Department of Applied Mathematics, University of Venice

WORKING PAPER SERIES

Marco Corazza, Andrea Ellero and Alberto Zorzi

What Sequences obey Benford's Law?

Working Paper n. 185/2008 November 2008

ISSN: 1828-6887

What Sequences obey Benford's Law?

Marco Corazza corazza@unive.it

Andrea Ellero ellero@unive.it

Alberto Zorzi <albzorzi@unive.it>

Dipartimento di Matematica Applicata Università Ca' Foscari di Venezia

Abstract. We propose a new necessary and sufficient condition to test whether a sequence is Benford (base-b) or not and apply this characterization to some kinds of sequences (re)obtaining some well known results, as the fact that the sequence of powers of 2 is Benford (base-10).

Keywords: Benford's law, equidistributed sequences, ergodic endomorphisms

JEL Classification Numbers: C02, C83

MathSci Classification Numbers: 28D99, 60F99

Correspondence to:

Marco Corazza Dept. of Applied Mathematics, University of Venice

Dorsoduro 3825/e 30123 Venezia, Italy

Phone: [++39] (041)-234-6921 Fax: [++39] (041)-522-1756

E-mail: corazza@unive.it

1 The importance of being one

If we consider the most significant digit of the powers of two, $2^1, 2^2, 2^3...2^n$ it turns out that the frequencies are not the same for all the figures: for example, among the first 1000 powers of two the ones which start with digit 1 appear more often (30.1 %), the powers which have 2 as first digit follow (17.6 %), then the ones with 3 (12.5 %), and so on the frequencies decrease until 4.5 % for digit 9. In fact, it is possible to prove (see Section 3) that the probability for a generic term of the sequence to display d as the most significant digit is

$$\log_{10}\left(1+\frac{1}{d}\right),\,$$

it means that the sequence of powers of 2 obeys Benford's Law [5].

In general a sequence of real numbers represented in base b is said to be Benford (base-b) if the probability to observe digit d as the first digit of a term of the sequence is

$$\log_b\left(1+\frac{1}{d}\right),\,$$

for each integer d such that $1 \le d < b$ [8]. For an overview of Benford's Law and a discussion of its possible applications see e.g. [5].

The main result we propose in this paper is a new necessary and sufficient condition to test whether a sequence is Benford (base-b) or not: we then apply this characterization to some kinds of sequences (re)obtaining, for example, that the sequence of powers of 2 is Benford (base-10) but not Benford (base-4).

We also show how the proposed characterization is related in a natural way to Birkhoff's ergodic theorem.

2 Benford (base-b) sequences: a necessary and sufficient condition

We first show how to define the most significant digit of a number by means of elementary functions. Given a real number x, we use the floor and ceiling functions defined, respectively, by $\lfloor x \rfloor = \max\{n \in \mathbb{Z} : n \leq x\}$ and $\lceil x \rceil = \min\{n \in \mathbb{Z} : n \geq x\}$. this way the fractional part of x is $x \mod 1 = x - \lfloor x \rfloor$.

Lemma 1 If x is a positive real number, then its first digit in base b is $|b^{(\log_b x) \mod 1}|$.

 $\begin{array}{l} \textit{Proof.} \;\; \text{Since} \; \lfloor \log_b x \rfloor \leq \log_b x < \lfloor \log_b x \rfloor + 1 \;\; \text{we have} \; b^{\lfloor \log_b x \rfloor} \leq x < b^{\lfloor \log_b x \rfloor + 1} \;\; \text{and} \;\; 1 \leq \frac{x}{b^{\lfloor \log_b x \rfloor}} < b. \;\; \text{Therefore} \; \lfloor \frac{x}{b^{\lfloor \log_b x \rfloor}} \rfloor \;\; \text{is the most significant digit of} \;\; x. \;\; \text{To complete the proof} \;\; \text{it is sufficient to observe that} \;\; x = b^{\log_b x} = b^{\lfloor \log_b x \rfloor} b^{(\log_b x) \text{mod} 1}, \;\; \text{i.e., each real number is the} \;\; \text{sum of its integer and fractional parts;} \;\; \text{this way} \;\; \frac{x}{b^{\lfloor \log_b x \rfloor}} = b^{(\log_b x) \text{mod} 1}. \qquad \qquad \diamond \end{array}$

¹As observed in [8] (Remark 9.2.5), the definition of Benford (base-b) sequence we use here is less restrictive than the definition of *b-Benford* sequence given for example in [1, 7].

The next result provides a possible way to count the number of terms of a sequence which display a first significant digit which is lower than d: it will be used later on to prove a general criterion to test whether a sequence is Benford (base-b) or not.

Lemma 2 If $x_1, x_2, ... x_n$ are positive real numbers and if $1 \le d < b$, then

$$\sharp \{x_k : 1 \le k \le n, \text{ first digit of } x_k \le d\} = \sum_{k=1}^n \left\lceil \frac{1}{b^{(\log_b x_k) \bmod 1}} - \frac{1}{d+1} \right\rceil.$$

Proof. According to Lemma 1, the first digit of x_k is $\leq d$ if and only if $b^{(\log_b x_k) \mod 1} < d+1$, that is, if and only if $(\log_b x_k) \mod 1 < \log_b (d+1)$. To complete the proof we just need to prove that the function

$$f_{d+1}(y) = \left\lceil \frac{1}{b^y} - \frac{1}{d+1} \right\rceil$$

can be rewritten as

$$f_{d+1}(y) = \begin{cases} 1 & \text{if } y \in [0, \log_b(d+1)) \\ 0 & \text{if } y \in [\log_b(d+1), 1] \end{cases}.$$

In fact, function $g(y) = \frac{1}{b^y} - \frac{1}{d+1}$ is strictly decreasing on [0,1] since $g'(y) = -\frac{1}{b^y} \log b < 0$. Moreover $0 < g(0) = \frac{d}{d+1} < 1$, $-1 < g(1) = \frac{1}{b} - \frac{1}{d+1} \le 0$ and $g(\log_b(d+1)) = 0$.

Now it is possible to prove the following theorem, which characterizes a Benford (base-b) sequence.

Theorem 1 The sequence x_k of positive real numbers is Benford (base-b) if and only if

$$\lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} \left\lceil \frac{1}{b^{(\log_b x_k) \bmod 1}} - \frac{1}{d+1} \right\rceil = \log_b(d+1)$$

for each integer d such that $1 \le d < b$.

Proof. Consider a generic term x_k of the sequence. Using Lemma 2, we have that the probability that the first digit of x_k is not greater than d is given by

Prob(first digit of
$$x_k$$
 is $\leq d$) = $\lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^n \left[\frac{1}{b^{(\log_b x_k) \mod 1}} - \frac{1}{d+1} \right]$.

Observe now that the definition of Benford (base-b) sequence given in Section 1, since

$$Prob($$
 first digit of $x_k \leq d) = \sum_{i=1}^{d} Prob($ first digit of $x_k = i)$

and

 $Prob(\text{ first digit of } x_k=i) = Prob(\text{ first digit of } x_k \leq i) - Prob(\text{ first digit of } x_k \leq i-1) \ \ ,$

allows to claim that x_k is b-Benford if and only if

Prob(first digit of
$$x_k \leq d$$
) = $\log_b(d+1)$

 \Diamond

 \Diamond

for each integer d such that $1 \le d < b$. This completes the proof.

The theorem above, suggests a way to verify whether a sequence is Benford or not, computing a rather complicated limit, it seems to be a difficult task. The following Lemma suggests, as a way to deal with the limit, to compute a suitably defined integral: we will show how to use this idea in the next Section.

Lemma 3 Let be d an integer such that $1 \leq d < b$ and $f_{d+1}(y) = \left| \frac{1}{b^y} - \frac{1}{d+1} \right|$. If the sequence y_k is contained in the interval [0,1] and if

$$\lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} f_{d+1}(y_k) = \int_{0}^{1} f_{d+1}(y) dy$$

then

$$\lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} \left[\frac{1}{b^{y_k}} - \frac{1}{d+1} \right] = \log_b(d+1) .$$

Proof. It is sufficient to observe that

$$f_{d+1}(y) = \left[\frac{1}{b^y} - \frac{1}{d+1} \right] = \left\{ \begin{array}{l} 1 & \text{if } y \in [0, \log_b(d+1)) \\ 0 & \text{if } y \in [\log_b(d+1), 1] \end{array} \right.,$$

thus $\int_0^1 f_{d+1}(y) dy = \log_b(d+1)$.

3 Some Benford (base-b) sequences

As a possible application of Theorem 1, we give a new kind of proof of a well known theorem, due to Diaconis [3]: a sequence of positive real numbers x_k is Benford (base-b) if the sequence of their logarithms $\log_b x_k$ is uniformly distributed modulo 1. We recall that a sequence y_k is uniformly distributed modulo 1, or equidistributed in [0, 1], if

$$\lim_{n \to +\infty} \frac{\sharp \{y_k: \ 1 \leq k \leq n, \ a \leq y_k \leq b\}}{n} \ = \ b-a$$

for each interval $[a, b] \subseteq [0, 1]$. Another, and equivalent way to define an equidistributed sequence is the following (see for example [9, Problem 162]): the sequence y_k is equidistributed if and only if

$$\lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} f(y_k) = \int_0^1 f(y) dy$$
 (1)

for every function f which is Riemann integrable on [0,1]. It is now an easy matter to prove the following well known result, stating that the exponentials of equidistributed sequences are Benford.

Theorem 2 ([3, 8]) A sequence x_k of positive real numbers is Benford (base-b) if the sequence $y_k = \log_b x_k$ is uniformly distributed modulo 1.

Proof. For a fixed integer d consider function $f_{d+1}(y) = \left\lceil \frac{1}{b^y} - \frac{1}{d+1} \right\rceil$, which is Riemann integrable on [0,1], and the sequence y_k . Applying (1) we obtain

$$\lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} f_{d+1}(y_k) = \int_{0}^{1} f_{d+1}(y) dy .$$

By Lemma 3 we have therefore

$$\lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} \left[\frac{1}{b^{y_k}} - \frac{1}{d+1} \right] = \log_b(d+1) .$$

Thus the sequence x_k is Benford (base-b) due to Theorem 1.

The previous theorem allows to easily use known results on equidistributed sequences to state that related geometric sequences are Benford (base-b).

 \Diamond

For example, the sequence $y_k = (k\alpha) \mod 1$ is equidistributed if α is an irrational number, as independently proved by Bohl, Sierpinski and Weyl (see e.g. [8], Theorem 12.3.2); hence, the sequence $x_k = r^k$ is Benford (base-b) if $\log_b r$ is irrational ([8], Theorem 9.2.6). Incidentally, this property allows to prove the claim made at the beginning of Section 1: the sequence $x_k = 2^k$ is Benford (base-10), since $\log_{10} 2$ is irrational. The same sequence is clearly not Benford (base-4), instead, as one can easily observe 2 .

A more general context where Lemma 3 applies concerns ergodic theory. Consider an ergodic endomorphism T defined on a probability space with domain [0,1], and function f_{d+1} defined as in Lemma 3. Birkhoff's ergodic theorem (see e.g. [2], Appendix 3) claims that for almost every $y_1 \in [0,1]$,

$$\lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} f_{d+1}(T^k(y_1)) = \int_0^1 f_{d+1}(y) dy$$

while Lemma 3 tells us that

$$\int_0^1 f_{d+1}(y) dy = \log_b(d+1) \ .$$

Thus, by Theorem 1, we obtain that a sequence x_k of positive real is Benford (base-b) if $y_k = \log_b x_k$ is generated via an ergodic endomorphism. More precisely, x_k is Benford (base-b) as soon as there exists an ergodic endomorphism T such that $T^k y_1 = y_k \ \forall k$ and the equality of Birkhoff's ergodic theorem holds for the initial term y_1 and for each integer d such that $1 \leq d < b$.

1, 2, 10, 20, 100, 200, ...

²The sequence $x_k = 2^k$ written using base 4 reads

References

- [1] A. Berger, L.A. Bunimovich, T.P. Hill (2005), "One-dimensional dynamical systems and Benford's law", *Transactions of the American Math. Soc.*, **357** (1), 197–219.
- [2] I.P. Cornfeld, S.V. Fomin and Ya.G. Sinai (1982), *Ergodic Theory*, Springer Verlag, New York.
- [3] P. Diaconis (1977), The Annals of Probabilty, 5 (1), 72–81.
- [4] G.H. Hardy, E.M. Wright (1979), An Introduction to the Theory of Numbers, fifth ed., Oxford Univ. Press, New York.
- [5] T.P. Hill (1995), "The Significant-Digit Phenomenon", The Amer. Mathematical Monthly, 102 (4), 322–327.
- [6] T.P. Hill (1995), "A Statistical Derivation of the Significant-Digit Law", Statistical Sc., **10** (4), 354–363.
- [7] A.V. Kontorovich, S.J. Miller (2005), "Benford's law, values of L-finctions and the 3x+1 problem", *Acta Arithmetica*, **120**, 269–297.
- [8] S.J. Miller, R. Takloo-Bighash (2006), An Invitation to Modern Number Theory, Princeton Univ. Press, Princeton and Oxford.
- [9] G. Polya, G. Szegö,(1972), Problems and Theorems in Analysis vol. I, Springer-Verlag, Heidelberg.