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Abstract. This paper proposes a simple procedure, in order to aggregate a finite number of real
nonnegative values into a unique indicator. Possible applications of this tool can be found in social
sciences, including demography, sociology, etc. In particular, the indicator may represent a generalized
mean, to be used as an aggregate measure combining several inhomogeneous parameters. Observe
that some alternatives to this approach, including complex multicriteria or multiobjective methods,
are often discarded by stakeholders (say politicians, public administrators, managers, etc.), since the
latters are typically keen on taking decisions based on a reduced number of parameters (possibly
only one). Hence, administrators often show some reluctance to adopt those methods which provide
multiple alternatives, e.g. a Pareto front, since this fact implies an additional process of selection.

Keywords: Aggregation of indicators, Ranking among measures, Mean weighted values, Concave
problems.
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1 Introduction

In this paper we analyze and test properties of a generalized procedure, which is used to aggregate
positive real numbers. Our method is meant in order to aggregate a finite number of real parameters
(hereafter the Elementary Indicators - EI) into a unique nonnegative indicator. The technique we
adopted for aggregation is intended to provide a reliable and simple tool (see also [1]). This tool can
be embedded within a decision process, where stakeholders are often eager to base their preferences
on simple and reliable decision support systems.

In Section 2 we give the main motivations for our proposal, while Section 3 details some theoretical
results. Section 4 contains further theoretical analysis relative to the results in Section 3. Finally,
Section 5 provides an extension of our proposal.
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2 Motivations

Let us consider a finite set of m ≥ 1 values w1, . . . , wm, and a finite set of m EI. Let the entries of the
vector x ∈ IRm correspond to the EI. We also define the quantity |x|p as in

|x|p
.
=

[
m+1∑
i=1

wix
p
i

]1/p

, p ∈ IR, (2.1)

being xm+1 = ε, with ε ∈ (0, 1). Moreover, given p1 ∈ IR, we assume that the vector x, the vector
w = (w1, . . . , wm)T and the constant value wm+1 satisfy w ∈ IRm \ {0} : wm+1 = ε|p1|,

m∑
i=1

wi = 1− ε|p1|, wi ≥ 0, 0 ≤ xi ≤ 1, i = 1, . . . ,m

xi = 0 =⇒ wi = 0, i ∈ {1, . . . ,m}.
(2.2)

Observe that when w ≥ 0 and p ≥ 1 then (2.1) defines a generalized weighted p-mean of the vector
(xT , ε)T . Conversely, in case w ≥ 0 and p ∈ (0, 1), the triangular inequality might not be satisfied by
the function | · |p in (2.1), meaning that | · |p does not represent a norm. Similarly, note that also in
case p ≤ 0 in (2.1), then |x|p no more represents a norm, because the implication

|x|p = 0 ⇐⇒ x = 0

is no more guaranteed to hold. Nevertheless, there might be reasons which possibly advise setting
p < 0 in our analysis, renouncing to work with a norm. Indeed, on one hand the use of negative values
for p allows specific achievements, which generalize standard results yielded by the use of norms. On
the other hand, the expression in (2.1) generalizes the well known p-mean (Hölder p-mean)

qp(x)
.
=

[
1

m+ 1

m+1∑
i=1

xpi

]1/p

, p ∈ IR, (2.3)

since (2.1) allows possibly wi 6= 1/(m + 1). Interestingly enough, there are very special values for p
in (2.3) such that qp(x) represents a versatile tool for many practical applications. As an example,
assume for simplicity x > 0; then, the next table shows the role played by qp(x) in case of some
relevant values for p:

Value of p Role played by qp(x)

p = −1 =⇒ armonic mean of x entries

p→ 0 =⇒ geometric mean of x entries

p = +1 =⇒ arithmetic mean of x entries

p = +2 =⇒ mean of squares of x entries

p→ −∞ =⇒ min
i
{xi} (i.e. the minimum of x entries)

p→ +∞ =⇒ max
i
{xi} (i.e. the maximum of x entries)

Hence, the role played by the values p = −1 and p = +1 has frequently a terrific impact on several
applications. This motivates the specific additional investigation in the current paper, where intervals
for the parameter p nearby −1 and +1 are analyzed, in the light of possibly preserving an ordering
among different generalized means.
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As an example, in case p1, p2 > 0 the fulfillment of the ordering |x|p1 ≥ |x|p2 in general depends
both on the choice of vectors x and w, as well as on the parameter ε. On the other hand, we want
to show that properly setting negative and positive values for p1 and p2, then the fulfillment of the
inequality |x|p1 ≥ |x|p2 can be easily controlled.

We also warn the reader about the fact that the value of ε in (2.2) is introduced to guarantee the
fulfillment of the hypotheses in the next Proposition 3.1. Thus, ε plays a merely technical role, so that
xm+1 and wm+1 in (2.1) and (2.2) may be interpreted as fictitious (m+ 1)-th entries of vectors x and
w, respectively. For further properties of |x|p in (2.1) the reader may also refer to [2], pages 117–127.

3 Some theoretical results

As a preliminary fact, selecting any nonzero values p1 and p2 for the parameter p in (2.1), the next
relation immediately holds

|x|p1 ≥ |x|p2 ⇐⇒ 1

p1
ln

[
m+1∑
i=1

wix
p1
i

]
≥ 1

p2
ln

[
m+1∑
i=1

wix
p2
i

]
. (3.1)

Let us now consider the next proposition, which provides some hints for the choice of the parameter
p in (2.1). In particular, we want to infer some rules, which possibly suggest values for p1 and p2

such that relation (3.1) holds, regardless of the choice of values w1, . . . , wm, wm+1 satisfying relations
(2.2). This might be of somewhat importance in case we desire to aggregate the entries of vector x
representing the EI, by using different values of p in (2.1), say p1 and p2, with the aim of maintaining
a predictable ordering between the quantities |x|p1 and |x|p2 .

Indeed, the quantities w1, . . . , wm in our application represent weights. These weights are often
the result of practical arrangements, or they often depend on a series of compromises, so that they
are subject to changes, according with possible different scenarios. As a result, we can be interested
about aggregating in (3.1) the values of the entries of x (i.e. the EI), through the weights w1, . . . , wm,
so that respectively setting p = p1 and p = p2 in (2.1) we can predict the fulfillment of inequality
|x|p1 ≥ |x|p2 , regardless of the choice of w1, . . . , wm.

Proposition 3.1 Suppose the real values w1, . . . , wm, wm+1 satisfy relations (2.2). Assume that

1. p2 ≤ −1 < p1 < 0,

2. |p2| ≤ |p1| ln

 m+1∑
i=1,wi 6=0

wi

xi

 / ln

 m+1∑
i=1,wi 6=0

wi

x
|p1|
i

,

3.
m+1∑

i=1,wi 6=0

wi

x
|p1|
i

> 1.

Then, we have
|x|p1 ≥ |x|p2 . (3.2)

Proof: Observe that since xm+1 = ε, wm+1 = ε|p1| and (w1, . . . , wm) 6= 0, then (2.2) trivially implies
3. Furthermore, since p1 and p2 are negative values, then relations (3.1) (i.e. equivalently relation
(3.2)) may be rewritten as

1

|p1|
ln

 m+1∑
i=1,wi 6=0

wi

x
|p1|
i

 ≤ 1

|p2|
ln

 m+1∑
i=1,wi 6=0

wi

x
|p2|
i

 . (3.3)
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Since now |p2| ≥ 1 > |p1| > 0, recalling that 0 ≤ xi ≤ 1 for any 1 ≤ i ≤ m + 1, we obtain for any i
satisfying wi 6= 0

wi

x
|p2|
i

≥ wi

xi
≥ wi

x
|p1|
i

. (3.4)

Thus, using inequalities (3.4), condition (3.3) is surely satisfied provided that there exist values
w1, . . . , wm, wm+1 fulfilling

1

|p1|
ln

 m+1∑
i=1,wi 6=0

wi

x
|p1|
i

 ≤ 1

|p2|
ln

 m+1∑
i=1,wi 6=0

wi

xi

 ≤ 1

|p2|
ln

 m+1∑
i=1,wi 6=0

wi

x
|p2|
i

 . (3.5)

Now, the rightmost inequality in (3.5) directly follows from (3.4), while from 3. the leftmost inequality
in (3.5) requires

|p2| ≤ |p1| ln

 m+1∑
i=1,wi 6=0

wi

xi

 / ln

 m+1∑
i=1,wi 6=0

wi

x
|p1|
i

 , (3.6)

which is indeed fulfilled by 1. and 2.

Lemma 3.2 Assume the real values w1, . . . , wm, wm+1 satisfy conditions (2.2). Let be given the real
parameters ε, p1 and p2, where p2 ≤ −1 < p1 < 0, and ε ∈ (0, 1). Then, there exist nonempty sets
A(p1, ε) ⊂ IRm and B(p1, ε) ⊂ IR, depending on p1 and ε, such that for any w ∈ A(p1, ε) and for any
p2 ∈ B(p1, ε), the hypotheses 1., 2., 3. of Proposition 3.1 are fulfilled.

Proof: Condition 1. of Proposition 3.1 trivially holds. Moreover, by (2.2) the choice of xm+1 and
wm+1, along with relation (w1, . . . , wm) 6= 0, straightforwardly guarantee that the condition 3. in
Proposition 3.1 is satisfied, too. In addition, again using conditions (2.2), and recalling that for a
concave function f : IR→ IR the next Jensen inequality holds

f

(
m+1∑
i=1

βizi

)
≥

m+1∑
i=1

βif (zi) ,

m+1∑
i=1

βi = 1, 0 ≤ βi ≤ 1, i = 1, . . . ,m+ 1,

we have the following relations (where f(z) = z|p1|) m+1∑
i=1,wi 6=0

wi

xi

|p1| ≥ m+1∑
i=1,wi 6=0

wi

(
1

xi

)|p1|
=

m+1∑
i=1,wi 6=0

wi

x
|p1|
i

(3.7)

so that by 3. of Proposition 3.1

ln

 m+1∑
i=1,wi 6=0

wi

xi

|p1| ≥ ln

 m+1∑
i=1,wi 6=0

wi

x
|p1|
i

 > 0.

This equivalently implies that the condition

|p1| ln

 m+1∑
i=1,wi 6=0

wi

xi

 / ln

 m+1∑
i=1,wi 6=0

wi

x
|p1|
i

 > 1

is fulfilled. Moreover, this also implies that there are negative values of p2 satisfying

1 ≤ |p2| < |p1| ln

 m+1∑
i=1,wi 6=0

wi

xi

 / ln

 m+1∑
i=1,wi 6=0

wi

x
|p1|
i

 ,
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i.e. there are values of p2 such that the condition 2. in Proposition 3.1 holds. As a consequence, since
(w1, . . . , wm) 6= 0 then the sets

A(p1, ε)
.
=

{
w ∈ IRm :

m∑
i=1

wi = 1− ε|p1|, wi ≥ 0, i = 1, . . . ,m, ε ∈ (0, 1), p1 ∈ (−1, 0)

}
(3.8)

B(p1, ε)
.
=

{
p ∈ IR : p < 0, 1 ≤ |p| ≤ |p1| ln

 m+1∑
i=1,wi 6=0

wi

xi

 / ln

 m+1∑
i=1,wi 6=0

wi

x
|p2|
i

 , ∀w ∈ A(p1, ε)

}
(3.9)

are nonempty, and for any w ∈ A(p1, ε) and p2 ∈ B(p1, ε) the hypotheses of Proposition 3.1 are
satisfied.

Given the parameters p1 and ε, Figure 3.1 plots an example (shaded area) for the set A(p1, ε).

Corollary 3.3 Under the hypotheses of Lemma 3.2, for any choice of the parameters p1 and ε the
sets A(p1, ε) and B(p1, ε) defined in (3.8) and (3.9) are compact and convex, being A(p1, ε) also a
polyhedron.

Proof: The result for A(p1, ε) simply follows by observing that A(p1, ε) is equivalently described
by a finite set of linear equalities and inequalities. Moreover, B(p1, ε) is defined by a set of linear
inequalities whose cardinality is possibly not finite. Finally, the compactness of A(p1, ε) and B(p1, ε)
follows directly from (3.8) and (3.9).

Figure 3.1: An example of the set A(p1, ε) in (3.8) (shaded area), in case m = 3: this set is clearly a
polyhedron in IR3.

As we are going to comment later on, the results in Corollary 3.3 have the importance to guarantee
a possibly simpler solution for some optimization problems we formulate in the sequel. In particular,
according with Lemma 3.2, in order to estimate an interval of values for the negative parameter p2

such that

1 ≤ |p2| < |p1| ln

 m+1∑
i=1,wi 6=0

wi

xi

 / ln

 m+1∑
i=1,wi 6=0

wi

x
|p1|
i

 ,
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we may start from considering the sets A(p1, ε) and B(p1, ε). Then, let us define the function ϕp1(ε)
of ε, with ϕp1 : IR→ IR, which solves for a given value of ε and p1 the optimization problem

ϕp1(ε) ∈ arg minw1,...,wm

|p1| ln

 m+1∑
i=1,wi 6=0

wi

xi

 / ln

 m+1∑
i=1,wi 6=0

wi

x
|p1|
i


m∑

i=1,wi 6=0

wi = 1− ε|p1|

wi ≥ 0, i = 1, . . . ,m.

(3.10)

We recall that in (3.10) the parameters ε and p1 respectively range in (0, 1) and (−1, 0). Observe
that for given ε and p1, the problem (3.10) always admits solutions, since its objective function is
continuous and the set A(p1, ε) in (3.8) is compact by Corollary 3.3.

As an example, in Figure 3.2 we have set m = 3, with x1 = 1/2, x2 = 2/3, x3 = 3/4 and
p1 ∈ {−0.1,−0.3,−0.5,−0.7}; then, we have plot the function ϕp1(ε) versus ε. For the solution of the
(possibly) nonconvex constrained optimization problem (3.10) we used Matlab [3] built-in function
fmincon(), adopting the default option of interior-point-methods [4] and standard Matlab settings.
We remark that the objective function in (3.10) is possibly nonconvex, while the feasible set is a
(convex) polyhedron. Thus, the interior-point algorithm adopted in fmincon() is well–posed, being
the interior of the set A(p1, ε) in (3.8) nonempty (see Lemma 3.2). Furthermore, fmincon() uses an
exact optimization method, but for given p1 and ε it possibly provides a local minimum in (3.10),
which might not be also a global minimum. Thus, Figure 3.2 simply reports a numerical experience
to validate the conclusions of Lemma 3.2, where for our purposes the detection of local minima might
be a satisfactory achievement.

Similarly, Figure 3.3 reports a numerical experience on the guidelines of Figure 3.2; however,
Figure 3.3 makes reference to a larger instance where m = 20 and xi = i/(i+ 1), i = 1, . . . ,m.

We highlight that the investigation in this section may have a dramatic impact in practice. Indeed,
Proposition 3.1 allows to tune both the choice of the weights {wi} and the parameter p on the problem
in hand, in order to provide a fruitful tool to aggregate EI, in the light of supporting decisions for
politicians and other stakeholders. Furthermore, results of Proposition 3.1 confirm that the fulfillment
of condition (3.2) can be ensured under any choice of coefficients {wi} that satisfy (2.2). This means
that given p1, the process of assessing p2 can, to some extent, be considered robust, with respect to
changes of {wi}. Moreover, from Figures 3.2 and 3.3 it is evident that a relatively small value for
the parameter ε is advisable, since this allows a larger range of feasible values for p2 satisfying 2. of
Proposition 3.1.

4 Issues on the solution of problem (3.10)

This section is specifically devoted to analyze the solution of the nonconvex constrained optimization
problem (3.10), for given p1 and ε. In particular, we prove that the objective function in (3.10) is
strictly concave on the feasible set, so that possible solutions of (3.10) are located on vertices of its
feasible polyhedron. In this regard, we have the following result.

Lemma 4.1 Given p1 ∈ (−1, 0) and ε ∈ (0, 1), let the assumptions of Proposition 3.1 hold, and
assume A(p1, ε) is the polyhedron defined in (3.8). Let w ∈ IRm such that

m+1∑
i=1,wi 6=0

wi

x
|p1|
i

= γ, γ > 1. (4.1)
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Figure 3.2: Plot of the function ϕp1(ε) in (3.10), in case m = 3 and p1 = −0.1 (top left), p1 = −0.3
(top right), p1 = −0.5 (bottom left), p1 = −0.7 (bottom right), when ε ∈ (0, 1).

Figure 3.3: Plot of the function ϕp1(ε) in (3.10), in case m = 20 and p1 = −0.1 (top left), p1 = −0.3
(top right), p1 = −0.5 (bottom left), p1 = −0.7 (bottom right), when ε ∈ (0, 1).
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Then, the objective function in (3.10) is strictly concave on the compact convex set (polyhedron)

A(p1, ε)
.
=

w ∈ IRm : w ∈ A(p1, ε),
m+1∑

i=1,wi 6=0

wi

x
|p1|
i

= γ

 .

Proof: First observe that for any w ∈ A(p1, ε) the objective function in (3.10) can be written as

|p1| ln

 m+1∑
i=1,wi 6=0

wi

xi

 / ln

 m+1∑
i=1,wi 6=0

wi

x
|p1|
i

 = |p1| log m+1∑
i=1,wi 6=0

wi

x
|p1|
i


 m+1∑
i=1,wi 6=0

wi

xi

 . (4.2)

Then, recalling the definition of concavity for the function g : IR→ IR, on the convex set Ω, i.e.

g
[
βz(1) + (1− β)z(2)

]
≥ βg

[
z(1)
]

+ (1− β)g
[
z(2)
]
, ∀β ∈ [0, 1], ∀z(1), z(2) ∈ Ω,

and defining, for any w ∈ A(p1, ε), the two linear functions
b(w)

.
=

m+1∑
i=1,wi 6=0

wi

xi

c(w)
.
=

m+1∑
i=1,wi 6=0

wi

x
|p1|
i

,

by 3. of Proposition 3.1 we have b(w) ≥ c(w) > 1. In addition, by (4.1) we have

c(w) = γ, ∀w ∈ A(p1, ε),

so that for any w(1), w(2) ∈ A(p1, ε), 0 < β < 1, we obtain

βc
[
w(1)

]
+ (1− β)c

[
w(2)

]
= c

[
w(1)

]
= c

[
w(2)

]
> 1.

Now, being b(w) and c(w) linear functions with respect to w, for any w ∈ A(p1, ε) relation (4.1) and
the strict concavity of the logarithm yield (see (4.2))

|p1| log
c
[
βw(1) + (1− β)w(2)

] {b [βw(1) + (1− β)w(2)
]}

=

= |p1| log{
βc
[
w(1)

]
+ (1− β)c

[
w(2)

]} {βb [w(1)
]

+ (1− β)b
[
w(2)

]}

> |p1|

β log{
βc
[
w(1)

]
+ (1− β)c

[
w(2)

]} {b [w(1)
]}

+ (1− β) log{
βc
[
w(1)

]
+ (1− β)c

[
w(2)

]} {b [w(2)
]}

= |p1|

β log
c
[
w(1)

] {b [w(1)
]}

+ (1− β) log
c
[
w(2)

] {b [w(2)
]} .

Finally, this proves that the objective function in problem (3.10) is strictly concave over the polyhedron
A(p1, ε), whose compactness is yielded by the compactness of the set A(p1, ε).
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4.1 On some properties of problem (3.10)

In this section we focus on the vertices of the feasible polyhedron P in problem (3.10) (i.e. the set
A(p1, ε) in (3.8)), as well as the vertices of the polyhedron A(p1, ε) in Lemma 4.1. On this purpose,
we respectively indicate by (I), (II) and (III) the next three sets of constraints:

(I) wi ≥ 0, i = 1, . . . ,m,

(II)

m∑
i=1

wi = 1− ε|p1|,

(III)
m∑

i=1,wi 6=0

wi

x
|p1|
i

= γ, γ > 1.

P is defined as the intersection of the polyhedron (I) with the hyperplane (II), and in order to give
a geometric description of P it suffices to recur to Figure 3.1. Conversely, A(p1, ε) is obtained by the
intersection of P with the hyperplane (III). Observe that the normal vector to the hyperplanes (II)
and (III) is respectively given by (assume without loss of generality that wi 6= 0, 1 ≤ i ≤ m)

u(II) =

 1
...
1

 ∈ IRm, u(III) =


1

x
|p1|
1
...
1

x
|p1|
m

 ∈ IRm.

Thus, to better investigate the geometry of the sets A(p1, ε) and A(p1, ε) we distinguish between two
cases:

• (II) and (III) are parallel (possibly coincident): this happens if and only if u(II) and u(III) are

parallel, i.e. if and only if x1 = · · · = xm. In the latter case, if x
|p1|
1 γ = · · · = x

|p1|
m γ = 1 − ε|p1|,

then the polyhedron A(p1, ε) has the same vertices of the polyhedron P in Figure 3.1, while if

x
|p1|
1 γ = · · · = x

|p1|
m γ 6= 1− ε|p1| then the polyhedron A(p1, ε) is empty;

• u(II) and u(III) are not parallel; then for suitable values of the parameter γ the polyhedron P
has a nonempty intersection with the hyperplane (III). To determine in this case the vertices
of A(p1, ε), let us first consider the vertices of P, i.e. the points

vi = (1− ε|p1|)ei, i = 1, . . . ,m, wi 6= 0,

being ei the i-th real unit vector. Note that the hyperplane (III) includes the point vi provided
that

γ =
1− ε|p1|

x
|p1|
i

> 1. (4.3)

Thus, if u(II) and u(III) are not parallel, in order the polyhedron A(p1, ε) to be nonempty, the
parameter k must satisfy the inequalities∗

min
i=1,...,m,wi 6=0

{
1− ε|p1|

x
|p1|
i

}
≤ γ ≤ max

i=1,...,m,wi 6=0

{
1− ε|p1|

x
|p1|
i

}
. (4.4)

∗We highlight that by (4.3) the leftmost inequality in (4.4) also fulfils relation 3. of Proposition 3.1.
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In addition, from Figure 3.1 we can immediately infer that the vertices (if any) of A(p1, ε) can lie only
on the boundary (dashed lines of Figure 3.1) of the polyhedron P. As a consequence, since by Lemma
4.1 the objective function in (3.10) is strictly concave on P (inasmuchas as A(p1, ε) is a polyhedron
and A(p1, ε) ⊆ P = A(p1, ε)), and recalling that when γ ranges in the interval (4.4) then any point on
the boundary of P can be a vertex of A(p1, ε), we have the following conclusion.

Proposition 4.2 Consider the concave optimization problem (3.10); then, given the parameters p1 ∈
(−1, 0) and ε ∈ (0, 1)

• the global minima of the objective function are among the vertices {vi} of A(p1, ε), with

vi =
(

1− ε|p1|
)
ei, i = 1, . . . ,m, wi 6= 0;

• the objective function in (3.10) satisfies

lim
ε→0+

|p1| ln

 m+1∑
i=1,wi 6=0

wi

xi

 / ln

 m+1∑
i=1,wi 6=0

wi

x
|p1|
i

 = +∞.

Proof: By Lemma 4.1 problem (3.10) is strictly concave and its feasible polyhedron is compact,
which implies that global solutions both exist and are located in one of the vertices {vi} (see also [5]).

As regards the second item, given the parameter p1 ∈ (−1, 0), let ı̂ ∈ {1, . . . ,m} be one of the
indices such that v̂ı is a global minimum. Then, the value of the objective function in (3.10) at v̂ı is

|p1|
ln

[
ε|p1|

ε
+
wı̂

x̂ı

]

ln

[
1 +

wı̂

x
|p1|
ı̂

] .

Thus, taking the limit ε→ 0+ we obtain the result.

Observe that the property at the second item of the last proposition has also a numerical evidence,
considering small values of ε in the plots of Figures 3.2-3.3.

5 A further extension

We complete this paper by proving similar results with respect to Proposition 3.1, while setting
positive values for the parameters p1 and p2. In this regard, again we preliminarily set xm+1 = ε, with
ε ∈ (0, 1). Moreover, given p1 ∈ IR we assume that now (similarly to (2.2)) the vector w ∈ IRm and
the constant value wm+1 satisfy relations w ∈ IRm \ {0} : wm+1 = 1

ε|p1|
,

m∑
i=1

wi = 1− 1

ε|p1|
, wi ≥ 0, 0 ≤ xi ≤ 1, i = 1, . . . ,m,

xi = 0 =⇒ wi = 0, i ∈ {1, . . . ,m}.
(5.1)

Proposition 5.1 Suppose the real values w1, . . . , wm, wm+1 satisfy relations (5.1). Assume that

1. 0 < p1 < 1 ≤ p2,

2. p2 ≤ p1 ln

 m+1∑
i=1,wi 6=0

wixi

 / ln

 m+1∑
i=1,wi 6=0

wix
p1
i

,
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3.
m+1∑

i=1,wi 6=0

wix
p1
i > 1.

Then, we have
|x|p1 ≥ |x|p2 . (5.2)

Proof: The proof basically follows guidelines similar to those of Proposition 3.1. In particular, note
that (5.1) implies (w1, . . . , wm) 6= 0 so that 3. holds. Furthermore, by (2.1) relation (5.2) is fulfilled if
and only if the condition

1

p1
ln

 m+1∑
i=1,wi 6=0

wix
p1
i

 ≥ 1

p2
ln

 m+1∑
i=1,wi 6=0

wix
p2
i

 (5.3)

holds. Observe that now by (5.1) and 1. it is for any i = 1, . . . ,m

wix
p1
i ≥ wixi ≥ wix

p2
i . (5.4)

Moreover, we can conclude that (5.3) is surely satisfied in case there exist values w1, . . . , wm, wm+1

which yield

1

p1
ln

 m+1∑
i=1,wi 6=0

wix
p1
i

 ≥ 1

p2
ln

 m+1∑
i=1,wi 6=0

wixi

 ≥ 1

p2
ln

 m+1∑
i=1,wi 6=0

wix
p2
i

 . (5.5)

Finally, the rightmost inequality in (5.5) directly follows from (5.1) and (5.4), while the leftmost
inequality in (5.5) is a consequence of 2. and 3.

Lemma 5.2 Assume the real values w1, . . . , wm, wm+1 satisfy conditions (5.1). Let be given the real
parameters ε, p1 and p2, where 0 < p1 < 1 ≤ p2, and ε ∈ (0, 1). Then, there exist nonempty sets
Ā(p1, ε) ⊂ IRm and B̄(p1, ε) ⊂ IR, depending on p1 and ε, such that for any w ∈ Ā(p1, ε) and for any
p2 ∈ B̄(p1, ε), the hypotheses 1., 2., 3. of Proposition 5.1 are fulfilled.

Proof: The proof is similar to the one of Lemma 3.2, so that the hypotheses easily yield 1. and 3. of
Proposition 5.1. As regards 2. of Proposition 5.1, from the Jensen inequality for the concave function
f(z) = zp1 , z ≥ 0, we have  m+1∑

i=1,wi 6=0

wixi

p1

≥
m+1∑

i=1,wi 6=0

wix
p1
i ,

so that by 3. of Proposition 5.1

ln

 m+1∑
i=1,wi 6=0

wixi

p1

≥ ln

 m+1∑
i=1,wi 6=0

wix
p1
i

 > 0,

i.e.

p1 ln

 m+1∑
i=1,wi 6=0

wixi

 / ln

 m+1∑
i=1,wi 6=0

wix
p1
i

 > 1.

Finally, the last inequality implies that there exist values for p2 such that

1 ≤ p2 < p1 ln

 m+1∑
i=1,wi 6=0

wixi

 / ln

 m+1∑
i=1,wi 6=0

wix
p1
i

 ,
proving that the condition 2. in Proposition 5.1 holds. As a consequence, the existence of the sets
Ā(p1, ε) and B̄(p1, ε) is guaranteed.
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Corollary 5.3 Under the hypotheses of Lemma 5.2, for any choice of the parameters p1 and ε the sets
Ā(p1, ε) and B̄(p1, ε) defined in Lemma 5.2 are compact and convex, being Ā(p1, ε) also a polyhedron.

Proof: The proof is almost identical to that of Corollary 3.3.

6 Conclusions and future work

In this paper we analyzed a method to aggregate a finite number of real parameters into a unique
nonnegative indicator. The analysis is carried on following a theoretical point of view. Nevertheless, the
proposed technique can be easily embedded within different real decision processes, where stakeholders
are often eager to base their preferences on simple and reliable decision support systems, rather than
using a (possibly large) number of indicators.
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