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1 Introduction

Many resources have been recently spent among professionals as well as in the academic world
in searching for automaticFinancial Trading Systems (FTSs) that can substitute for experience,
capacity, and intuition human operators in the choice of investments in financial markets.

In the specialized literature several different approaches have been considered to address such
a problem: Statistical and econometric models using, amongothers, macroeconomic indicators;
Simpler and flexible models based on the Technical Analysis indicators; Models based on machine
learning that make extensive use of computing capacity.

In this paper we consider a class of self-adaptive algorithms for dealing with the above problem
in order to obtain profitable and fully automatic FTSs. In particular, the methodology we consider is
known asReinforcement Learning(RL) [1] also known asNeuro-Dynamic Programming[2]. In our
approach, investment decision making is viewed as a stochastic control problem and the investment
strategies are discovered directly interacting with the market. So, the need to build forecasting
models for future prices or returns is eliminated.

In literature there are many contributions in this researchfield. Among the ones we recall [6],
[7], and [5]. In general, they show that such strategies perform better than the ones based on super-
vised learning methodologies when market frictions are considered. In [6] a simplified version of
RL algorithm, called Direct Learning, is used in order to seta FTS that, taking into account trans-
action costs, maximizes an appropriate investor’s utilityfunction based on a differential version of
the well-known Sharpe ratio. Then, they show by controlled experiments that the proposed FTS
performs better than standard FTSs. Finally, the authors use their FTS to make profitable trades
with respect to assets of the U.S. financial markets. In [7], the authors mainly compare FTSs devel-
oped by using RL methodologies with FTSs developed by using stochastic dynamic programming
methodologies. In general they show by extensive experiments that the former approach is better
than the latter one. In [5] the author considers an FTS similar to the one developed in [6] and applies
it to the financial high-frequency data, obtaining profitable performances.

With respect to the prominent literature, in this paper we will do the following:

• We will develop and we will apply FTSs based on two different RL approaches, namely the
Temporal Differenceone (see subsection 2.3) and theKernel-based Reinforcement Learning
(see subsection 2.4);

• Beyond to consider the usual buy and sell signals, we will take into account also a third signal:
The stay-out-from-the-market one;

• Instead of using the differential Sharpe ratio as performance indicator, we will utilize the
classical Sharpe ratio computed on the lastL ∈ N trading days.

The remainder of the paper is organized as follows: In section 2 we will introduce the essential
aspects of RL which are of interest for our purposes; In section 3 we will present our RL-based
FTSs and we will provide the results of their applications toartificial and real time series; In section
4 we will give some concluding remarks.



2 Reinforcement Learning

Learning by interacting directly with the environment without the need of a supervisor is likely the
more immediate idea about the nature of learning. The consequences of the actions of the learner
(agent) lead the agent himself to choose what are the actionsthat allow to obtain the desired results
and what are the ones to avoid. RL formalizes this kind of learning by maximizing a numerical
reward ([1]). The agent has to discover which actions yield the most reward by trying them. RL
is different from Supervised Learning (SL) in which the agent learns from examples provided by
an external supervisor. SL is an important kind of learning,but in interactive problems it is often
impractical to obtain examples of desired behavior that arerepresentative of the situation in which
the agent has to act. In uncharted and unknown environments (like, for instance, financial markets)
the agent must to be able to learn only from its own past experience.

To formalize these first ideas, let us consider a system observed at discrete time steps in which
the state at time stept, st ∈ S , summarizes all information concerning the system available to the
agent. In the RL framework it is assumed that the system satisfies the Markov property, that is
that the probability of transition from the actual statest to the next onest+1 depends only on the
current statest . On the basis ofst , the agent selects an actionat ∈ A (st), whereA (st) is the set
of all possible actions the agent can take given the statest . At time stept +1 the agent receives a
reward,r(st ,at ,st+1) ∈ R, as consequence of his actionsat and of the new statest+1 in which he
finds himself. The reward is a numerical representation of the satisfaction of the agent. Generally,
the agent wish to maximize the expected value of some global return,R(st), which is defined as
function of the actual reward and of the future discounted ones. Without specifying the chosen
action as argument, this function can be written as:

R(st) = r(st ,at ,st+1)+ γr(st+1,at+1,st+2)+ γ2r(st+2,at+2,st+3)+ . . . ,

whereγ ∈ (0,1) is the discount factor.
In RL a policy π(st) = at is a mapping from states to actions defining the choice of action at

given statest . In order to maximize the expectedR(st), RL searches for a suitable policy. Consider-
ing also the policyπ(·) we can write the global return as:

Rπ(st) = r(st ,π(st),st+1)+ γr(st+1,π(st+1),st+2)+ γ2r(st+2,π(st+2),st+3)+ . . . .

2.1 Value functions

RL approaches are generally based on estimatingvalue functions. These functions of states (or
state-action pairs) attribute a value to each statest (or state-action pairs) proportional to the rewards
achievable in the future from the current statest (or state-action pairs). They evaluate how good is
for the agent to be in a given state (or to perform a given action in a given state). The notion “how
good” is defined in terms ofRt . In particular, the value of a statest = s following policy π(·) is
the expected sum of the current and the future discounted rewards when starting in statest = s and
thereafter following policyπ(·), that is:

Vπ(s) = E[Rπ(st)|st = s] .
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Similarly, the value of tacking actionat = a being in statest = sunder policyπ(·) is the expected
sum of the current and the future discounted rewards starting from statest = s, taking actionat = a
and thereafter following policyπ(·), that is:

Qπ(s,a) = E[Rπ(st)|st = s,at = a] .

A fundamental property of value functions is that they satisfy particular recursive relationships.
For any policyπ(·) and any statest = s, the following consistency condition holds between the
value ofst and the value of any possible successor statest+1:

Vπ(s) = E[r(st ,π(st),st+1)+ γVπ(st+1)|st = s] . (1)

Equation (1) is theBellman equationfor Vπ(st). One can prove that the valueVπ(s) is the
unique solution to its Bellman equation.

2.2 Generalized policy iteration

Task of RL consists in finding an optimal policy, that is a policy which is better than or equal to all
the other policies. The optimal policy identifies the valuesV∗(s) andQ∗(s,a) such that

V∗(s) = max
π

Vπ(s) andQ∗(s,a) = max
π

Qπ(s,a), (2)

for all s∈ S and for alla ∈ A (s). SinceV∗(s) is the value function for a policy, it satisfy the
Bellman equation (1). Because it is also the optimal value function, V∗(s)’s Bellman condition
can be written in a special form without reference to any specific policy. This form is the Bellman
equation forV∗(s), or theBellman optimality equation, which expresses the fact that the value of a
state under an optimal policy must equal the expected globalreturn for the best action from the state
itself, that is:

V∗(s) = max
a

Q∗(s,a) = E[R∗(st)|st = s,at = a] . (3)

With equivalent arguments, the Bellman optimality equation for Q∗(s,a) is:

Q∗(s,a) = E

[
r(st ,at ,st+1)+ γ max

a′
Q∗(st+1,a

′)|st = s,at = a

]
.

At this point, it is possible to iteratively calculate the value function for a state (or for a state-
action pair). LetVπ

0 (st) for all st = s∈ S be an arbitrarily initialization of the state value function.
Each successive approximation is obtained by using the Bellman equation as an update rule:

V̂π
k+1(st) = E

[
r(st ,at ,st+1)+ γV̂π

k (st+1)
]

(4)

for all st = s∈ S . If the expectation̂Vπ
k+1(st) exists, then limk→+∞ V̂π

k (s) =Vπ(s).
The reason for computing the value functions for a policy is to find better policies in order to

increase the expected value of the global returns. This process is calledpolicy improvement.
As described, the policy improvement process requires the evaluation of the previous policy.

This evaluation can be made by (4), which is itself an iterative process that converges in the limit.
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Fortunately, there is no need to wait for the exact convergence, in fact one can stop the policy
evaluation iteration in several ways without losing the convergence ([1]). An important special case
is when policy evaluation is stopped after just one step. Onecan combine the evaluation process and
the improvement one by stopping the policy evaluation process at each step and then by improving
the policy itself. This mixed algorithm is calledgeneralized policy iteration. It can be written as:

V̂π
k+1(st) = max

a
E
[
r(st ,a,st+1)+ γV̂π

k (st+1)
]
, (5)

whereV̂π
k+1(st) is the update estimate with the improved policy at stepk+1 with respect to the old

estimate and the old policy at stepk.
In order to improve the policy we chosen an approach, among the ones presented in literature,

which may produce increasing of the global return in the longrun. Following such an approach, the
choice of the action at each time stept is given by:

at =

{
π ′(st) with probability 1− ε

a∈ A (st) with probabilityε ,

whereε ∈ (0,1) andπ ′(st) is the candidate action which maximizesQπ(s,a).
In the next subsections we will introduce the two different methods we will use in our FTSs for

calculating the expected value (5). Note that we can not takeinto account methods like theDynamic
Programming-based ones and theMonte Carlo-based ones. In fact:

• The former needs a model to calculate the real probabilitiesof transition from a state to
another one, whereas in the financial trading such a model is generally not known or not
available;

• The latter, in order to improve the policy, needs to wait for until the end of all the trades,
whereas a FTS trades an indefinite number of times.

2.3 Temporal Difference methods and Q-Learning algorithm

In this subsection we present a class of policy evaluation algorithms known asTemporal Difference
methods (TDms) which update step by step the estimate ofV(st). First of all one puts in evidence
that it is possible to writêVk+1(st) in the following recursive way:

V̂k+1(st) =
1

k+1

k+1

∑
j=1

Rj(st) =
1

k+1

[
Rk+1(st)+

k

∑
j=1

Rj(st)

]
= · · ·= V̂k(st)+αk

[
Rk+1(st)−V̂k(st)

]
,

whereαk = 1/(k+1). The TDms can update the estimateV̂k+1(st) as soon as the quantity

dk = Rk+1(st)−V̂k(st) = r(st ,st+1)+ γV̂k(st+1)−V̂k(st),

becomes available. Therefore the above recursive relationship can be rewritten as:
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V̂k+1(st) = V̂k(st)+αk

[
r(st ,st+1)+ γV̂k(st+1)−V̂k(st)

]
.

With regard to the convergence of the TDms, one can prove that, if ∑+∞
k=1 αk =+∞ and ∑+∞

k=1 α2
k <

+∞, then limk→+∞ Pr
{∣∣∣V̂k(st)−V(st)

∣∣∣< ε
}
= 1, for anyε > 0 ([2]).

The TDms are “naturally” developed in an incremental amd on-line fashion which make them
particularly appealing for the building of FTSs. In literature there exist several different TDms, the
most widespread of whom is theQ-Learning algorithm (QLa). TheQLa is anoff-policy control
method, where off indicates that two different policies areused in the policy improvement process:
A first one is used to estimate the value functions, another isused to control the improvement
process. One can prove that the so-obtained state-action value function is given by:

Q̂k+1(st ,at) = Q̂k(st ,at)+αk

[
rt+1+ γ max

a
Q̂k(st+1,at+1)− Q̂k(st ,at)

]
. (6)

Up to now we have assumed that the states are discrete variables which, even more, assume
a limited number of values. But generally a system like a financial market is characterized by
continuous states which, of course, assume an infinite number of values. In this case one can prove
that the value function at stepk, V̂k(st), can now be approximated by a parameterized functional
form with parameter vectorθ k. It involves that the associated value functionV̂k(st) = V̂k(st ;θ k)
totally depends onθ k, which varies step by step.

In order to estimate the optimal parameter vector,θ∗, which minimizes the “distance” between
the unknownVπ(st) and its estimatêVπ(st ;θ k), in most learning approaches the minimization of
the mean square error is used, that is:

min
θk

∑
s

[
Vπ(s)−V̂π(s;θ k)

]2
.

The convergence ofθ k to θ ∗ is proven for approximators characterized by simple functional
fors like linear ones, and it is also possible for particularcomplex functional forms like the ones
involved like the so-called artificial neural networks([2]). Among the linear functional forms, in
building our FTSs we use the following one:

V̂π(s;θ ) =
n

∑
i=1

θiφi(si) = θ ′φ(s), (7)

wheren is the number of states andφi(·) is a suitable transformation of the state. One can prove
that, under mild assumptions, the update rules to use for estimating the state-action value function
in the case of continuous states become:

dk = r(st ,at ,st+1)+ γ max
a

Q̂(st+1,a;θ k)− Q̂π(st ,at ;θ k) andθk+1 = θ k+αdk∇θkQ̂
π(st ,at ;θ k).

(8)
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2.4 Kernel-based Reinforcement Learning

Another method for approximatingQπ(s,a), alternative to theQLa and also usable in case of con-
tinuous states, is the nonparametric regression-based oneknown asKernel-based Reinforcement
Learning (KbRL) ([8], [9]). Given a kernelK(·) and definedqt = (st at), the KbRL estimates
Q(s,a) as follows:

Q̂k(qt) =
t−1

∑
i=1

pi(qt)Q̂k(qi),

where pi(qt) =
K( qt−qi

h )
∑t−1

i=1 K( qt−qi
h )

. Note that the choice of the kernelK(·) is not crucial, whereas the

choice of the bandwidthh has to be done carefully ([4]).
In this new reference frame, the approximation relationship for Q̂k+1(qt) is now given by:

Q̂k+1(qi) = Q̂k(qi)+ pi(qt)
[
Q̂k+1(qt)− Q̂k(qi)

]
, (9)

wirh i = 1,2, . . . , t −1.
This approach is interesting because constitutes a kind of minimization method without deriva-

tives ([3]). Further, it is also usable in non-stationary contexts as the update relationship (9) is based
on the current values of state-action pairs.

3 The Reinforcement Learning-based Financial Trading Systems

In this section we use theQLa and the KbRL for developing daily FTSs. First one has to identify
the quantities which specify the states, the possible actions of the FTS, and the reward function.

With regards to the states, as at present we are mainly interested in testing the applicability of the
considered RL methods to the development of FTSs, we simply use as states the last five percentage
returns of the asset to trade, like in some of the cited literature. For this same reason we do not
consider the transaction costs and other frictions. So, given the current price of the asset,pt , the
state of the system at the time stept is given by the vector

st = (et−4, et−3, et−2, et−1, et) ,

whereeτ = pτ−pτ−1
pτ−1

. Concerning the possible action of the FTS, we utilize the three following
actions:

at =





−1 (sell signal)
0 (stay-out-from-the-market signal),
1 (buy signal)

in which the stay-out-from-the-market implies the closingof whichever previously open position (if
any). Note that in most of the specialized literature, like for instance in [7], only the sell signal and
the buy one are considered. Finally, with reference to the reward function, following [7] we take
into account the well known Sharpe ratio. In particular, as we wish an indicator that reacts enough
quickly to the consequences of the actions of the FTS, we consider the Sharpe ratio calculated only

6



in the lastL = 5 trading days (a stock market week) and in the lastL = 22 trading days (a stock
market month), that is:

rt =
EL [gt−1]√
VarL [gt.1]

,

where EL(·) and VarL(·) are, respectively, the sample mean operator and the sample variance one,
andgt = at−1et is the gained/lost percentage return obtained at time stept as a consequence of the
action taken by the FTS at time stept −1.

Now let us pass to the two RL-based approaches we consider: The QLa and the KbRL. With
respect theQLa, the kind of linear approximator of the state-action value function we choose is:

Q(st ,at ;θk) = θk,0+
5

∑
n=1

θk,n arctan(st,n)+θk,6 arctan(at),

in which arctan(·) plays the role of transformer of the state. Then, theε-greedy function we follow
is:

at =

{
argmaxat

Q(st ,at ;θk) with probability 1− ε,
u with probabilityε

in which ε = 2.5%, 5.0% andu∼ Ud(−1,1). Concerning the KbRL, we follow [4] and [8]. Note
that, to the best of our knowledge, the use of the arctangent transformation in theQLa and of the
KbRL for building FTSs is new.

Summarizing, we consider two different RL-based approaches (QLa and KbRL), two different
values ofε (2.5% and 5.0%) and two different values ofL (5 and 22), for a total of eight configura-
tions.

We apply the above specified RL-based FTSs to two different time series of daily prices: An
artificial one and a real one. With reference to the artificialtime series, as in [7] we generate log
price series as random walks with autoregressive trend processes. The used model is:

pt = exp

{
zt

maxz−minz

}
,

wherezt = zt−1 + βt−1 + 3at , in which βt = 0.9βt−1 + bt , at ∼ N (0,1), andbt ∼ N (0,1). The
length of the so-generated series isT = 5000. This artificial price series shows features which are
often present in real financial price series. In particular,it is trending on short time scales and has
a high level of noise. As far as the real time series regards, we utilize the closing prices of Banca
Intesa and of Fiat (from the Italian stock market), from January 1, 1973 to September 21, 2006. The
length of this series isT = 5400.

At this point we can present the results of the applications of the various configurations. In all
the experimentations we setα = 0.8 andγ = 0.7.

In figure 1 we graphically report the results of the application of theQLa-based FTS to the
artificial price series, withε = 5% andL = 5. In particular: The first panel shows the price series;
The second panel shows the actions taken by the FTS at each time step, that is its investment
strategy; The third panel shows the rewards, that is the Sharpe ratios, at each time step; The fourth
panel shows the cumulative return one should obtain by investing the same monetary amount at
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Figure 1: Results of theQLa-based FTS applied to the artificial price series, withε = 5% andL = 5.
Final cumulative returns: 510.86%.

each time step. At the end of the trading period,t = T, the cumulative return is 510.86%. In figure
2 we graphically report the results of the application of theQLa-based FTS to the real price series
of Banca Intesa, withε = 5% andL = 5. At the end of the trading period,t = T, the cumulative
return is 271.42%.

It is very important to note that at the beginning of the trading period,t = 0, the vector of the
parameters used in the linear approximator,θk, is randomly initialized. Because of it, by repeating
some times this latter application we observe a certain variability in the final cumulative return:
−158.52%, 174.91%, −26.38% . . .. This shows that the influence of the random initialization
heavily spreads overall the trading period instead to soften as time step increases. In figure 3 we
graphically report the results associated to the first of such repetition. To check the effects of this
random initialization, we repeated 1000 times the application of each of the investigated configura-
tions. When the application was to the artificial time series, the series has been taken the same in all
the repetition. In table 1 we report some statistics concerning the final cumulative returns.

With reference to the KbRL, we obtain results similar to the one related to theQLa, although
a bit less performing. As exemplification: 1) in figure 4 we graphically report the results of the
application of the KbRL-based FTS to the real price series ofBanca Intesa, withε = 5% andL =
22 (at the end of the trading period,t = T, the cumulative return is 309.86%); 2) in figure 5 we
graphically report the results of the application of the KbRL-based FTS to the real price series of
Fiat, with ε = 7.5% andL = 22 (at the end of the trading period,t = T, the cumulative return is
135.47%). Note that for the KbRL there is not parameter vector to randomly initialize, but at the
beginning of the trading period,t = 0, it is necessary to randomly initialize a suitable set of state-
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Figure 2: Results of theQLa-based FTS applied to the Banca Intesa price series, withε = 5% and
L = 5. Final cumulative returns: 271.42%.

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

2

4

6

P
ric

e

t

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

−1

0

1

A
ct

io
n

t

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−4

−2

0

2

4

R
ew

ar
d 

   
   

  
 (

S
ha

rp
e 

ra
tio

)

t

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

−2

−1.5

−1

−0.5

0

C
um

ul
at

iv
e 

re
tu

rn

t

Figure 3: Results of theQLa-based FTS applied to the Banca Intesa price series, withε = 5% and
L = 5 (repetition). Final cumulative returns:−158.52%.

9



500 1000 1500 2000 2500 3000 3500 4000 4500 5000

2

4

6

P
ric

e

t

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

−1

0

1

A
ct

io
n

t

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

−0.5

0

0.5

R
ew

ar
d 

   
   

  
 (

S
ha

rp
e 

ra
tio

)

t

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

0

1

2

3

C
um

ul
at

iv
e 

re
tu

rn

t

Figure 4: Results of the KbRL-based FTS applied to the Banca Intesa price series, withε = 5% and
L = 22. Final cumulative returns: 309.86%.

action pairs ([8]). So, also in this approach one puts the question of the variability of the results. As
for the QLa, for the KbRL too we repeated 1000 times the application ofeach of the investigated
configurations (see table 1 for some statistics about the final cumulative returns).

The main facts detectable from tables 1 are the following ones:

• Given the values of the means, most of the investigated configurations appears to be profitable,
in fact the most of the means (88.89%) are positive. Further, theQLa approach generally
seems more performing than the KbRL one;

• Given the values of the standard deviations, the results of all the considered configurations
are characterized by a certain level of variability. In particular, such values emphasize that the
question of the influence of the random initialization on theresults is mainly true for the real
financial time series;

• Given the results, it appears that the value ofL has a significant impact on the performances
of the FTSs. In particular, with reference to the artificial time series, all the checked FTS
configurations are better performing whenL = 5, whereas, with reference to both the real
time series, the most of the checked FTS configurations (91.67%) are better performing when
L = 22;

• Given the results, it appears that also the value ofε has a significant impact on the perfor-
mances of the FTSs. In particular, although with reference to the artificial time series empir-
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Approach ε L Statistics Artificial Banca Intesa Fiat
time series time series time series

QLa 2.5% 5 µ 443.62% −3.77% 40.58%
σ 37.83% 127.48% 139.35%

Conf. interval[369.48%,517.76%] [−253.53%,246.08%] [−232.55%,313.70%]
QLa 2.5% 22 µ 307.03% 70.85% 101.21%

σ 43.02% 146.34% 144.27%
Conf. interval[222.71%,391.35%] [−215.97%,357.68%] [−181.55%,383.98%]

QLa 5.0% 5 µ 472.02% 40.00% 91.26%
σ 32.79% 139.09% 137.30%

Conf. interval[407.76%,536.29%] [−226.73%,306.73%] [−177.85%,360.37%]
QLa 5.0% 22 µ 337.68% 92.92% 124.69%

σ 40.80% 149.28% 144.89%
Conf. interval[257.71%,417.64%] [−199.66%,385.50%] [−159.29%,408.68%]

QLa 7.5% 5 µ 467.48% 49.15% 114.41%
σ 31.11% 139.71% 142.42%

Conf. interval[406.50%,528.46%] [−224.67%,322.97%] [−164.73%,393.56%]
QLa 7.5% 22 µ 339.04% 99.66% 133.81%

σ 39.60% 146.74% 147.53%
Conf. interval[261.43%,416.66%] [−187.95%,387.28%] [−155.34%,422.96%]

KbRL 2.5% 5 µ 483.71% −26.16% 73.33%
σ 60.10% 141.37% 144.00%

Conf. interval[365.91%,601.51%] [−303.25%,250.93%] [−208.90%,355.56%]
KbRL 2.5% 22 µ 237.64% 15.90% 75.37%

σ 63.55% 159.92% 131.08%
Conf. interval[113.09%,362.20%] [−297.54%,329.34%] [−181.55%,332.28%]

KbRL 5.0% 5 µ 435.42% −7.99% 77.32%
σ 41.13% 131.26% 130.42%

Conf. interval[354.81%,516.02%] [−265.26%,249.28%] [−178.30%,332.95%]
KbRL 5.0% 22 µ 216.61% 13.20% 71.98%

σ 49.98% 153.34% 136.04%
Conf. interval[118.64%,314.58%] [−287.34%,313.74%] [−194.66%,338.61%]

KbRL 7.5% 5 µ 401.76% −0.63% 67.55%
σ 39.80% 130.40% 128.00%

Conf. interval[323.75%,479.77%] [−256.23%,254.96%] [−183.33%,318.42%]
KbRL 7.5% 22 µ 197.78% 35.36% 74.82%

σ 42.55% 143.51% 132.06%
Conf. interval[114.38%,281.18%] [−245.91%,316.63%] [−184.02%,333.65%]

Table 1: Some statistics about the final cumulative returns.
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Figure 5: Results of the KbRL-based FTS applied to the Fiat price series, withε = 7.5% andL= 22.
Final cumulative returns: 135.47%.

ical regularities does not appear, with reference to both the real time series, the most of the
checked FTS configurations (75.00%) are better performing whenε = 7.5%.

4 Some concluding remarks

In this paper we have developed and applied some original automatic FTSs based on differently
configured RL algorithms. Here we have presented the resultscoming out from the current phase
of our research on this topic. Of course, many questions haveagain to be explored. In particular:

• The choice of the last five percentage returns as states is a naive choice. Now we are beginning
to work to specify some new indicators to use as states (in thefirst experimentations they have
provided interesting results);

• As known, the Sharpe ratio as performance measure suffers several limits. Currently, as
reward function we are considering alternative and more realistic performance measures;

• The management of the learning rate,α , we have used here is appropriate for stationary sys-
tems. But generally financial markets are non-stationary. Because of that, we are beginning to
work to develop methods for the dynamic management of the learning rate in non-stationary
contexts;
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• In order to deepen the valuation about the capabilities of our FTSs, we wish to apply them to
more and more financial price series coming from different markets;

• Finally, when all the previous questions will be explored, transaction costs and other frictions
will be considered.
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