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Abstract
In this paperwe propose a hybridmetaheuristic based on Particle SwarmOptimization, which
we tailor on a portfolio selection problem. Tomotivate and apply our hybridmetaheuristic, we
reformulate the portfolio selection problem as an unconstrained problem, bymeans of penalty
functions in the framework of the exact penalty methods. Our metaheuristic is hybrid as it
adaptively updates the penalty parameters of the unconstrainedmodel during the optimization
process. In addition, it iteratively refines its solutions to reduce possible infeasibilities. We
report also a numerical case study. Our hybrid metaheuristic appears to perform better than
the corresponding Particle Swarm Optimization solver with constant penalty parameters. It
performs similarly to two corresponding Particle Swarm Optimization solvers with penalty
parameters respectively determined by a REVAC-based tuning procedure and an irace-based
one, but on average it just needs less than 4% of the computational time requested by the
latter procedures.
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1 Introduction

Setting the parameters used within an algorithm is a key-point to insure its reliability, perfor-
mances, robustness, and scalability. Although many approaches resort to experts’ judgement
to determine the algorithm’s parameter values (see Kotthoff et al. 2019), the literature pro-
poses a great number of parameter setting procedures (Lobo et al. 2007). As in Eiben et al.
(1999), we can partition these approaches in parameter tuning techniques (also referred to
as off-line configuration), which determine the algorithm parameters values before the algo-
rithm execution, and parameter control techniques (also referred to as on-line control), which
continuously update the parameter values during the algorithm execution.

On this guideline, also Particle Swarm Optimization (PSO) has been used to assess the
parameters of other algorithms. In this regard we have for instance: (a) (Hong 2009), where
parameters value for a Support Vector Regression model are determined, using chaotic PSO,
(b) (Lin et al. 2008), where PSO is used to set parameters for Support Vector Machines, (c)
(Si et al. 2012) that uses PSO to tune Differential Evolution parameters.

Conversely, several approaches have also been proposed in the literature to determine PSO
parameters value. These approaches get started from extensive studies on PSO parameters
(inertia weight and coefficients), since the early PSO related research (Clerc and Kennedy
2002; Eberhart and Shi 2001; Shi and Eberhart 1998a, b). In this context, Trelea (2003),
Campana et al. (2010) study the possible range for PSO parameters in order to evaluate their
impact on convergence.

Methodologies and concepts to determine PSO parameter values can be partitioned in
tuning and control methods. Our contribution can be framed in this latter class of methods
that in the PSO jargon are also referred as to adaptive.

Amongst parameter tuning procedures, Dai et al. (2011) proposes the idea of using an
additional PSO scheme that analyses the impact of each PSO parameter, while Wang et al.
(2014) proposes to use Taguchi method. In addition, other general purpose procedures of this
type could also be applied to PSO such as: (1) statistical procedures to evaluate parameter
settings and to eliminate candidate parameters configurations that are dominated by others
(Trujillo et al. 2020; Birattari et al. 2010); (2) meta-heuristic methods to explore the candidate
configurations space (Nannen et al. 2008; Hutter et al. 2007); (3) sequential model-based
optimisation in order to define both a correlation between parameter settings and algorithm
performance, and to identify high-performing parameter values (Hutter et al. 2011); (4) other
approaches, including Bayesian Optimization (Eggensperger et al. 2013), jointly used with
Gaussian process (Snoek et al. 2012), Random Forests (Hutter et al. 2011), and Tree Parzen
Estimator (Bergstra et al. 2011) (see Huang et al. 2019 for a detailed overview of parameter
tuning approaches).

Generally speaking, parameter tuning may be time consuming: this is why tuning is often
done by using cheap synthetic test functions that may turn to be rather different from the real
benchmarks, or by using cheap-to-evaluate surrogates of real hyperparameter optimization
benchmarks (Eggensperger et al. 2015).

Amongst control procedures we find: Shi and Obaiahnahatti (1998), which presents a
basic adaptive procedure for the assessment of PSO parameters that makes the inertia weight
decrease linearly over time; Zhan and Zhang (2008), which introduces the Adaptive Parti-
cle Swarm Optimization (APSO) that defines four evolutionary states to control the inertia
weight and the acceleration coefficients (along with other parameters); Hsieh et al. (2009),
which proposes an adaptive population management procedure to automatically determine
the population size;Winner et al. (2009), which employs non-explicit control parameters that
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describe self-organizing systems at an abstract level; Tang et al. (2011), which uses the search
history collected byparticles to determine acceleration coefficients; time-varying acceleration
coefficients are considered also in Ratnaweera et al. (2004a). Stemming algorithms derived
from Genetic and Evolutionary Algorithms can be also seen as control procedures for PSO.
As an example, this is the case when mutation operators are introduced to avoid premature
convergence, as suggested by many contributions (Si et al. 2011; Sharma and Chhabra 2019;
Jana et al. 2019; Wang et al. 2019). Recently, a mechanism to control the balance between
exploration and exploitation has been detailed in Xia et al. (2020) (Dynamic Multi-Swarm
Global Particle Swarm Optimization), and a great attention to define learning strategies to
increase swarm diversity was given in Zhang et al. (2020). The interested reader can find a
comparative analysis among PSO schemes in, e.g., Harrison et al. (2018) where 18 different
self-adaptive PSO algorithms are investigated.

Adaptive versions of PSO (Zhan et al. 2009) have been applied to a plethora of problems,
see (Marinakis et al. 2015) for a literature review.

As regards the application of PSO techniques to portfolio optimization problems, some
cares and preliminaries are mandatory. Making effective decisions in real economic and
financial contexts may imply having to deal with complex or even NP-hard mathematical
programming problems (see, e.g., Arora et al. 2011). The modeling of many economic and
financial systems is not straightforward, and it may need to resort to non-analytical func-
tions or to a mixed-integer framework. In addition, on one hand, it requires to take into
account uncertainty, which is congenital to the economic environments. On the other hand,
professional operators may find difficult to use cumbersome models that require excessive
computational power. They may prefer to settle to extremely simplified decision models even
when they provide “solutions” that are fairly far from the optimal ones.

In the last decades, the above reasons and the greater availability of computational power
have fostered an increasing interest towards the development and the applications of meta-
heuristics. The interested reader is forwarded, as an example, to Soler-Domínguez et al.
(2017) that reports the increasing number of papers on applications of metaheuristics to
finance since 2000.

In this paper we propose a novel hybrid metaheuristic based on PSO, for approximately
solving complex mathematical programming problems as those introduced above. In par-
ticular, we tailor this hybrid metaheuristic on the portfolio selection problem presented in
Corazza et al. (2013). This problem is in general NP-hard, and its objective and constraints
are both nondifferentiable and nonconvex. We solve it using an exact penalty method which
transforms the constrained problem into an unconstrained one.

Our metaheuristic mainly consists of a PSO module and of other hybridizing procedures.
The former one jointly minimizes both the original objective function and all the constraint
violations. The latter ones initialize the solution search, adaptively update the penalty param-
eters and, finally, are used to refine the obtained solution.

We compare the results obtained by our hybrid metaheuristic with those provided by three
PSO-based solvers. In the first solver, the penalty parameters are simply kept constant, as
often done in the literature (see, e.g., Corazza et al. 2013). In the second and in the third solver
the penalty parameters are a-priori determined by a REVAC-based tuning procedure and an
irace-based one, respectively (see, for details, Nannen and Eiben 2007a; López-Ibáñez et al.
2016). Our hybrid metaheuristic appears to perform better than the first PSO-based solver,
while it seems to perform similarly both to the second and to the third PSO-based solver.
However, our hybrid metaheuristic just needs on average less than 4% of the computational
time requested by the latter PSO-based solvers. In particular, all such evidences hold even
when a reduced number of iterations is allowed for the solvers, e.g., in case of optimization
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problems for which computing the value of the solution is costly. This makes our hybrid
metaheuristic a flexible tool that can provide a fast approximate solution to a financial expert,
who frequently needs to select portfolios in real time. We observe that there is also the
chance to preliminary propose an offline application of REVAC/irace, over a given prototype
problem, and then to use the resulting computed PSO parameters on the current instance.
Nevertheless, this approach implies a couple of drawbacks: the resulting PSO parameters, to
be used on the current problem, would be just suboptimal; moreover, there is no guarantee
that the problem used for PSO tuning parameters has a comparable complexity with respect
to the problem in hand. Both the last issues unavoidably risk to deteriorate the performance
of PSO on the current problem.

In the next sectionswe provide bothmethodologicalmotivations and numerical results that
reveal why our hybrid metaheuristic shows faster progresses, since the early iterations, than
classical PSO-based approaches. In particular, we argue that the structure of the considered
portfolio optimization problem, along with the fact that only its fast approximate solution
is sought, suggested our choice for a dynamic (say adaptive) penalty approach (see also
Sects. 4.1 and 5 ). As regards the last issue, we refer the interested reader to Griffin and
Kolda (2010). This study presents possible guidelines for approximately solving complex
constrained optimization problems, when differentiability is not a mandatory issue for the
penalty framework.

Our preference for a PSO-based solver, with respect to other possible alternative heuristics,
relies also on the results in Corazza et al. (2012), where the use of Genetic Algorithms
for solving a similar portfolio problem was investigated, and a PSO approach appeared
to perform better. Some other alternatives were also considered such as: Filter Methods
(Nocedal and Wright 2006), Augmented Lagrangian Methods (Nocedal and Wright 2006)
or Lagrangian Relaxation (Fisher 1985). However, they were excluded as they seemed to fit
less our efficiency requisites than a PSO approach, as we argue at the end of Sect. 3.

For the sake of completeness, as regards portfolio selection problems, we also refer the
reader to the landmark papers Konno and Wijayanayake (1999) and Konno and Yamamoto
(2005), which focus on a theoretical approach issuing both a specific measure of risk and
transaction costs. Finally, the more recent extensions of PSO-based approaches for portfo-
lio selection problems in Chen and Zhang (2010) and Ray and Klepac (2019) are worth
investigating.

On balance, the main contributions of this paper, along with its elements of novelty with
respect to the current literature, can be summarized as follows:

• For our mixed-integer formulation of the portfolio selection problemwe draw inspiration
from the penalty approach inCorazza et al. (2013, 2012, 2019).However, unlike the latter
references, we split the procedure to update some subsets of variables in the problem, in
order to better exploit convexity with respect to a restricted number of unknowns.

• With respect to Corazza et al. (2013, 2012) we adopt an adaptive (dynamic) update of
penalty parameters, pursuing a twofold purpose. First we aim at preserving theoretical
issues on penalty methods for nonsmooth problems, then our settings are committed to
yield convincing numerical performance (see Sect. 4.1).

• With respect to Corazza et al. (2013, 2012, 2019), in our framework we embed a proce-
dure to update some of the problem unknowns, in accordance with the idea of Schwarz
Alternating Methods (SAM) (Gander 2008); i.e., we first split and then we refine the
vector of PSO particles’ position (see Sect. 4.2).

• This paper proposes a complete numerical experience (which is first intended to comple-
ment and then to extend the one in Corazza et al. (2013)). Moreover, our approach is also
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compared with both state-of-the-art software (namely REVAC and irace) for parameter
tuning, and an exact method for mixed-integer programming problems (see Appendix
A).

The remainder of this paper is organized as follows. In the next section, we recall the
basics of PSO. In Sect. 3, we present the portfolio selection problem used as a reference
problem throughout this paper. In Sect. 4, we introduce our hybrid metaheuristic. In Sect. 5,
we describe the plan of our numerical experience and the issues that can arise. Then, we
report the results obtained from the application of the different metaheuristics. In Sect. 6, we
draw some final remarks.

The paper includes also an appendix, where we present the formulation of the portfolio
selection problem as a standard nonlinear mixed-integer programming problem. We use this
model to have reference exact solutions and to assess the approximation errors of the solutions
provided by our hybrid metaheuristic.

2 Basics on PSO

PSO is a metaheuristic iterative method for the solution of global optimization problems
(Kennedy and Eberhart 1995). It belongs to the class of bio-inspired methods which attempt
to emulate some natural paradigms of behavior, related to groups of individuals. Examples of
similar techniques can be found in the comprehensive study (Talbi and Nakib 2019), showing
their efficiency. PSO iteratively attempts to replicate the rationale behind a swarm foraging
for food. Each member of the swarm is called particle. Several PSO variants have been
proposed in the literature, both for unconstrained and constrained problems (Wu and Zhang
2013; Liang and Suganthan 2006), their performances depending often on the function to
optimize and the shape of its level sets.

Let P ∈ N be the size of the swarm, f : IRn → IR be a continuous function to minimize,
also referred to as fitness function in the PSO jargon. We assume that the level set

L f (ȳ) = {y ∈ IRn : f (y) ≤ f (ȳ)}
is compact, for any given vector ȳ ∈ IRn , so that the minimization problem

min
y∈IRn

f (y) (1)

surely admits global solutions.
At iteration k of PSO, the position ykj ∈ IRn of each particle j of the swarm represents a

tentative solution for (1). Then, the j-th particle updates its position according with the rule

yk+1
j = ykj + νk+1

j , j = 1, . . . , P, k = 0, 1, . . . ,

being yk+1
j ∈ IRn its next position (tentative solution), while νk+1

j ∈ IRn is its velocity, i.e.,

the search direction at ykj .

The direction νk+1
j is typically computed as the cone combination of three contributions.

Namely, setting

pkj ∈ arg min
0≤h≤k

{
f (yhj )

}
, j = 1, . . . , P, k = 0, 1, . . . , (2a)

pkg ∈ arg min
0≤h≤k
j=1,...,P

{
f (yhj )

}
, k = 0, 1, . . . , (2b)
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where the vector pkj , respectively pkg , is the best solution so far found by particle j and by

the swarm, the search direction νk+1
j is given by Kennedy and Eberhart (1995)

νk+1
j = νkj + αk

j ⊗ (pkj − ykj ) + βk
j ⊗ (pkg − ykj ), j = 1, . . . , P, k = 0, 1, . . . , (3)

being:

• the vector νkj the so called inertia of particle j to change trajectory;

• the vector pkj − ykj the deviation of y
k
j from the best previous position of particle j ,

• the vector pkg − ykj the deviation of ykj from the best previous solution so far found by
the swarm.

Finally, αk
j , β

k
j ∈ IRn are positive random vectors, while the symbol ‘⊗’ indicates the entry-

by-entry product between vectors. In the literature, parameter αk
j is often addressed as the

cognitive parameter, while βk
j as the social parameter. In addition, they are usually expressed

as:

αk
j = ckj r

k
1 , j = 1, . . . , P, k = 0, 1, . . . ,

βk
j = ckgr

k
2 , j = 1, . . . , P, k = 0, 1, . . . ,

where, for any j and k, rk1 and rk2 are n-real vectors whose entries are determined according
to the prominent literature, while ckj , c

k
g entries assume values as described in Sect. 5.

We remark that, unlike the standard gradient based methods, the search direction νk+1
j is

not necessarily a descent direction for the function f at ykj . The new position yk+1
j that the

j-th particle computes at step k might not improve the objective function value, though it
might prevent the solutions to be entrapped in a neighborhood of a local minimum. Indeed,
the update (3) is designed to perform both an exploration and an exploitation in IRn . The
vector βk

j ⊗ (pkg − ykj ) is mainly responsible for exploration, i.e., for the search of global
minima over the entire feasible set, avoiding entrapment in neighborhoods of poor local
minima. The vector αk

j ⊗ (pkj − ykj ) is mainly responsible for exploitation, i.e., for refining
the solutions nearby promising local minima, when no further progress from exploration is
experienced.

In this paper, in accordance with Ozcan et al. (2016), we consider the following slightly
more general expression for the velocity:

νk+1
j = χk

[
wkνkj + αk

j ⊗ (pkj − ykj ) + βk
j ⊗ (pkg − ykj )

]
, j = 1, . . . , P, k = 0, 1, . . . ,

(4)
where χk and wk are positive parameters (see also Sect. 5.3 for the choice of their values)
respectively known as the constriction coefficient and inertia coefficient.

Important contributions have been recently published,which ensure that by a proper choice
of the coefficients in (4), some necessary conditions of convergence for PSO iteration can
be given. We refer the interested reader to, e.g., (Clerc and Kennedy 2002; Campana et al.
2010; Bonyadi and Michalewicz 2016).

3 Our reference portfolio selection problem

Broadly speaking, a portfolio selection problem consists in choosing a subset of assets with
the purpose of obtaining an appreciable return while keeping risk at a reasonable level.
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Developing portfolio selection models for real stock markets is in general a complex task for
several reasons. As an example effective models are often asked to:

• gauge the uncertainty by adopting risk measures that both satisfy appropriate formal
properties (e.g., coherence) and cope with the generally non-normal return distributions
of the real stock markets (Artzner et al. 1999). Risk measures should be designed to take
into account the risk attitude of different investors;

• provide a certain number of possible alternatives, when requested by the investors that
desire to make their final choice assessing the outcome of different scenarios;

• take into account several practices and rules of the portfolio management industry that
may affect the portfolio selection process. For instance, in the standard professional
practice, the fund managers self-impose bounds on the minimum and the maximum
number of assets to trade, in order to control the transaction costs;

• provide fast and reliable approximate solutions, rather than accurate but time consum-
ing ones. This holds in particular when the return of the approximate proposal is not
significantly different with respect to an exact (time consuming) one.

3.1 The constrainedmodel

In this paper, we start from considering the portfolio selection model proposed in Corazza
et al. (2013, 2019). This model adopts a coherent risk measure based on the combination of
lower and upper partial moments of different orders of the portfolio return distribution. This
measure can manage non-Gaussian distributions of asset returns and can reflect different
investors’ risk attitudes (Chen and Wang 2008). It takes into account both the risk contained
in the “bad” tail (the left one of the portfolio return), and the advantages of using the “good”
tail (the right one of the same portfolio return), see, e.g., Artzner et al. (1999) for further
details. The considered model includes cardinality constraints to bound the minimum and
the maximum number of assets to trade, and includes also constraints on the minimum and
the maximum capital percentage to invest in each asset. These constraints often result from
a matching between broker’s knowledge and investor’s requests.

Before formalizing the portfolio selection problem of interest, we need to introduce the
notations which follow:

• Parameters:

– N : number of possible investment assets;
– re: minimum desired expected return of the portfolio;
– Kd and Ku : minimum and maximum number of assets to trade, respectively;
– d and u: minimum and maximum capital percentage to invest in each asset, respec-

tively;
– p: indexof the normused in the riskmeasure of the portfolio,with p ≥ 1, representing

investor’s attitude to risk;
– a: relative weight (0 ≤ a ≤ 1) assigned in the risk measure of the portfolio to the

good tail of the portfolio return distribution, with respect to the bad tail;
– ri : (stochastic) return of the i-th asset, for i = 1, . . . , N .

• Decisional variables:

– xi : continuous variable expressing the percentage of the portfolio invested in the i-th
asset, for i = 1, . . . , N ;
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– zi : indicator variable assuming value 1 if the i-th asset is included in the portfolio, 0
otherwise, for i = 1, . . . , N .

In addition, x and z indicate respectively the N -dimensional vectors (x1, . . . , xN )T and
(z1, . . . , zN )T and:

• E[y] indicates the expected value of the random argument y,
• y− indicates max{0,−y};
• y+ indicates (−y)−;
• r̂ stands for the vector (̂r1, . . . , r̂N )T of expected values r̂i = E[ri ], i = 1, . . . , N .

Note that hereinafter we denote the i-th entry of a vector s by either si or (s)i , the latter
notation is used if otherwise interpretation ambiguities may arise. Moreover, if u, v ∈ IRN

then u ≤ v [u < v] is equivalent to the N inequalities ui ≤ vi [ui < vi ], i = 1, . . . , N .
Given the above notation, we can express the overall stochastic portfolio return as r =∑N
i=1 ri xi , and consequently the expected portfolio return as

E[r ] =
N∑
i=1

r̂i xi .

Accordingly, we express the risk measure of the portfolio return as

ρa,p(r) = a‖(r − E[r ])+‖1 + (1 − a)‖(r − E[r ])−‖p − E[r ].
The risk measure ρa,p(r) is coherent, as proved in Chen and Wang (2008), and allows to
describe the investor’s risk attitude through an appropriate tuning of the non-negative values
of parameters a and p.

Following the notation of the authors in Chen and Wang (2008), we are now ready to
formulate the portfolio selection problem as follows:

min
x,z

ρa,p(r) = a‖(r − E[r ])+‖1 + (1 − a)‖(r − E[r ])−‖p − E[r ] (5a)

s.t. E[r ] ≥ re (5b)

N∑
i=1

xi = 1 (5c)

Kd ≤
N∑
i=1

zi ≤ Ku (5d)

zi d ≤ xi ≤ zi u, i = 1, . . . , N (5e)

zi ∈ {0, 1}, i = 1, . . . , N . (5f)

Constraint (5b) imposes theminimumdesired expected return of the portfolio. Constraint (5c)
imposes a budget constraint. Constraints (5d) and (5e) impose respectively bounds on the
number of assets traded and on the capital percentage to invest in each asset of the portfolio.
In particular, the left inequality in (5e) suggests that short-selling is not allowed, as long
as d ≥ 0. Finally, constraints (5f) impose that an asset is either included or excluded from
the portfolio, i.e. the variables zi , i = 1, . . . , N are binary. In the next section we give a
framework for the transformation of (5) into an unconstrained optimization problem, so that
PSO can be applied for its approximate solution.
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3.2 An unconstrainedmodel

Here, we show how to reformulate (5) as an unconstrained optimization problem by means
of penalty functions, so that PSO can be applied. To this end, initially we recall some basic
results on penalty functions.

Given a function f : IRn → IR, and two vector functions h = {h1, h2, . . . , hm} : IRn →
IRm and g = {gm+1, gm+2, . . . , gp} : IRn → IRp−m , with f , h, g ∈ C1(IRn), consider the
constrained optimization problem

min
y∈F f (y), (6)

where F = {y ∈ IRn : h(y) = 0, g(y) ≤ 0} is compact.
We can associate to (6) the following �1-nondifferentiable exactpenalty function (Zangwill

1967)

P(y; η) = f (y) +
m∑
i=1

1

ηi
‖hi (y)‖1 +

p∑
j=m+1

1

η j

∥∥max{0, g j (y)}
∥∥
1 (7)

being η = {η1, η2, . . . , ηm, ηm+1, . . . , ηp−1, ηp} > 0 a vector of positive penalty parame-
ters.

Then, the Mangasarian-Fromowitz Constraint Qualification (MFCQ) (Bazaraa et al.
2006) condition holds at point ŷ ∈ F for problem (6) if:

(a) the vectors ∇h1(ŷ), . . . , ∇hm(ŷ) are linearly independent;
(b) there exists a nonzero vector d ∈ IRn such that

1. ∇hi (ŷ)T d = 0, for i = 1, . . . ,m
2. ∇g j (ŷ)T d < 0, for j = m + 1, . . . , p and g j (ŷ) = 0.

Finally, consider the following unconstrained minimization problem

min
y∈	̊

P(y; η). (8)

where 	̊ is an open set that contains the compact set F , (i.e., 	̊ ⊃ F). In addition, denote
with 	 a closure of the open set 	̊ (i.e., 	 = cl(	̊)). The following proposition holds (see,
e.g., Mangasarian and Han 1979).

Proposition 1 Consider the problems (6) and (8). If

• MFCQ holds at any global minimum of P (6),
• there exists a set 	 such that 	 = cl(	̊) and 	̊ ⊃ F

then, there exists a vector η∗ > 0 such that for any η ∈ (0, η∗], any global minimum of (6)
is a global minimum of (8) and vice versa.

Proposition 1 establishes a relation between the solutions of (6) and (8). In particular, it
implies that constrained problem (6) can be solved by efficient iterative descent methods for
the unconstrained problem (8). However, in general, iteratively solving problem (8) starting
from an initial point ȳ and a given choice of the real parameter η̄ > 0, may not yield a
solution of (6), because the level set

L(P, ȳ, η̄) = {y ∈ IRn : P(y; η̄) < P(ȳ; η̄)} (9)

possibly does not satisfy the condition L(P, ȳ, η̄) ⊇ F , as implicitly required by the second
condition in Proposition 1.
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The above considerationsmotivate our proposal for adaptively updating the penalty param-
eters. Indeed, the choices of both 	 and η are crucial for the possibility of determining an
optimal point of (6) by solving (8). Unfortunately, neither 	 nor η can be usually known
a-priori. For example, we might be induced to set η very small. However, we could provide
no guarantee that η ≤ η∗ holds. In addition, if η is too small, serious ill-conditioning might
arise, implying numerical instability and possibly slow progress at each iteration of a descent
solution method.

We decided to adopt for our reference portfolio selection problem a standard exact penalty
framework, given its simplicity and since it guarantees sufficient theoretical results undermild
assumptions. Nevertheless, we cannot exclude that other penalty approaches could suit better
when f (y) is non-differentiable.

To apply the results in Proposition 1 to our portfolio selection problem (5), we first have
to replace the constraint zi ∈ {0, 1} (i.e. (5f)) with zi (1− zi ) = 0, with i = 1, . . . , N . In this
way, we obtain that the feasible set of (5) is surely compact.

Unfortunately, point (a) of the MFCQ condition might not be satisfied at some feasible
points. In addition, function ρa,p(r) in (5a) is not continuously differentiable as required. All
the same, we can still adopt a penalty framework by invoking the general result in Bazaraa
et al. (2006)-Theorem 9.22, which requires only the continuity of the objective function,
although convergence properties are partially lost.

In particular, we set 	 = IR2N and adaptively update the vector of parameters η, accept-
ing the possibility that some of its entries approach very small values (see Sect. 5.1). As
some convergence results are partially lost, we will introduce further corrections to improve
performance. Considering (5), our �1-penalty problem becomes

min
x∈IRN , z∈IRN

P(x, z; ε) (10)

with ε ∈ IR8 and

P(x, z; ε) = ρa,p(r) + 1

ε0

[
ε1 max

{
0, re −

N∑
i=1

r̂i xi

}
+ ε2

∣∣∣∣∣
N∑
i=1

xi − 1

∣∣∣∣∣

+ε3 max

{
0, Kd −

N∑
i=1

zi

}
+

+ ε4 max

{
0,

N∑
i=1

zi − Ku

}
+ ε5

N∑
i=1

max {0, zi d − xi } +

+ ε6

N∑
i=1

max {0, xi − zi u} + ε7

N∑
i=1

|zi (1 − zi )|
]

where ε = (ε0, ε1, . . . , ε7)
T > 0. We remark that each of the penalty parameters ηk in (7) is

replaced by a ratio of parameters εk/ε0 in P(x, z; ε). This choice is motivated by efficiency
reasons, as clarified in the next sections.

The existence of a unique minimizer of P(x, z; ε) is not guaranteed. Hence, the necessity
to tackle the problem (10) by a global method. Finally, considering that even the problem
(10) is in general NP-hard, and that practitioners may need a fast approximate solution of
their portfolio problems to compare different scenarios, we decided to move away the focus
of the paper from asymptotically convergent exact global methods, when solving (10). In
this regard, our choice of adopting PSO seems to provide a reasonable compromise between
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precision of the approximate solution in the early iterations, and computational burden, as
the numerical results in Sect. 5 seem to confirm.

We remark that other possible alternative approaches to approximately solve (10) can be
considered. Among them we find Lagrangian Relaxation methods (see for instance Fisher
1985; Bertsekas 2016), which can also provide appealing bounds on the value of the objective
function. In particular, they consist of moving (dualizing) some inequality constraints to the
objective function, after multiplying them by some nonnegative values (dual variables). This
approach proved to work efficiently on several classes of optimization problems, both linear
and nonlinear. However, on our portfolio optimization problem, the iterative computation of
the dual variables might require a cumbersome and possibly inefficient updating procedure.
The PSO choice to assess the penalty parameters, based on the knowledge available at the
current iteration, appeared more efficient.

4 Our hybridmetaheuristic

In this section we describe our hybrid metaheuristic, hereafter referred also as PSO-D (D
stands for dynamic). Its pseudo-code is reported by the Algorithm 1. The metaheuristic
includes an initialization phase and an iteration phase. In turn, the iteration phase includes an
external and an internal loop. The values of the position of the particles, i.e., of variables x j
and z j , for j = 1, . . . , P , are updated in the internal loop. The value of the penalty parameter
vector ε is updated in the external loop.

Our hybrid metaheuristic includes two distinctive characteristics: the adaptive change
of the penalty parameter vector ε, and the split and refinement of the particle positions, in
addition to their updating.

4.1 Penalty parameter vector " settings and updating

Assessing effective penalty parameters is a tricky issue and depends on the class of problems
under concern. We propose an adaptive tuning of these parameters based on the overall
progress of the metaheuristic.

Hereinafter, we use the symbol εk to indicate the value of vector ε at iteration k. In addition,
in accordance with what we have defined in (2b), we indicate pkg as the best position among

PSO particles until iteration k. In particular, we split and express pkg (similarly for pkj ) as

pkg = (xkg, z
k
g)

to emphasize that a particle position has two subvectors of components, the subvector of
variables xk and the subvector of variables zk .

For k = 0 the initial parameters vector ε0 is set as

ε0 = (ε00, ε
0
1, ε

0
2, ε

0
3, ε

0
4, ε

0
5, ε

0
6, ε

0
7) = (10−4, 1, 1, 1, 1, 1, 1, 1) ∈ IR8.

The values of the entries ε0i , i = 1, . . . , 7 are chosen to initially impose an equal penalization
for all constraints violations. Differently, the value of ε00 is chosen much smaller in order to
initially privilege feasible solutions.

For k ≥ 1, the vector εk is updated as follows. We update εk0 by checking for a possible

decrease of the value of ρa,p(rkg ), where r
k
g =∑N

i=1

(
xkg
)
i
ri . For i = 1, . . . , 7, we update εki ,

123



120 Annals of Operations Research (2021) 304:109–137

Algorithm 1: Pseudo-code of hybrid metaheuristic PSO- D(�) that returns a (sub)-
optimal solution of portfolio selection problem �.

PSO- D(�)
Input: � a constrained portfolio selection problem of type (5)
Output: A (sub)-optimal solution y∗ = (x∗, z∗) to problem �

Initialization:
begin

reformulate Problem (5) into Problem (8)

set initial value of ε0 = {ε00, ε01, ε02, . . . , ε07}
foreach particle j do

set initial values x0j
end
set k = 0

end

Iteration k:
repeat

repeat
foreach particle j do

set the vector zk+1
j

update the vector xk+1
j

refine the vector xk+1
j

end
k = k + 1

until internal loop STOP condition

update the value of εk

until external loop STOP condition

return (xkg , zkg).

by checking for the violation χi of the i-th constraint:

χ1(x
k
g, z

k
g) = max

{
0, re −

N∑
i=1

r̂i
(
xkg
)
i

}

χ2(x
k
g, z

k
g) =

∣∣∣11T xkg − 1
∣∣∣

χ3(x
k
g, z

k
g) = max{0, Kd − 11T zkg}

χ4(x
k
g, z

k
g) = max{0, 11T zkg − Ku}

χ5(x
k
g, z

k
g) =

N∑
i=1

max
{
0,
(
zkg
)
i
d −

(
xkg
)
i

}

χ6(x
k
g, z

k
g) =

N∑
i=1

max
{
0,
(
xkg
)
i
−
(
zkg
)
i
u
}

χ7(x
k
g, z

k
g) =

N∑
i=1

∣∣∣
(
zkg
)
i

(
1 −

(
zkg
)
i

)∣∣∣ .

We also adopted the following strategy:
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• Every 5 iterations of the PSO-D internal loop, we update the entry εk0 of εk , according
with the following rule:

εk+1
0 =

⎧
⎨
⎩
min

{
3εk0, 1

}
if ρa,p(rkg ) ≥ ρa,p(rk−1

g )

max
{
0.6εk0, 10

−15
}

if ρa,p(rkg ) < 0.90 · ρa,p(rk−1
g )

εk0 otherwise.
(11)

In all the other iterations, εk+1
0 = εk0.• Every 10 iterations of the PSO-D internal loop, we update the entries εki , i = 1, . . . , 7,

of εk , according with the following rule:

εk+1
i =

⎧⎪⎪⎨
⎪⎪⎩

min
{
2εki , 10

4
}

if χi (xkg, z
k
g) > 0.95 · χi (xk−1

g , zk−1
g )

max
{ 1
2ε

k
i , 10

−4
}

if χi (xkg, z
k
g) < 0.90 · χi (xk−1

g , zk−1
g )

εki otherwise.

(12)

In all the other iterations, εk+1
i = εki , i = 1, . . . , 7.

The above argument implies that the internal loop stop condition in Algorithm 1 is (k
mod 5) = 0. The choice of the coefficients used in (11) and (12) is motivated by effi-
ciency reasons, and is obtained after a very coarse initial tuning over our portfolio selection
problems.

Roughly speaking, in (11), penalty parameter εk+1
0 is increased in P(x, z; εk+1) to favor

optimality of solutions, possibly at the expenses of their feasibility, when the risk func-
tion value ρa,p(rkg ) increases. Following a similar argument, εk+1

0 is decreased in order

to increase feasibility when ρa,p(rkg ) decreases. As regards (12), penalty parameter εk+1
i

is increased to favor feasibility of solutions possibly at the expenses of their optimality,
when the violation χi (xkg, z

k
g) of the i-th constraint significantly increases with respect to

χi (xk−1
g , zk−1

g ). Conversely, with an opposite rationale, the parameter εk+1
i is decreased in

case we observe a relevant improvement of feasibility with respect to the i-th constraint i.e.,
χi (xkg, z

k
g) � χi (xk−1

g , zk−1
g ).

4.2 Splitting and refining particles’positions

We observe that from (10) P(x, z; εk) is convex with respect to the subvector x , as in (5)
both ρa,p(r) and the constrains functions are convex in IRN with respect to x . We try to take
advantage of this fact in our hybrid metaheuristic in order to rapidly identify a (sub)-optimal
value of the x component of the problem solution. In particular, at any iteration in the internal
loop of PSO-D, we split each particle position in its components xkj and zkj and update them

separately. For any particle j the subvector zk+1
j = z j (xk) is updated with the following

procedure

(zk+1
j )i =

{
0 if (xkj )i ∈ (−∞, d) ∪ (u,∞),

1 otherwise.
j = 1, . . . , P, i = 1, . . . , N .

Then, we keep zk+1
j constant and minimize P(x, zk+1

j ; εk) only with respect to x , obtaining

x̂ k+1
j . Finally, x̂ k+1

j is further refined to obtain xk+1
j as

(xk+1
j )i = (x̂ k+1

j )i (z
k+1
j )i

∑N

i=1
(x̂ k+1

j )i (z
k+1
j )i

, j = 1, . . . , P, i = 1, . . . , N .
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The above splitting and refining steps ensure that at the end of the internal loop of PSO-
D, each vector (xk+1

j , zk+1
j ) satisfies (5c), (5e) and (5f). In our numerical experience, we

observed that the refinement of the subvector x has also another positive effect, since the
value of the fitness function ρa,p(r) at xkj is typically smaller than at x̂ kj . On the other hand,

constraints (5b) and (5d)might be sometimes violated at (xkj , z
k
j ). However, they are typically

fulfilled in a neighborhood of the final solution point.
We complete this section by observing that, splitting the vector of unknowns in the two

subvectors x and z, which are separately updated, may also bemotivated from the perspective
of the Schwarz AlternatingMethod (SAM), introduced by Gander (2008). The SAMmethod,
which was originally conceived to speed up the solution of a differential equation on the
union of a finite number of domains, can be extended to accelerate the solution of linear and
nonlinear systems of equations. It is essentially based on splitting the set of variables into
subsets. Then, the problem is repeatedly solved only on the resulting subsets of the unknowns,
so that the overall problem is never fully solved with respect to all the variables.

5 Numerical experiences

In this section we report our experimental analysis. Specifically, we implemented:

1. our hybrid metaheuristic PSO-D as described by the Algorithm 1;
2. a PSOmetaheuristic, hereafter referred to as PSO-S (S stands for static), in which penalty

parameters vector ε is a-priori fixed for all the iterations;
3. a PSOmetaheuristic, hereafter referred to as PSO-R (R stands forREVAC), with aREVAC

parameter tuning approach (Nannen and Eiben 2007b; Montero et al. 2014), in which
penalty parameters vector ε̄ is first computed in a presolve procedure using REVAC.
Then, we set εk = ε̄, for any k ≥ 1, when minimizing P(x, z; εk) in (10);

4. a PSO metaheuristic, hereafter referred to as PSO-I (I stands for irace), with an irace
parameter tuning approach (López-Ibáñez et al. 2016) in place of REVAC one.

Finally, we also treated (5) as a fully nonlinear mixed-integer problem, that we solved
through a standard exact solver based on a Branch-and-Bound scheme (hereafter referred
to as ES). We used the results obtained by exactly solving the mixed integer formulation to
obtain reference values for the results provided by PSO-D, PSO-S, PSO-R and PSO-I. In
this regard, note that since our portfolio selection problem is NP-hard, the ES approach may
require a prohibitive amount of time for computation when the number of assets increases.
This fact may obviously discourage practitioners from using it. Details of both the mixed-
integer formulation and the relative solver adopted are reported in the Appendix.

As for the numerical instances, we considered assets belonging to stock-exchange indexes,
in which daily close prices over a time horizon T are converted in daily returns by using the

formula ri,t = log
(

Si,t
Si,t−1

)
, where Si,t represents the price of asset i at time t , and ri,t

represents the return of asset i at time t . Then, in accordance with (Corazza et al. 2013;
Chen and Wang 2008), we approximate the expected values that appear in the objective
function (5a) with the following sample means:

‖(r − E[r ])+‖1 = 1

T

T∑
t=1

(
N∑
i=1

(ri,t − r̂i )xi

)+
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‖(r − E[r ])−‖p = 1

T
1
p

⎛
⎝

T∑
t=1

⎡
⎣
(

N∑
i=1

(ri,t − r̂i )xi

)−⎤
⎦

p⎞
⎠

1
p

,

so that

ρa,p(r) = a

T

T∑
t=1

(
N∑
i=1

(ri,t − r̂i )xi

)+
+ 1 − a

T
1
p

⎛
⎝

T∑
t=1

⎡
⎣
(

N∑
i=1

(ri,t − r̂i )xi

)−⎤
⎦

p⎞
⎠

1
p

−
N∑
i=1

r̂i xi . (13)

Before passing to the detailed presentation of our numerical experiences, it is noteworthy to
highlight that in the previous study (Corazza et al. 2012), PSO-Swas applied to approximately
solve the l1-penalty problem (10), and its performances have been compared with those from
the application of standard Genetic Algorithms (GAs). Note that GAs can be considered
as an unquestioned benchmark in the field of evolutionary population-based metaheuristics.
The results of this comparison have shown that the two metaheuristics are more or less
equivalent, both in terms of fitness function values and of riskmeasure values, but the average
computational time required by GAs is about one order magnitude greater than that required
by PSO-S. This motivated our choice for a PSO-based approach, in the current paper.

5.1 Basics on REVAC

REVAC (Nannen and Eiben 2007b; Montero et al. 2014) is an Estimation of Distribution
Algorithm used to tune a-priori the value of a vector of parameters of an algorithm. It relies on
information theory to measure parameter relevance. Roughly speaking, REVAC considers a
value distribution over the parameter space, i.e., the set of the possible values for each param-
eter. Specifically, REVAC assigns high probabilities to values leading to a good compromise
between the algorithm performance and the algorithm complexity. Complexity is expressed
in term of Shannon entropy.

REVAC is an iterative algorithm: it initially creates a uniform distribution over the param-
eters space, then this distribution is iteratively refined (smoothed in REVAC jargon). This
is done by an evolutionary process that starts from an initial parameter vector population.
Then, it generates new parameter vectors by choosing the best subset of vectors with respect
to expected performance, in order to replace the eldest individuals in the population (Eiben
and Smith 2003). In our case REVAC estimates the expected performance associated to a
vector, by running PSO on small/medium size instances of the portfolio selection problem
randomly generated.

The smoothing feature is assured by an operator that defines a mutation interval for each
parameter. At each iteration, it sorts the current population parameter values and defines a new
distribution by deleting a given number of extreme values. Then, it uses this new distribution
to draw the next population parameter values randomly. The Shannon entropy is supposed
to decrease over iterations, and we can use the information gathered to infer information
on the parameters. Namely, parameters that show a great decrease of entropy are likely the
most sensitive to their values, hence they are the most promising for parameter value choices
(Nannen and Eiben 2007a).

We first ran REVAC to understand the relative relevance of parameters ω1, . . . , ω7, being
ωi = εi/ε0 and ε = (ε0, ε1, · · · , ε7)

T is the penalty parameters vector in (10). We identified
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the 3 most sensitive parameters by selecting the 3 parameters whose entropy most decreases
over the REVAC execution. Hence, we used the outcome of this run to set the values of the
remaining parameters, by selecting their values in a pre-defined neighbourhood of themedian
of their resulting performance distributions. Then, we re-ran REVAC (using these latter
parameters values) and at the end of the run we set the values of the remaining parameters,
also by selecting their values in a pre-defined neighbourhood of the median of their resulting
performance distributions.

As regards the code of REVAC, the MATLAB implementation by Volker Nannen we
adopted is publicly available at http://www.complexity-research.net/revac.

5.2 Basics on irace

Irace (López-Ibáñez et al. 2016) is an Iterated RACing procedure which extends the Iterated
F-race algorithm (Balaprakash et al. 2007; Bartz-Beielstein et al. 2010). Similarly to REVAC,
it is used to automatically configure optimization algorithms, typicallymetaheuristics. It finds
the appropriate values of a solution algorithm parameters given a set of tuning instances of
an optimization problem. Irace is based on the repeated application of the racing technique
introduced in Maron and Moore (1997), which

• tests a set of parallel configurations,
• quickly discards the ones that are clearly inferior,
• concentrates on differentiating among the better ones.

At each iteration irace selects the configurations to be discarded, by applying statistical tests
such as the Friedman’s non-parametric two-way analysis of variance by ranks, its extensions
or the paired sample t-test. In addition, irace adopts an adaptive capping mechanism, which
reduces the time wasted in the evaluation of poorly performing configurations, by bounding
the maximum running time permitted for each such evaluation (Cáceres et al. 2017).

As for REVAC, we ran irace to determine the values of the parameters ω and ε (see
Sect. 5.1). We used 18 tuning instances and we set a budget of 1000 calls to targetRunner as
the maximum number of iterations.

As regards the code of irace, we used the R implementation which is publicly available
at https://www.r-project.org/package=irace. In particular, we edited the appropriate R script
to execute MATLAB on our PSO algorithm over the tuning instances.

5.3 PSO parameter settings and data

Similarly to what was done for the assessment of the penalty parameters (see Sect. 4.1), here
we consider two different approaches for the PSO parameter setting, too.

In the first one, we used the same setting for PSO-D, PSO-S, PSO-R and PSO-I. Namely,
we set ckj = ckg = 1.49618, wk = 0.7298 and χk = 1 (see also Eberhart and Shi 2000;
Serani et al. 2016). Furthermore, we used the same random values for the initial positions
and velocities of the particles of PSO-D, PSO-S, PSO-R and PSO-I. By doing so, we allowed
full comparability of the results coming from the various setting strategies of the penalty
parameters.

In the second approach, for our PSO-D we set ckj , c
k
g and wk by adopting some dynamic

updating rules, while for PSO-R and PSO-I we determined these parameters by applying
the REVAC-based tuning procedure and the irace-based one, respectively. Regarding the
dynamic updating, in order to overcome some drawbacks of the standard PSO, we considered
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rules that have shown to be bothmethodologically founded (see, e.g. Ratnaweera et al. 2004b)
and operationally effective when applied to portfolio selection problems (see, e.g. Guang-
Feng et al. 2012). In particular, for ckj and c

k
g we respectively used

ckj = c j,max + (c j,min − c j,max
) k

K
and ckg = cg,min + (cg,max − cg,min

) k

K
,

where c j,min = cg,min = 0.5 and c j,max = cg,max = 2.5 according to the prevailing literature,
and K indicates themaximumnumber of iterations. Notice that ckj is linearly decreasingwhile

ckg is linearly increasing. Moreover, the last choice ensures a remarkable global search at the
beginning of the process and a deeper exploitation at the end of the process, with respect to
the standard PSO. At the same time, for wk we used

wk = wmin + (wmax − wmin)
K − k

K
and χk = 1,

where wmin = 0.4 and wmax = 0.9, again according to the prevailing literature. Note that
wk is linearly decreasing and that its dynamics mainly steers exploration at the outset of the
iterative process, while privileging exploitation in the end compels the particles mainly to
explore at the beginning of the search and mainly to exploit towards the end of the iterations.

As for the setting of the parameters of the riskmeasure (5a), it is standard.We used a = 0.5
and p = 2 as often considered in literature (see, for instance, Corazza et al. 2013; Chen and
Wang 2008). Conversely,we tried different settings of the parameters of the constraints (5d) to
test our hybrid metaheuristic in various stressing configurations. Specifically, we considered
three different pairs of cardinality constraints: (Kd , Ku) = (5, 9) for small portfolios to select
within a small cardinality range, (Kd , Ku) = (30, 34) for large portfolios to select within a
small cardinality range, and (Kd , Ku) = (5, 34) for small-to-large portfolios to select within
a large cardinality range. For all these three (Kd , Ku) configurations, we used the same values
of the minimum and maximum percentages of capital to invest in each asset, namely d = 1

34
and u = 1

5 in (5e). In other words, we allowed the same capital investment for each asset in
all the investigated configurations. Finally, for all the three (Kd , Ku) configurations, we have
considered three values of the minimum desired expected return of the portfolio re close to
the maximum expected return of portfolio achievable in that scenario.

Regarding the financial data, we considered the daily closing prices of 38 of the 40 assets
composing the Italian stock index FTSE MIB, from January 15, 2016 to March 15, 2018,
for a total of 564 prices for any asset. The exclusion of two assets is due to the fact that their
listing on the Italian stock exchange started after January 15, 2016.

Lastly, as for the implementations of PSO-D, PSO-S, PSO-R and PSO-I, we set P =
2 · 38 = 76, i.e. we choose the number of particles as twice the number of variables, a
standard setting in several PSO-based methods (see, for instance Serani et al. 2016).

5.4 Results

In this subsection, we show that PSO-D is competitive with all PSO-S, PSO-R and PSO-I.
Furthermore, we also perform a comparison between PSO-D, PSO-R and PSO-I and ES,
showing that PSO-D is competitive in terms of CPU-time, at a modest expenses of the
accuracy of the provided solutions.

We ran the metaheuristics PSO-D, PSO-S, PSO-R and PSO-I 25 times, performing 100
iterations each, for any configuration of the portfolio selection problem described in Sect. 3.
We chose both the number of runs and the number of iterations unusually small, to show
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the effectiveness of our hybrid metaheuristic PSO-D even in presence of few runs and a few
iterations.

Hereinafter, with reference to the portfolios detected by the metaheuristics PSO-D, PSO-
S, PSO-R and PSO-I, we use the terminology which follows. By optimal portfolio (OP) we
mean the best portfolio in terms of fitness detected by a swarm at the end of a run after 100
iterations. By global optimal portfolio (GOP) we mean the best portfolio in terms of fitness
detected during all the 25 runs by the various swarms facing the same configurations of the
portfolio selection problem. In other words, GOP is the best portfolio, in terms of fitness,
among the 25 detected OPs.

With reference to the first PSO parameter setting approach (i.e., ckj = ckg = 1.49618,

wk = 0.7298 and χk = 1), in Table 1 we report the results of PSO-D and we compare them
with those of PSO-S, PSO-R and PSO-I, and in Table 2 we compare the results of PSO-D,
PSO-R and PSO-I with the ones by the exact solver ES. Analogously for Tables 3 and 4 ,
which report the results from adopting the second PSO parameter setting approach. Lastly, as
an example, in Fig. 1 we also graphically plot some results from the numerical experiments.

As we describe in the following, the GOPs provided by our hybrid metaheuristic PSO-D
are generally not worse in terms of quality of the solutions than those provided by PSO-S,
PSO-R and PSO-I, and are always better in terms of the computational time required to
calculate them.
(1) PSO-D versus PSO-R and PSO-I Tables 1 and 3 compare the results of PSO-D, PSO-R
and PSO-I when applied to the configurations of portfolio selection problem introduced in
Sect. 5.3. In particular, column 3 (MH) indicates the metaheuristic from which the results
come. Columns 4 (PPRE ) and 5 (P) respectively report the values of the fitness before and
after the final refinement is applied. Analogously for columns 6 (ρPRE ) and 7 (ρ), but with
respect to the value of the risk measure of the portfolio return, and for columns 8 (rPRE ) and
9 (r ), but with respect to the achieved minimum expected return. Column 10 (#) provides
the number of assets selected in the GOP. Column 11 (% <P ) gives the percentages of
OPs generated by PSO-D, PSO-R and PSO-I that respectively have fitness values lower than
the ones associated to the OPs generated by PSO-S. Finally, column 12 (%F) reports the
percentages of OPs which are feasible. We highlight that for comparative purposes we also
applied the final refinement to PSO-R and to PSO-I.

Table 1 suggests that, jointly considering the solution quality and the required computa-
tional time, the results of PSO-D are definitely better than those of PSO-R and PSO-I. Table 3
suggests the same, although a slight worsening of the quality of all the solutions is detectable.
We will return to this aspect shortly.

Now, consider the effectiveness of the refinement procedure in PSO-D. In general, the
values reported in columns 4 and 5 of Tables 1 and 3 point out a dramatic decrease of
the fitness due to the refinement of the solutions. The refinement tends to reduce/cancel
the infeasibility of the solution. Moreover, the values of the risk measure after refinement
(column 7 of Tables 1 and 3) also improve with respect to the values of the risk measure
before refinement (column 6 of Tables 1 and 3), although not as evidently as for the fitness.

Then, consider the feasibility of the solution provided by PSO-D. Constraints (5b)–(5f)
are often violated (column 12 of Tables 1 and 3). Anyway, their violations are generally very
small, so that to large extent infeasibility is not really a concern for OPs using PSO-D.

Finally, consider the comparison between PSO-D, PSO-R and PSO-I from Tables 1 and
3 . The performances of PSO-D, PSO-R and PSO-I in terms of fitness of the solution, of risk
measure of the portfolio return, of the achievedminimum expected return of the portfolio and
of the number of selected assets (columns 5, 7, 9 and 10 of Tables 1 and 3 , respectively) are
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Fig. 1 In the upper panel, the average values over the iterations of the fitness functions of PSO-D and PSO-S
(dashed and continuous line, respectively). In the lower panel, the average values over the iterations of the
risk measures. These values refer to the second run (out of 25) of PSO-D and PSO-S, associated to the first
PSO parameter setting approach and to the configuration with parameter setting (Kd , Ku) = (30, 34) and
re = 0.00045

generally similar. Nevertheless, PSO-D needs on average less then 4% of the computational
time requested by PSO-R or PSO-I.

Now consider as an example Fig. 1. It is structured in two panels. The upper one presents
the average value of the fitness function at particles position, for PSO-D and PSO-S, as a
function of the number of iterations (dashed and continuous line, respectively). The trends
of these values are representative for the great majority of the considered configurations
of the portfolio selection problem. PSO-D induces a faster decrease of the fitness function
since the early iterations. In addition, Column 11 of Table 1 shows that 80.89% of the OPs
generated by PSO-D have a final fitness which is lower than the fitness of the corresponding
OPs generated by PSO-S. Analogous arguments apply to the lower panel of Fig. 1, which
presents the values of the risk measures returned by PSO-D and PSO-S.
(2) PSO-D, PSO-R, and PSO-I vs. ES. Tables 2 and 4 compare the results returned by PSO-
D, PSO-R and PSO-I with the one generated by the exact solver ES, when applied to the
configurations of portfolio selection problem introduced in Sect. 5.3. In particular, columns 3
(ρES), 4 (rES) and 5 (#ES) respectively report the values of the risk measure, of the achieved
minimum expected return and the number of selected assets provided by ES. Columns 7
(%ρ), 8 (%r ) and 9 (%#) respectively report the percentage values of the differences of
the risk measure, of the achieved minimum expected return and of the number of selected
assets provided by PSO-D, PSO-R and PSO-I, with respect to the corresponding values of ES.
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Column10 (%I n) gives the percentages of assets selected byESwhich have been selected also
in the portfolio generated by PSO-D, PSO-R and PSO-I (the desired value is possibly 100%)
and column 11 (%Out ) reports the percentages of assets selected in the portfolio generated
by PSO-D, PSO-R and PSO-I, which have not been selected also by ES (the desired value
is possibly 0%). For the sake of completeness, we strongly remark that the formulation (5)
does not admit in general a unique solution.

The GOPs generated by our hybrid metaheuristic PSO-D are obviously sub-optimal when
compared to those selected by the exact solver ES.However they are to large extent reasonably
acceptable in practice. Indeed, with particular reference to the first PSO parameter setting
approach, with the exception of a few cases, the values of the indicators %ρ and %r (see the
results in columns 7 and 8 of Table 2) are close to 0. Moreover, several portfolios generated
by PSO-D are much “similar” to the ES ones. Indeed, the percentages of assets selected in
both the ES portfolios and in the PSO-D ones is generally high (see the results in column
10 of Table 2). Conversely, the percentage of assets selected in the PSO-S portfolios which
were not selected in the ES ones is generally low. Similar results also hold for the PSO-R
and the PSO-I portfolios.

Regarding the second PSO parameter setting approach, Table 4 confirms these results
but in a weaker way, as already pointed out for those presented in Table 3. Indeed, all the
considered indicators (i.e., %ρ , %r , %#, %I n and %Out ) are worse than the corresponding
ones reported in Table 2. This widespread and meaningful numerical evidence indicates
that ad hoc settings of the PSO parameters generally worsen the performance of our exact
penalty-based approach, at least in presence of few runs and a few iterations.

6 Conclusions and future work

In this paper, starting from the results in Corazza et al. (2013), Corazza et al. (2012), we have
proposed a novel hybrid metaheuristic based on PSO with a dynamic penalty approach, for
rapidly solving complex mathematical programming problems. We have applied our hybrid
approach to an unconstrained reformulation of a realistic portfolio selection problem. We
have performed a set of experiments, comparing our PSO scheme with both an exact method
andwith a REVAC-based / irace-based variants of PSO that resort to a static parameter tuning
approach. Results show that our proposal compares favourably with the exact solver and with
the REVAC / irace approach, but it requires much less computational time. This aspect is of
great interest for practitioners, that could introduce our approach in their daily operations.
Furthermore, the comparison between our PSO scheme (i.e., a dynamic parameter control
approach) and a parameter tuning approach based on REVAC / irace is useful, in the ongoing
discussion about parameter settings, and can be applied to other meta-heuristics to study their
performances.

Although we obtained satisfactory numerical results, our research seems to offer further
opportunities for possible improvements and extensions. In particular, combining PSO with
a globally convergent method for derivative-free optimization may possibly provide a better
quality of the solutions (see also Griffin and Kolda 2010). This latter fact deserves additional
investigation, in order to further exploit the structure of portfolio selection problems (i.e. the
convexity of problem (5) with respect to the subvector of unknowns x).
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Appendix A: Portfolio selection problem: a possible mixed-integer for-
mulation

In this appendix,we reformulate problem (5) as a nonlinearmixed-integer programmingprob-
lem. This reformulation provides a model whose instances can be solved by standard exact
algorithms as FilMINT (which is an iterativemethod based on a Branch-and-Cut framework),
publicly available on NEOS server (http://www.neos-server.org/neos/). The main purpose of
this section is to provide a formulation of our portfolio selection problem, whose exact
solution can be possibly used as a reference in our numerical experience (see Tables 1
and 2).

In accordance with (Chen and Wang 2008), the resulting nonlinear mixed-integer pro-
gramming problem with 2N + 2T unknowns is:

min
x,z,β,γ

a

T

T∑
t=1

βt + 1 − a

T
1
p

(
T∑
t=1

γ
p
t

) 1
p

−
N∑
i=1

r̂i xi (A.1a)

βt − γt =
N∑
i=1

(ri,t − r̂i )xi , t = 1, . . . , T (A.1b)

N∑
i=1

r̂i xi ≥ re (A.1c)

N∑
i=1

xi = 1 (A.1d)

Kd ≤
N∑
i=1

zi ≤ Ku (A.1e)

dzi ≤ xi ≤ uzi , i = 1, . . . , N (A.1f)

zi ∈ {0, 1}, i = 1, . . . , N (A.1g)

βt , γt ≥ 0, t = 1, . . . , T . (A.1h)

In the given formulation, conditions (A.1c)–(A.1g) are trivially equivalent to (5b)–(5f).
In addition, we write the objective function (5a) as in (13) where we introduce the vari-
ables βT = (β1, . . . , βT ), γ T = (γ1, . . . , γT ) as a standard trick to linearize the terms
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(∑N
i=1(ri,t − r̂i,t )xi

)+
and

(∑N
i=1(ri,t − r̂i,t )xi

)−
. Indeed, conditions (A.1b) and (A.1h)

imply that

βt ≥
(

N∑
i=1

(ri,t − r̂i,t )xi

)+
and γt ≥

(
N∑
i=1

(ri,t − r̂i,t )xi

)−
, t = 1, . . . , T . (A.2)

In particular, we can rewrite (A.1b) as βt = ∑N
i=1(ri,t − r̂i )xi + γt . Hence, as γt ≥ 0, we

obtain βt ≥ ∑N
i=1(ri,t − r̂i )xi and, as βt ≥ 0, βt ≥ max{∑N

i=1(ri,t − r̂i )xi , 0}. We finally
observe that the inequalities (A.2) hold as equalities in anyminimum of problem (A.1). As an
example consider any feasible solution (x̄, z̄, β̄, γ̄ ), for which the value of

∑N
i=1(ri,t − r̂i )x̂i

is nonnegative and such that v̄t >
∑N

i=1(ri,t − r̂i )x̄i and w̄t > 0. Since variables v and w

have positive coefficients in the objective function (A.1a), and no other constraint different
from (A.1b) and (A.1h) involves β and γ , then it is immediate to find feasible solution
(x̄, z̄, β̃, γ̃ ) that dominates (x̄, z̄, β̄, γ̄ ). Just set β̃ = β̄, respectively γ̃ = γ̄ , except for
β̃t =∑N

i=1(ri,t − r̂i )x̄i , respectively for γ̃t = 0.
As indicated in Sect. 5, we use formulation (A.1) to obtain the optimal values ρ∗ of our

portfolio selection problem instances, to be compared with the values obtained through PSO.
Unfortunately, the optimal solution of problem (A.1) may be particularly cumbersome to
compute by an exact solver, when a large size instance is considered. All the same, we can
use the linear relaxation of (A.1) to easily obtain a lower bound of ρ∗ and, hence, to be able
to asses the PSO performances even for a large size instance.

Indeed, we can observe that, if we relax constraints (A.1g) with 0 ≤ zi ≤ 1 for all i , the
objective function (A.1a) becomes a convex functional as it is sublinear. In addition, also
the feasible set defined by constrains (A.1b)–(A.1h) becomes convex. Consequently, all the
feasible stationary points of the linearly relaxed version of (A.1) are optimal and the value
assumed by the objective function (A.1a) at these points provides a lower bound for ρ∗. Due
to the convexity properties of the relaxed version of (A.1a), its stationary points are relatively
easy to determine using standard nonlinear optimization algorithms.
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