 Second stage

In the second stage, given an initial point zo, we find an optimal solu-
tion of the problem (1) by using the following algorithm we originally
developed:

step 0: let h = 0;

step 1: if fi(xs) < aC and fa(zr) < BC, then let z* = zp, f* = f(zn)
and go to step 4;

step 2: if fi(zn) > aC, then let g, = V(fi(zr)) and go to step 5;

step 3: if fo(z) > BC, then let g = V(f2(zx)) and go to step 5;

step 4: let gn = V(f(zp)) = 2Vzp;

step 5: find a solution of the auxiliary system

'(go,:c——:vo) <0

1 ;
{gn,z—zn) <0

\.’Bh(j)ZO \7’jE{l,.,.,n}ll:I:h(j)ENVjEI

if such a solution there exists, then denote it z; else go to step 7;
step 6: if f(z) < f*, then let h = h+1, z, = z and go to step 1;
step 7: if f* # +oo, then stop and release z* and f*; else stop and
indicate that the feasible set is empty.

Notice that in order to solve the system at step 5, the integrity
constraints are “managed” by standard branch and bound techniques,
like the ones in [Nemhauser et al., 1988] and in the references therein.

As far it is concerned the solving algorithm proposed in this second
stage, we give and prove the following theoretical result.

Theorem If all the assets but al most one are not infinitely divisible,

then in a finite number of iterations the algorithm either finds an

optimal solution or indicates that the feasible set is empty.

Proof For any i =3, ... ,n, both [(i) and p(%) are positive and finite,

so the number [ of initial points satisfying the system
(LPz)'e=(1—a—-B)C (or (LPz)e < (1 —a-p)C)
z(@i)>0vie{l,...,n} (4)
z(j)eNV jel

is finite.® In particular:

$ Do not confuse the number I of initial points satisfying the system (4) with the
counter h used in the algorithm.
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— if all the assets are not infinitely divisible, i.e. 2 = 1, then each z(%),
with ¢ = 1,...,n, can assume value in a set, X; = {0,1, ..., [(1—a—
B)C/l(i)p(i)]}, whose cardinality is [(1 — a — B)C/I(i)p(i)] +1 <
+00; so, the number of all their possible combinations (in the sense
of the cardinality of the set X1 x Xy x --- x Xj,) is finite;®

— if all the assets but one are not infinitely divisible, i.e. i = 2,
then for all the finitely divisible assets is true what proved in the
previous point; because of that, also (1), which is residually equal
to (1 —a—B8)C =3 %, l(@)p(i)zo(i)] /I(1)p(1), can assume value
in a set whose cardinality is finite; so, again, the number of all the
possible combination of z(%), with ¢ = 1,...,n, is finite;

— if the number of assets which are infinitely divisible is 2 < % < n,
then the number of initial points satisfying the “residual” system

{ S D)p(0)z(E) = (1 — a = f)C — Tz Ua)p(@)o(d)
z(j) >0V je{l,...,3}

is not finite when such a system admits not trivial solutions, that is
when (z*(1),...,z*()) # (0,...,0), that is when (1 —a - 8)C —
> i L@)p(3)zo(3) > 0.
Each of the initial points satisfying the system (4) can not be found
than once; so, the algorithm can iterate at most I < +oco times.
Now, we prove that the algorithm finds an optimal solution in a finite
number of iterations when such a solution exists. If for some of the ini-
tial points z3, withp € {1, ... A< +oo}, f* differs from +oo at step 7,
then by construction f* < f(z;) for all z; such that ¢ € {0,...,h} and
z; is feasible; because of that, the system

((LPz)'r > nC

(LPzp)e=(1—a- B)C (or (LPzo)e<(1—a-5)C)
(2Vz*,z—z*) <0

< .(go?:c — :Uo) <0 (5)
(gh,x—xh> <0

z(i) >0Vie{l,...,n}

lz(j)eNV jel

® Notice that, in general, [ is less than or equal to this number of combinations.
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does not admit solutions. In particular, again by construction, this sys-
tem specifies a polyhedron to which belongs the intersection between
the feasible set of the starting mathematical programming problem
and the level set {y : ¥'Vy < z*'Vz*}; so, because the system (5) does
not admit solution, then the considered intersection is empty and z*
is an optimal solution.

Finally, we prove that the algorithm indicates in a finite number of
iterations that the feasible set is empty when the starting mathematical
programming problem does not admit solution. If for all the initial
points z;, with ¢ = 1,...,] < +oo, f* is equal to +oo at step 7,
then each g;(z;), with i = 1,...,[, is always equal to Vfi(z;) or to
V fa(z;), that is all the considered z; are unfeasible. So, the system
(5) does not admit solution for any initial point z;, withi=1,...,[;
consequently, the polyhedron implied by this system is an empty set,
from which forecomes that also the related feasible set of the starting
mathematical programming problem is empty. u

Notice that in some cases the convergence of the proposed al-
gorithm can be slow; because of that, in these cases it could be useful
to utilize some techniques able to provide faster convergence (for in-
stance, much depends on the choice of the solution of the system in
step 5 when they are many).

Moreover, for the ordinary utilization of the considered algorithm
it can be useful to take into account the following suggestions:

— if h becomes large, then one could throw away from the system in
step 5 some of the inequalities (g;,z — z;) < 0, with i =0,... A,
choosing, for example, the ones that results inactive during a pre-
fixed number of iterations;

— among all the initial points satisfying the system (4), one should
have to choose as starting one a point which is “sufficiently deep”
in the feasible set;

— recalling that several optimization methods do not work with strict
inequalities, in order to solve the system in step 5 by using such
methods one has to replace each {(g;,  — z;) < 0 with (g;,z — ;) <
e for all i € {1,...,h}, where ¢ € R* \ {0} is a properly small
number.
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4 Numerical example

In this section we give a simple numerical example. One considers two
risky assets and the following related data necessary for the portfolio
selection:

0.6 —0.5 10 3.00.0 0.2
V= <-0.5 1.0)’ L= (o 1)’ b= (0.0 7.0)’ "= (0.4)’
7 =025 C =100, a = 0.1, §=0.2,
200
fi(z) = — (Vz1 + Vx2), f2(2) =2 (21 + 22),

81
T, To € N.

The corresponding portfolio selection problem is given by the fol-
lowing mathematical programming one:

min f(z) = 0.6z% + z3 — 7122
s.t. 0.6z, + 2.8z > 25
321+ T2z <70
VZ1+ /T2 < 4.05 ,
1 +z0 <10
z1, 22 >0
z1, T2 €N

in which the constraint regarding to the available capital to invest is
taken into account in its inequality version.

Among the possible ones, as initial feasible point we take (0, 10).
The constraint related to the transaction costs and the taxation are
both satisfied; so, at first we let z* = (0,10) and f* = 100 (see
step 1), and then we calculate the gradient in the same point, ob-
taining (—10,20) (see step 4). Finally, we add the related inequality

~10z7 + 20z, < 200

to the auxiliary system in step 5.

The next feasible point we can consider among the ones solving
the auxiliary system is (0, 9); the costraints in step 2 and in step 3 are
both satisfied. As f(0,9) = 81 < f*, we updated z* = (0,9), f* = 81,
and we calculate again the gradient of the objective function in that
point, obtaining (-9, 18). Finally, we add the following corresponding
(second) inequality

-9z, + 1829 < 162
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to the auxiliary system in step 5.

The next solution of the updated auxiliary system we take into
account (always among the existing ones) is (2,9). This point does not
satisfy the constraint in step 2 (the one concerning with the taxation);
so, now, we calculate the gradient of fo(-) in this point, obtaining (1, 1),
and we add the third inequality

T1+x9 <11

to the auxiliary system in step 5.

The next point which solves the updated auxiliary system is (1, 9);
both the constarints in step 2 and in step 3 are satisfied. As f(1,0) =
72.6 < f*, we update z* = (1,9) and f* = 72.6; further, we calculate
the gradient of the objective function in (1,9), obtaining (=7.8,17),
and we add to the auxiliary system the new inequality

—7.821 + 17Tzy < 145.2.

Now, the feasible set of the newly updated auxiliary system is
empty; so, as f* # 4oo, z* = (1,9) is the optimal portfolio (see
step 7), whose variance is equal to 72.8.

In Figure 1 we graphically represent the searching process of the
optimal point (the dashed area indicates the feasible set determined
without taking into account the integrity constraints).

In order to solve such kind of portfolio selection problems, a proper
computer code has been developed,” in which CPLEX has been used
for solving at each iteration the mixed-integer linear programming sub-
problem associated to the auxiliary system.

Notice that other efficient methods for solving optimization prob-
lems have been recently proposed (see [Andramonov et al., 1999], [An-
dramonov, 2002a] and [Andramonov, 2002b]); in general, they need
really weak assumptions regarding to the objective function and to
the ones implied in the constraints.

5 Final remarks

As far is concerned to the mathematical programming problem presen-
ted in section 2 and to the related results proposed in section 3, we
give the following final remarks:

7 It has been realized in the frame of the Tacis ACE Programme - Action for cooper-
ation in the field of economics “Financial Optimization in the New Independent
State Financial Institutions”.
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Starting fessible point: (0.10} Second feasible point: (0.9)

0 1 2 a

1\
S

Optimal solutien: (1.8)

°

o 1 2 3
Xy

Fig. 1. Representation of the searching process of the optimal point.

we introduce two non-linear constraints in order to take into ac-
count the presence of transaction costs and taxation; these con-
straints do not require any particular hypotheses, being sufficient
to suppose the differentiability and the pseudo-convexity of the
corresponding functions;

for finding the optimal solution of the considered programming
problem it is not necessary to elaborate specific methods, but it
is enough to apply the combination of well known techniques: the
branch and bound, the cutting plane ones (properly adjusting them
to non-linear programming) and the sub-gradient one;

the solving algorithm we propose does not require the objective
function is quadratic, being sufficient to assume only its differenti-
ability and pseudo-convexity;

the method of portfolio selection we propose provides also some
information about the “economic compatibility” of the values of
the parameters 7, o and 3 (assigned by the investor) with the real
economy in which the investor acts; indeed, if the choice of these
parameters is incoherent with the considered economic-financial
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system, then the set of the feasible solutions could have poor fin-
ancial sense or even could be empty.

With regard to the main directions of the future developments of
the portfolio selection model and of the programming approach we
presented in this paper, they can be summarized as follows:

— to generalize both the selection model and the solving algorithm
in order to take into account an objective function and functions
related to the transaction costs and the taxation which are not
necessarily pseudo- or quasi-convex;

— to analyze the sensitivity of the optimal solution with respect to
the integer number of assets constituting each lot; notice that these
values are exogenous to the portfolio selection process, and that
they could be an “interesting” instrument of financial policy for
the stock exchange Authorities given their capability to influence
the optimal portfolio selected by the investor;

— to make a suitably large number of applications of our approach
to portfolio selection problems in presence of transaction costs and
taxation in order to compare its results (and the related effect-
iveness) with the ones forecoming from the classical methods of
selection of portfolio.
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