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Abstract. The paper provides a continuous-time version of the discrete-time

Mitra-Wan model of optimal forest management, where trees are harvested to max-

imize the utility of timber flow over an infinite time horizon. The available trees

and the other parameters of the problem vary continuously with respect to both

time and age of the trees, so that the system is ruled by a partial differential equa-

tion. The behavior of optimal or maximal couples is classified in the cases of linear,

concave or strictly concave utility, and positive or null discount rate. All sets of

data share the common feature that optimal controls need to be more general than

functions, i.e. positive measures. Formulas are provided for golden-rule configura-

tions (uniform density functions with cutting at the ages that solve a Faustmann

problem) and for Faustmann policies, and their optimality/maximality is discussed.

The results do not always confirm the corresponding ones in discrete time.
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1. Introduction

Although forest economics has a centuries-long history (see, e.g. Samuelson, 1995),

the first complete formulation of the forest management problem as a Ramsey-like

optimal control model in discrete time is contained in two papers by Mitra and Wan

(1985, 1986) of the early eighties. The authors there discuss the structure of the
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cutting/replanting strategy that maximizes, over an infinite horizon, the sum of util-

ities of timber flows obtained by harvesting the trees of a forest. Trees have different

ages up to a maximum age, and are grown on a unit piece of land that cannot be

transferred to other uses; a productivity function gives the amount of wood obtained

harvesting trees of a given age; cutting and replanting costs are zero; new saplings

are immediately replanted on the cleared land. The main results are that: 1) the

Faustmann policy (i.e., cutting trees that reach an age maximizing the present value

of bare land subject to an infinite sequence of planting cycles) is optimal when the

utility function is linear, and it generates a cycle in the configuration of the forest,

2) optimal paths converge to the golden rule configuration (the uniform forest with

maximal sustainable yield) when the utility function is strictly concave and the dis-

count factor is equal to 1, and 3) cycles of the optimal path reappear when the future

utility is discounted, even when the utility function is strictly concave. Following this

lead, almost the entire theory of optimal forest management has been developed in

terms of discrete time (see Tahvonen, 2004, and Khan and Piazza, 2012, for recent

lists of the extensions of the model) while, to our knowledge, a consistent continuous

time version has never entered the literature.

The technical complexity of continuous time models explains the lack of contribu-

tions in optimal forest management. Indeed: 1) the ages of capital goods (i.e., trees)

vary continuously, so that the system evolution in time is ruled by a partial differ-

ential equation; 2) the control appears also in the boundary condition; 3) unlike in

other vintage capital models, optimal controls are not functions but measures (Dirac’s

Deltas). Then the equation itself cannot be interpreted (pointwise) in R, and calls

for an extended formulation to make sense. Moreover, continuous time models are

not a straightforward multi-sectoral generalization of the Ramsey model (for a similar

conclusion see Khan and Piazza, 2011). Briefly after Samuelson’s 1976 survey of the

forestry literature (Samuelson, 1995), Kemp and Moore (1979) attacked the problem

but concluded that (p.142) “The asymptotic behavior of cutting and planting on in-

dividual one-tree plots and of the age configuration of the entire forest [...] remain
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open questions”. For example, Tahvonen and Salo (1999) (see also Tahvonen et al.,

2001) studied a model in which time is continuous but trees are indivisible. This im-

plies that harvesting does not provide a continuous flow of timber but a sequence of

mass points in connection with the jumps in the state variables. Salo and Tahvonen

(2003), on the other hand, maintained the discrete time structure, but let the length

of the period go to zero. Finally, Salant (2013) analyzed equilibrium price paths of

different vintages of trees in a simple model in which the forest land can be used al-

ternatively, but deforestation is irreversible: that allows to study optimal continuous

paths avoiding the complexities of distributed state variables. Independently, Heaps

(see Heaps and Neher, 1979; Heaps, 1984, 2014) tried to establish an appropriate

maximum principle for a Faustmann model in continuous time. In Heaps (1984), for

example, it is assumed that harvesting occurs only for trees of the oldest ages, and a

pre-theoretical argument is added to suggest that, in a model where cutting is feasible

at all ages, it is not optimal to cut trees of an age s∗ leaving trees older than s∗ stand-

ing (Proposition 1 of Heaps, 1984). Heaps there proves that optimality conditions

take the form of a delay differential equation. The same “old-first principle” emerged

as a theorem in some specific cases: in Salant (2013), for example, it holds in a strong

form (i.e., older trees are harvested strictly before younger trees) while it is found in

a weak form in the discrete-time two-age-classes Mitra-Wan model where, depending

on the initial configuration, it is optimal either to cut only the old trees or the old

and part of the young trees (see for example Tahvonen, 2004). In general, however, it

seems to require strong assumptions on the productivity function (Heaps always as-

sumes older trees are more productive, concavity of the productivity function in the

undiscounted case, and some weakened concavity in the discounted case), satisfied

neither in the original Mitra-Wan formulation (a fortiori, under weaker assumptions

as in Khan and Piazza (2012)) nor in the model discussed in this paper.

The new approach used here is reformulating the control problem for the partial

differential equation as an equivalent problem for an evolution equation in an infinite

dimensional space, and developing ad hoc techniques for its analysis. In this setting,
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we need neither to reduce the dimensionality of the problem (as in Tahvonen and Salo,

1999, or Salant, 2013), nor to constrain the controls (as in Heaps, 1984). We allow

strategies to be measures rather than functions, with the consequence that instanta-

neous cutting for forests of any given age is possible (the golden rule configuration is

of such type), although we require the associated trajectories to be functions, so to

avoid mass points. To this extent, it is enough to allow initial configurations of the

forest which are square integrable functions and prove that property is preserved by

the whole trajectory. We show that:

a) the analogue of golden-rule and modified golden-rule configurations is available for

the continuous-time model;

b) modified golden rules are optimal stationary solutions for the discounted model,

with both optimal cutting age and timber stationary consumption level monoton-

ically not increasing in the rate of discount while, in the undiscounted case, the

golden rule is maximal when the utility function is linear, and optimal when the

utility is strictly concave, provided it is unique;

c) if the golden-rule configuration is unique, then undiscounted maximal (or optimal)

paths exist from any given initial configuration and, for a strictly concave utility,

converge in time to the golden rule;

d) the Faustmann policy is optimal when the utility is linear and the discount positive,

is maximal (and not optimal) when the utility is linear and the discount null, it

is not optimal when the utility is strictly concave and the discount positive, for

initial data in any neighborhood of the optimal steady state. In particular this

result contradicts the analogue in discrete time.

We show for the undiscounted case (see (c) and (d)) that the conclusions by Brock

(1970) on the existence and “average” convergence of maximal paths hold also in

our framework, and that the results can be strengthened to existence and asymptotic

convergence of optimal paths as in Gale (1967) if the utility function is strictly concave

(Mitra and Wan, 1986, and Khan and Piazza, 2010a, have already shown that the

same holds in discrete time). In addition, we refine the above results by providing
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an example in the style of Brock (1970) and Peleg (1973) (see also Khan and Piazza

(2010b) for a related example in the case of the Robinson-Solow-Srinivasan model),

which proves that optimal paths do not exist in the linear case. On the other hand, the

comparative statics results under (b) are specific to the continuous-time setting (hints

may be found in Samuelson, 1995, see Figure 2 at p. 133 and the first paragraph at

p. 134) and have no counterpart in discrete time forestry literature.1 It is interesting

to note that monotonicity of the modified golden rule consumption may not hold in

models with several capital goods like ours, while it holds in the one sector Ramsey

discounted model (see for example Mas-Colell et al., 1995, pages 758-9). Regarding

the Faustmann Policy in (d) we show that, similarly to what occurs in discrete time

(see Mitra and Wan, 1985), discounting does not affect the structure of optimal

policies when the utility is linear. However, for a strictly concave utility we show

that the periodic solution is not optimal, contrary to what is distinguishing of the

discounted discrete-time model (Mitra and Wan, 1985, p. 265; Salo and Tahvonen,

2003, Proposition 1). This fact confirms the intuitions of Salo and Tahvonen (2003),

who prove that in discrete-time optimal cycles tend to disappear as the length of the

period approaches zero and, arguing that optimality of cycles in discrete time is due

to the discrepancy between the discrete measure of time and the continuous measure

of space, expect that optimal cycles do not exist in continuous time.

We recall that the technique of rephrasing the problem in a space of functions is

well known in functional analysis (see Bensoussan et al., 2007). First introduced in

the economic literature by Barucci and Gozzi (1998, 2001), it was later studied in

various works, mainly on problems with vintage capitals: under the point of view of

theoretical Dynamic Programming (Faggian, 2005, 2008, with finite horizon; Faggian

and Gozzi, 2010, with infinite horizon) and that of applications (Faggian and Gozzi,

2004; Barucci and Gozzi, 1999; Faggian and Grosset, 2013). Nevertheless, in none

of these works the control space need be a space of measures.

1As pointed out to us by a referee, a monotonicy results for the Faustmann cutting age in discrete

time is reported in a forthcoming paper (see Piazza and Pagnoncelli, 2014).



6 G. FABBRI, S. FAGGIAN, AND G. FRENI

In Section 2 we describe the model in continuous time, in Section 3 we build

modified golden rules and Faustmann policies, in Section 4, we classify as optimal or

maximal Golden Rules and Faustmann policies, in the cases when the utility is linear,

concave, or strictly concave, and the discount rate is positive or null. In Section 5

we draw the conclusions and suggest future development of theory and applications.

The Appendix contains the formulation of the abstract model, the proofs of the many

theorems and all auxiliary results.

2. The continuous time model

2.1. Notation. We denote by [a] and {a} respectively the integer and the fractional

part of the real number a. If X is a Banach space and X ′ its dual space, we denote

by 〈·, ·〉X′,X or by 〈·, ·〉 the duality pairing. If −∞ ≤ σ1 < σ2 ≤ ∞, we denote by

Lp(σ1, σ2;X) (or by Lp(σ1, σ2) when X = R) the space of function with integrable

p-norm, from [σ1, σ2] (or [σ1,+∞), when σ2 = +∞) to X. We write H1(σ1, σ2) for the

space of functions of L2(σ1, σ2) with (weak) derivative in L2(σ1, σ2). We also denote by

L2
loc(σ1, σ2;X) the set of X-valued functions from [σ1, σ2] which are square integrable

on every compact interval contained in [σ1, σ2], and with L∞(σ1, σ2;X) the set of X-

valued functions with bounded essential supremum in [σ1, σ2]. If k ∈ N ∪ {∞}, then

Ck([σ1, σ2];X) (Ck([σ1, σ2]) when X = R) is the space of functions of class Ck from

[σ1, σ2] to X. For S > 0 (chosen in the following section), R is the set of (positive)

Radon measures on [0, S], endowed with the norm |c|R (the finite measure of [0, S]

with respect to c), for all c ∈ R. The support of any measure g is denoted by supp(g).

Finally we define the cut-off function ψ ∈ C∞([0, S];R+) such that for fixed s̄, s1, s2,

with 0 < s̄ < s1 < s2 < S, ψ ≡ 1 on [0, s1], ψ ≡ 0 on [s2, S], ψ decreasing on [s1, s2].

2.2. From discrete to continuous time. The discrete time model in Mitra and

Wan (1985, 1986) may be formulated equivalently (see also Salo and Tahvonen, 2003

p. 1414-1415) as follows. Denoted by xt,s the land area occupied by trees of age s at

the period t and by cs,t the land area with trees of age s harvested at period t (being

t and s any natural numbers with s smaller than some maximal age S), the dynamics
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of the discrete time model is described by

(1) xt+1,s+1 = xt,s − ct,s, s ∈ {0, .., S}, t ∈ N,

saying that trees xt,s can only grow into xt+1,s+1 or being cut (ct,s). The equation is

coupled with the following replanting rule (for normalized land area)

(2) xt+1,0 = 1−
S∑
i=0

xt+1,i =
S∑
i=0

ct,i

saying that all the harvested area is immediately replanted.

The supplementary condition cS,t = xS,t implies no tree older than S exists, so that

the system can be described as a point on the (S+1)-simplex. In continuous time the

evolution of the forest is observed at any instant, considering not only the “cohort

year” of the trees but their exact age. The forest composition is then described by a

density function x(t, s) (representing the part of the forest covered at time t by trees

of age s) so that, at time t, x(t, s) ds is the area on which trees of age between s

and s+ ds are standing. Similarly, c(t, s) denotes the density of the cutting rate, so

that c(t, s) ds dt is the area with trees of age in [s, s+ ds] cleared in the time interval

[t, t + dt]. Chosen dt = ds ≡ dh, using (1) with period dh rather than 1, and

dividing by (dh)2, we get

x(t+ dh, s+ dh)− x(t, s)

dh
= −c(t, s)

that, letting dh→ 0+, gives

(3)
∂x(t, s)

∂t
+
∂x(t, s)

∂s
= −c(t, s),

meaning that the variation of density ∂x
∂t

(t, s) is due to aging of trees −∂x
∂s

(t, s), and

to harvesting −c(t, s). On the other hand, recalling that ds = dh = dt, (2) becomes

x(t+ dh, 0) dh =

S/dh∑
i=1

c(t, i dh) dh dh

that, dividing by dh and letting dh→ 0+, gives the boundary condition

(4) x(t, 0) =

∫ S

0

c(t, s) ds,
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meaning that the quantity x(t, 0) of saplings of age zero at time t coincides with the

total amount of trees (of different ages) cut at time t. Hence (3) and (4), with the

assignation of an initial density

(5) x(s, 0) = x0(s), s ∈ [0, S]

give the continuous version of the Mitra-Wan model. In addition, the strategy-

trajectory couples (c, x) are required to satisfy the constraints

(6) c(t, s) ≥ 0, and x(t, s) ≥ 0, ∀t ≥ 0, 0 ≤ s ≤ S

(only non-negative quantities are cut, and remainders are non-negative at all ages

and times). The state equation has a solution which can be written easily by means

of the characteristic method, as long as the control is an integrable function:

(7) x(t, s) =

 x0 (s− t)−
∫ t

0
c(t− τ, s− τ)dτ s ≥ t∫ S

0
c(t− s, r)dr −

∫ s
0
c(t− τ, s− τ) dτ 0 ≤ s < t.

Note that x(t, s) does not represent a spatial density. As a consequence, it may

be imagined that trees grow far from one another, and not reciprocally interfering.

Moreover, since the size of the forest is normalized to 1 at the initial time, that is∫ S
0
x0(s) ds = 1,

∫ σ2
σ1
x(t, s) ds may be interpreted as the fraction of the forest which is

covered at time t by trees of age between σ1 and σ2. As a consequence of the boundary

condition, the surface of the forest is covered in time by the constant amount 1 of

trees of different ages (see Proposition A.3), that is∫ S

0

x(t, s) ds =

∫ S

0

x0(s) ds = 1, ∀t ≥ 0.

Now let f(s) represent the productivity of a tree of age s. We assume

(8) f ∈ H1(0, S), f ≥ 0, and supp(f) ⊂ (0, S)

implying in particular that f(s) ≡ 0 both in some incubation interval [0, λ], for a

λ > 0, and for s big enough, say s ≥ s̄ for some s̄ ∈ (0, S) (old trees are considered

unproductive). Moreover, f in H1 implies f more regular than continuous but less

than continuously differentiable.
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Remark 2.1 The assumption of an initially null f is used also in discrete time, e.g.

by Mitra and Wan (1985, 1986), as well as by Heaps (2014) in his continuous time

model. The condition f(s) ≡ 0 for any s big enough (i.e., s ≥ s̄) is the counterpart

of the assumption of a finite number of possible vintages in discrete models, and here

reduces the complexity of the problem allowing only densities with support in [0, s̄].

TheH1-regularity assumption is linked to the continuous time setting (in discrete time

there is no need of continuity). For example, in Heaps (1984), f is C2. Besides that,

we have no assumption on the behavior of f , conversely Mitra and Wan (1985, 1986)

assume f increasing until a certain age and then decreasing (and concave for some

results) and Salo and Tahvonen (2002, 2003) and Tahvonen (2004) use an increasing

f . Concavity is used also in Heaps (1984, 2014). In discrete time, Khan and Piazza

(2010a, 2012) are the first making no assumption on f , and any f : N→ R is fit. �

Summing all wood f(s)c(t, s)ds of different ages s harvested at time t, we obtain the

total wood harvested at time t, that is w(c(t)) =
∫ S

0
f(s)c(t, s)ds. The instantaneous

utility function is defined as a function u satisfying

(9) u ∈ C1(R+,R+) and concave,

while the overall utility UT at a finite horizon T , with 0 ≤ T ≤ +∞, is

UT (c) =

∫ T

0

e−ρtu (w(c(t))) dt, with U(c) ≡ U∞(c).

The problem is maximizing in a suitable sense the overall utility U(c) with infinite

horizon, over a set of admissible strategies, with or without discount (ρ > 0 or ρ = 0,

respectively). Note that when ρ > 0 the concavity of u implies the finiteness of U(c),

while when ρ = 0, U(c) may be infinite valued. We say that a control strategy c̃

catches up to a control strategy c if

(10) lim inf
T→∞

(
UT (c∗)− UT (c)

)
≥ 0.

For a given initial stock x0, an admissible control strategy c∗ is optimal at x0 if

it catches up to every control strategy c admissible at the same initial stock x0.

If the utility function is not strictly concave, then optimality proves a too strong



10 G. FABBRI, S. FAGGIAN, AND G. FRENI

requirement (in some cases no control matching the definition is available), so that a

weaker property is taken into account. We say that an admissible control strategy c∗

is maximal at x0 if, given any other control c admissible at x0, one has

(11) lim sup
T→∞

(
UT (c∗)− UT (c)

)
≥ 0.

Optimality implies maximality, but the viceversa is false in general. 2

A last definition completes the continuous framework, that of a stationary program.

When the control is a function, a stationary program is defined as a time-independent

couple (x, c) satisfying (7) with a null time derivative of x, that is x(s) = x (s− t)−∫ s
s−t c(r)dr (for all t) when s ≥ t, and

∫ S
s
c(r)dr when 0 ≤ s < t, uniquely satisfied by

(12) x(s) =

∫ S

s

c(r)dr.

Remark 2.2 Formulas (7) and (12) are defined only when controls are functions

of s (for instance in L2) but, unfortunately, we show that optimal controls are not

functions but Dirac’s Deltas, so that (7) and (12) need be interpreted in more general

sense. This fact has an economic interpretation, as it is profit maximization and

competitive arbitrage that lead, at least in the long-run, to concentrate harvesting on

a finite set of ages, so that controls that act on single points of the tree configuration

have to be allowed (details are in Section 3.1).

2.3. Admissible controls and initial data. We denote a trajectory starting at

x0 and driven by a control c by x(·;x0, c) or by x(t), and make two simplifying

assumptions: a) initial densities x0 are in L2(0, S) rather than in R, ruling out mass

concentrated at certain ages; b) x0 is compactly supported in [0, s̄], where s̄ is the age

at which trees become unproductive (see (8) and comments below). Accordingly, we

assume admissible controls are positive measures in R, null for s ≥ s̄ and engendering

2Note that the terminology is not consistent across different papers: we follow McKenzie (1986, p.

1286) and recall that our notion of optimal (catching up) controls was formalized by Von Weizsäcker

(1965) in continuous time, and by Gale (1967) and McKenzie (2009) in discrete time. Maximality

of controls in the above sense was introduced by Brock (1970), while Halkin (1974) adapted the

concept to continuous time.
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trajectories which are null for s ≥ s̄. We make use also of the space D′ containing R,

defined in Appendix A.1. Such requirements are formally expressed as follows.

Initial data. Initial densities x0 are chosen in the set

(13) Π :=

{
x ∈ L2(0, S) : x ≥ 0, supp(x) ⊆ [0, s̄],

∫ s̄

0

x(s) ds = 1

}
.

Admissible control strategies. The set Ux0 of control strategies admissible at x0 is

(14) Ux0 :=

c ∈ L2
loc(0,+∞;D′) :

supp(c(t)), supp(x(t)) ⊆ [0, s̄] ∀t ≥ 0

c(t) and x(t;x0, c) lie in R, ∀t ≥ 0

 .

Note that the condition “c(t) and x(t;x0, c) lie in R” in (14) translates the non-

negativity constraints (6) in terms of measures. Moreover from (8) optimal controls

c∗ in Ux0 are expected to satisfy supp(c∗(t)) ⊆ [λ, s̄] for almost all t ≥ 0, for a λ > 0.

Proposition 2.3 Consider an initial datum x0 in Π and a control c ∈ Ux0. Then

there exists a unique solution x(·;x0, c) of (31) and it belongs to C0([0,+∞);D′).

Moreover, for any t ∈ [0,+∞), x(t;x0, c) belongs to L2(0, S) (hence it is a function).

In some cases we consider a restricted class of admissible controls. If λ > 0, set

(15) Uλx0 :=

c ∈ L∞(0,+∞;R) :
supp(c(t)) ⊆ [λ, s̄], supp(x(t)) ⊆ [0, s̄],

c(t), x(t;x0, c) ∈ R, ∀t ≥ 0

 ,

in particular, controls in Uλx0 in addition need be bounded in the R–norm. The set

(16) Uλ,Kx0
:=

c ∈ L∞(0,+∞;R) :
supp(c(t)) ⊆ [λ, s̄], supp(x(t)) ⊆ [0, s̄]

c(t), x(t;x0, c) ∈ R, |c(t)|R ≤ K, ∀t ≥ 0


may also be considered (with R–norms of controls bounded by the same constant K).

3. The Faustmann problem and candidate optimal programs

In this section we describe candidate optimal and maximal programs consistently

with Mitra and Wan (1985, 1986), only in continuous time. All candidates are charac-

terized by a cutting age obtained solving the Faustmann problem, that is identifying

critical ages which maximize “the present discounted value of all net cash receipts

[...] calculated over the infinite chain of cycles of planting on the given acre of land
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from now until Kingdom Come” (Samuelson, 1995, p. 122). The rule “cutting any

tree that reaches the critical age” is called a Faustmann Policy, and candidates gener-

ated by that policy are cyclical. Stationary candidates are also prices supported, and

are called here golden rules or modified golden rules, depending on the fact that the

discount rate is zero or positive. In continuous time and for ρ > 0, the Faustmann

problem is finding maximizers of

gρ(s) =
∞∑
n=1

e−ρnsf(s) =
f(s)

eρs − 1

that is, the value of an infinite sequence of planting cycles with harvesting at

age s. Since when ρ > 0 maximizers of gρ(s) and of gρ(s)(1− e−ρ) coincide and

limρ→0+ gρ(s)(1− e−ρ) = f(s)/s, the Faustmann problem becomes identifying

Aρ ≡ argmax{Gρ(s) : s ∈ [0, s̄]}, ∀ρ ≥ 0,

where Gρ(s) = 1−e−ρ
eρs−1

f(s), when ρ > 0 and G0(s) = f(s)/s. Maximizers enjoy some

interesting properties, stated below.

Proposition 3.1 Assume f satisfies (8). Then Aρ ⊂ (0, s̄], and Aρ 6= ∅, for all

ρ ≥ 0. Moreover, if 0 < ρB < ρA, then:

(i) There exists s̃ ∈ (0, S] such that AρA ⊆ (0, s̃] and AρB ⊆ [s̃, S]. Moreover, AρA
and AρB may be non-disjoint only if f is not differentiable at s̃.

(ii) For any chosen Mρ ∈ Aρ, the selections ρ 7→Mρ and ρ 7→ f(Mρ)

Mρ
are nonincreasing.

Moreover Aρ is not a singleton for at most countable set of values of ρ.

(iii) For every selection Mρ of Aρ, there exists limρ↓0+ Mρ = m0 = minA0.

3.1. The Golden Rule. A modified golden rule (xρ, cρ) (or golden rule, when ρ = 0)

is a couple in Π×R so defined (see Figure 1):

(17) xρ(s) ≡
1

Mρ

χ[0,Mρ](s),

where Mρ ∈ Aρ, meaning that all ages in the range [0,Mρ] are uniformly distributed

and equal to 1/Mρ, while those in the range [Mρ, S] are null;

(18) cρ(t, s) ≡
1

Mρ

δMρ ,
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where δMρ is the Dirac’s Delta at point Mρ, that is, cρ is cutting exactly trees reaching

age Mρ. Note that xρ is a function in Π and that cρ is not a function of s but a positive

measure. By definition of Dirac’s deltas, through the control cρ the following quantity

of wood is harvested

(19) w(cρ) = 〈cρ, f〉 =
1

Mρ

〈δMρ , f〉 =
1

Mρ

f(Mρ).

It is not difficult to guess that any golden rule is a stationary couple, as the amount of

trees cut at age Mρ is instantaneously replanted at age 0, preserving the configuration

among different ages unaltered, as stated next.

Proposition 3.2 Let ρ ≥ 0, and f and u satisfying (8) and (9) respectively. Then

(xρ, cρ) is a stationary couple, in the sense of Definition A.1.

Figure 1. The

golden rule

Define now βρ ≡ 〈cρ, f〉 = f(Mρ)/Mρ, ηρ ≡

f(Mρ)/(e
ρMρ − 1) and pρ : [0, S]→ R+ as

(20) pρ(s) ≡ ηρ (eρs − 1)ψ(s), ρ > 0; p0(s) ≡ β0sψ(s).

Note that p0(s) = limρ→0+ pρ(s) and that, for any ρ ≥ 0,

pρ is twice differentiable with pρ(S) = pρ
′(S) = 0.

Remark 3.3 The dual variables in (20) have a direct interpretation as stationary

competitive prices associated with a golden rule path (see Cass and Shell, 1976).

Indeed, if we interpret pρ(s) as the (infinite dimensional) vector of the prices of capital

goods (i.e, the prices of the different vintages s of trees) and set R = ρηρ the rent rate

of the land on which the trees are planted (when ρ = 0, define R = limρ→0+ ρηρ = β0),

then by definition (20), one has f(s) ≤ pρ(s), when s is in [0, s̄], and f(Mρ) = pρ(Mρ).

The first inequality means that no cutting process yields a positive profit, while the

equality says that the only cutting processes that do not generate losses are those

operating at the Faustmann ages. Thus, golden rule policies maximize short run

profits. In addition, since for all s ∈ [0, s̄], p′ρ(s) = ρpρ(s) + R for Mρ ≥ s ≥ 0 and

p′ρ(s) ≤ ρpρ(s) + R for s ≥ Mρ, then the asset-market-clearing conditions holding

under competitive arbitrage are satisfied. Clearly, the arbitrage condition in a golden
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rule takes the form of a “modified Hotelling rule” because a piece of land needs to

be rented in order to hold a tree of a given age in situ. Since the Faustmann age

(when unique) is the only age in (0, s̄] generating no loss, the importance of including

measures among admissible controls is confirmed.

3.1.1. Modified golden rules. In the following sections we will classify the behavior of

candidate optimal or maximal programs, assuming either a positive or null discount,

a linear or strictly concave utility function, a singleton or multivalued Aρ, although

when ρ > 0, optimality of the golden rule is a general property, as stated below.

Theorem 3.4 Assume ρ > 0, Mρ ∈ Aρ, and f and u satisfying (8) (9) respectively.

Then cρ is optimal at xρ. Moreover, if Aρ = {Mρ}, then the unique optimal stationary

couple is (xρ, cρ).

Remark 3.5 It is easy to show (see the Appendix for a formal proof) that the same

property holds for any convex linear combination of golden rules, that is, if Aρ =

{M1
ρ , ...,M

n
ρ }, and (xiρ, c

i
ρ) is the golden rule associated to M i

ρ, then x̃ =
∑n

i=1 λix
i
ρ,

c̃ =
∑n

i=1 λic
i
ρ, where λi ≥ 0,

∑n
i=1 λi = 1, is also an optimal stationary program. �

Remark 3.6 Note that by (19) it is UT (cρ) = ρ−1(1− e−ρT )u(βρ), when ρ > 0 the

golden rule is optimal when starting at xρ, with maximal overall utility given by

max
c∈Uxρ

U(c) = U(cρ) = lim
T→+∞

UT (cρ) = u(βρ)ρ
−1.

The proofs of Theorem 3.4 and of other theorems in the following sections rely on

the construction of the value-loss function, studied in Corollary A.9:

(21) θρ(c, x) = u(βρ)− u (〈c, f〉) + u′ (βρ)
[
ρ 〈x− xρ, pρ〉 − 〈x,A∗pρ〉+ 〈c, pρ〉

]
.

The value θρ(c(t), x(t)), which gives the value-loss of any admissible couple at the

steady state competitive prices, is the analogue of the value-loss function commonly

used for finite dimensional optimal growth problem (see McKenzie, 1986, for the

discrete time case and Magill, 1977, for continuous time). The only aspect that

is specific to our infinite dimensional setting is that the unit rental costs function

contains an element accounting for the aging process of capital goods.
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Figure 2. The Faustmann Solution.

3.2. The Faustmann solution. Besides the golden rule, other controls are candi-

dates to be optimal or maximal when starting at a general initial datum x0. (Indeed,

the golden rule may even be non-admissible at x0.) Given an initial datum x0 ∈ Π,

if Mρ represents a preferable cutting age providing a maximal harvesting, one may

attempt to use the feedback strategy (x̂, ĉ), where

(22) ĉ(t) = x̂(t,Mρ)δMρ , ∀t ≥ 0,

that is, ĉ cuts existing trees reaching age Mρ. Such trees vary in time depending on

the initial density x0. We remark that a trajectory of the system starting from an

initial datum in Π is defined for almost every s, so that x̂(t,Mρ) and ĉ may not be

well defined. However, in the following lemma we give meaning to both.

Lemma 3.7 Let x0 ∈ Π, supp(x0) ⊂ [0,Mρ], σ(t) =
{

t
Mρ

}
, Mρ = t−

[
t
Mρ

]
Mρ, and

(23) x̂(t, s) = x̂(t)(s) = x0(s− σ(t))χ[σ(t),Mρ](s) + x0(s+Mρ − σ(t))χ[0,σ(t)](s).

Then x̂(t + Mρ) = x̂(t), for all t ≥ 0, the control ĉ(t) = x̂(t,Mρ)δMρ is admissible at

x0 and x̂ solves (in mild sense, see (31)) the closed loop equation

(24) x′(t) = Ax(t) +Bx(t,Mρ) δMρ , x(0) = x0.

Then the Faustmann solution or Faustmann Policy (x̂, ĉ) generates Mρ-periodic

trajectories x̂ (Figure 2). The golden rule is the Faustmann solution starting at xρ.
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Lemma 3.8 Assume supp(x0) ⊂ [0,Mρ], ĉ the Faustmann policy, T ≥ 0, and

Uρ
1 :=

∫Mρ

0
eρτu (f(Mρ)x0(τ)) dτ , Uρ

2 (T ) :=
∫Mρ

Mρ−σ(T )
eρτ u (f(Mρ)x0(τ)) dτ . Then

(25) UT (ĉ) =


1−e−ρnMρ
eρMρ−1

χ
[Mρ,∞)

(T )Uρ
1 + e−ρ(n+1)MρUρ

2 (T ), ρ > 0

nU0
1 + U0

2 (T ), ρ = 0

Remark 3.9 Note that when ρ > 0 the overall utility is finite

U(ĉ) = lim
T→∞

UT (ĉ) = Uρ
1 (eρMρ − 1)−1,

contrary to the case ρ = 0. The formula is consistent with Remark 3.6 when x0 = xρ.

3.3. Null discounts and Good Controls. Assume ρ = 0, M ∈ A0 and denote by

(x̄, c̄) the associated golden rule, that is

(26) x̄ =
1

M
χ[0,M ], c̄ =

1

M
δM .

The case ρ = 0 appears immediately more complicated than the case ρ > 0. Indeed

the utility over a finite horizon T associated to the golden rule is UT (c̄) = T u(β0),

diverging when T tends to infinity. A useful notion is that of good controls, already

introduced in discrete time by Gale (1967).

Definition 3.10 Assume ρ = 0. A control c ∈ Ux0 is good if there exists θ ∈ R s.t.

inf
T≥0

(
UT (c)− UT (c̄)

)
≥ −θ.

Note that a control is defined “good” in comparison to the golden rule, even when

c̄ is not admissible at x0. Note also that a control c is good if and only if there exists

θ ∈ R such that, for all T ≥ 0, one has UT (c) ≥ UT (c̄) − θ, meaning that the utility

(over an arbitrary finite horizon T ) achieved by means of a good control is dominated

by the utility at c̄ by at most a finite quantity θ. The following result implies that

search of optimal or maximal programs can be restricted to good controls.

Proposition 3.11 If c∗ ∈ Ux0 is maximal (or optimal) then it is good.
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4. Classification of optimal programs

4.1. Linear utility, positive discount. In Theorem 3.4 we already established

that, when ρ > 0, the modified golden rules are optimal in all sets of assumptions.

In particular that holds true for u linear. In the following theorem we see that, in

the particular case of ρ > 0 and u linear, the Faustmann solution (x̂, ĉ) given by (23)

(22) is optimal regardless the initial density x0, as long as x0 does not contain trees

older than Mρ. The result is consistent with Theorem 3.4, as (x̂, ĉ) coincides with the

golden rule when the initial datum is xρ.

Theorem 4.1 Assume ρ > 0, (8), and u(r) = ar+b, r ≥ 0 (a, b in R). Let x0 ∈ Π,

with supp(x0) ⊆ [0,Mρ]. The Faustmann Solution (x̂, ĉ) is optimal at x0.

Then a modified golden rule is an equilibrium, but not an asymptotic equilibrium

(convergence is driven by second order differences, hence to strict concavity of the

value function, which in this case is linear).

Remark 4.2 The assumption supp(x0) ⊂ [0,Mρ] (used in Theorems 4.1 and 4.3) is

technical and related to the continuous time setting. In discrete time Mitra and Wan

prove that, with a linear utility function, there are cases in which the optimal policy

is cutting at time 0 all trees with age at least Mρ and subsequently those reaching age

Mρ (see Theorem 4.2 in Mitra and Wan, 1985, and Theorem 5.2 in Mitra and Wan,

1986). A corresponding continuous time policy, demanding at time t = 0 to cut all

trees of age Mρ and older, would engender a mass of trees of age zero (a Dirac’s Delta)

immediately after time t = 0 by effect of replanting, and the density x(t) would be no

longer in L2. Hence in our framework the described policy would not be admissible.

4.2. Linear utility, null discount. In this section we establish that, with null

discount and linear u, the Faustmann solution is maximal but not optimal. We show

also that optimal programs do not exist. We require

(27) A0 is singleton, A0 ≡ {M}.

Although the case of multivalued A0 is not considered here, multiplicity of maxima

is a fragile phenomenon that vanishes under small perturbations of f .
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Theorem 4.3 Let (27) be satisfied, ρ = 0, u(r) = ar + b (a, b ∈ R), r ≥ 0, and

x0 ∈ Π with supp(x0) ⊆ [0,M ]. Then the Faustmann Solution (x̂, ĉ) is maximal, but

not optimal. Indeed no optimal control exists in this set of data.

The fact applies to the particular case of the golden rule.

Corollary 4.4 In the assumptions of Theorem 4.3, the golden rule (x̄, c̄) is maximal,

but not optimal, at x̄. Moreover no admissible control at x̄ may be optimal.

As a direct proof of the assertion that neither c̄ is optimal, nor an optimal control

exists, one may build the following example (proof of Theorem 4.3 is based on a

similar construction), where the control c̄ is not catching up to c1 defined by means

of (28), admissible at x̄. The control c1 behaves on average like c̄ but delayed of some

initial time interval: the difference in utilities yielded by c̄ and c1 coincide repeatedly

with their difference in the initial time interval, precisely because ρ = 0 and u is linear.

Figure 3. The

trajectory x1 for

N = 3, at time 0

and at time M/3.

Example 4.5 Let N be a natural number greater

than 1. Define sj := jM/N, for j = 1, .., N and

consider a control c1 and associated trajectory x1

so defined: when t ≤ M/N , c1 cuts the quantity

x1(t, sj) of available trees of age sj, subsequently

when t ≥ M/N , c1 cuts the quantity x1(t,M) of

trees reaching age M , that is

(28) c1(t) =


∑N

j=1 x1(t, sj)δsj , 0 ≤ t < M
N

x1(t,M)δM , t ≥ M
N

It is easy to check that c1 is admissible at any x0 with supp(x0) ⊂ [0,M ]. In particular

for x0 = x̄ the associated trajectory x1(t, s; c1, x̄) ≡ x1(t, s) is given by

x1(t, s) = (N/M)χ[0,t](s) + (1/M)
N∑
j=1

χ[sj−1+t,sj ](s)
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when t ∈
[
0, M

N

]
, s ≥ 0. From t = M/N on, x1(t, s) is M -periodic, coincides with

(29) in all intervals of type [Ti, Ti+1] where Ti = M/N + iM, i ∈ N, namely

(29) x1(t, s) =


N
M
χ[t−M

N
,t](s)

N
M

[
χ[0,t−M ](s) + χ[t−M

N
,M ](s)

] t ∈
[
M
N
,M
]

t ∈
[
M,M + M

N

]
.

In such intervals, c1 cuts an amount N/M for a time length M/N , while c̄ cuts the

amount 1/M for a time length M (in Figure 3 is represented the case N = 3). Then,

except on [0,M/N ], the utilities yielded by c̄ and c1 on a period length interval are

both equal to f(M), and the difference between such utilities is periodically equal to

the difference yielded on [0,M/N ], that is 1
N

∑N−1
j=1 f(sj) > 0 (provided f is not null

everywhere). Then the control c̄ does not catch up to c1. By means of a similar idea

one may contradict also the existence of an optimal control. For details we refer the

reader to the proof of the general case, Theorem 4.3 in the Appendix. �

4.3. Strictly concave utility, null discount. Also in this subsection we assume

that (27) is satisfied. Moreover we consider, rather than Ux0 , Uλx0 or UK,λx0
defined in

(15) (16) as the set of admissible strategies.

Theorem 4.6 Let ρ = 0, and let (8)(9)(27) be satisfied, with u strictly concave.

Let x0 ∈ Π, and c ∈ Uλx0, with c good. Then the trajectory x(t; c, x0) converges to the

golden rule x̄ in L2(0, S)–norm.

Theorem 4.7 Assume ρ = 0, and that (8) (9) (27) hold. Assume moreover that u

is strictly concave. Then the golden rule (x̄, c̄) is an optimal stationary couple.

As a consequence of Theorem 4.6, the Faustmann solutions (maximal for linear u)

are not maximal anymore for strictly concave u, as they are definitely caught up by

the convergent solution.

Corollary 4.8 In the assumptions of Theorem 4.6, the Faustmann solution is nei-

ther optimal nor maximal, except for the particular case of the Golden Rule.

Theorem 4.9 Let x0 ∈ Π, ρ = 0, and assume (27) is satisfied. Let UK,λx0
be defined

by (16), for a K > 0 such that UK,λx0
6= ∅ . Then:

(i) if u is strictly concave, then there exists an optimal control in UK,λx0
;
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(ii) if u is concave, then there exists a maximal control in UK,λx0
.

4.4. Strictly concave utility, positive discount. As observed in Corollary 4.8 the

Faustmann Policy is not optimal for the case of a strictly concave utility function and

null discount. However, that does not preclude the possibility that the Faustmann

policy turns out optimal for the discounted model. Indeed, in discrete time and with a

strictly concave utility and discounted future utilities, Mitra and Wan (1985) provided

examples in which the Faustmann Policy was optimal, and Wan (1994), Salo and

Tahvonen (2002, 2003) took the issue further (see also Mitra et al., 1991, for similar

results in a different vintage capital model) by showing that optimal Faustmann cycles

persist at a neighborhood of the (modified) golden rule when the discount factor

approaches unity. In particular, Proposition 1 in Salo and Tahvonen (2003) states

that, for discount factors less than one, the Faustmann Policy is optimal for all initial

forests sufficiently close to the steady state. On the contrary, for the strictly concave

continuous-time discounted model, optimality of cyclical Faustmann solutions is still

an open question: neither is a convergence result available, nor a case in which the

Faustmann Policy is optimal. However, we establish a partial result by proving that

Proposition 1 in Salo and Tahvonen (2003) does not carry over to our continuous-time

formulation and, hence, that our model behaves differently from that in discrete-time.

Indeed we consider the following simple example. Assume that Mρ = 1 is the unique

Faustmann maturity age, and that f(1) = 1. Consider, for 0 ≤ a ≤ 1
2
, the initial

density depicted in Figure 4 (note that for a = 0 one has the golden rule forest)

xa(s) = χ[0,1−2a)(s) + (1 + a)χ[1−2a,1−a) + (1− a)χ[1−a,1].

We intend to show that, for any a in a right neighborhood of 0, the Faust-

mann Policy is not optimal starting at xa(s). As a consequence, the analogue

of Proposition 1 in Salo and Tahvonen (2003) does not hold in continuous time.

Figure 4.

The cycle induced by the Faustmann Policy ĉa(t) =

x̂a(t, 1)δ1 comprises an initial phase of length a during

which 1 − a units of timber are harvested, a phase of
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length a during which the harvest is raised to 1+a, and

a final phase of length 1 − 2a with a constant harvest

at the golden rule level. On the first cycle, that is for

t ∈ [0, 1], one has

〈ĉa(t), f〉 = f(1)xa(t, 1) = xa(t, 1) = (1− a)χ[0,a](t) + (1 + a)χ[a,2a](t) + χ[2a,1](t),

so that the utility at horizon T = 1 is given by

U1(ĉa) =

∫ a

0

u(1− a)e−ρsds+ e−ρa
∫ a

0

u(1 + a)e−ρsds+ e−2ρa

∫ 1−2a

0

u(1)e−ρs ds

= (u(1− a) + u(1 + a)e−ρa)
(
1− e−ρa

)
ρ−1 + u(1)(e−2ρa − e−ρ)ρ−1.

Next we note that, starting from any forest xa(s), a feasible Most Rapid Approach

Path to the steady state, namely cmra(t) = [(1− a)δ1 + aδ1−a)]χ[0,a](t) + δ1χ[a,∞)(t),

reaches the golden rule after a units of time by continuously clearing the 1− a units

of land on which mature trees are planted and the a units of land in excess on which

trees of age 1− a are grown. The associated utility at horizon T = 1 is then

U1(cmra) =

∫ a

0

u ((1− a) + af(1− a)) e−ρsds+ e−ρa
∫ a

0

u(1)e−ρsds+ e−2ρa

∫ 1−2a

0

u(1)e−ρsds

=u (1− a+ af(1− a))
(
1− e−ρa

)
ρ−1 + u(1)(e−ρa − e−ρ)ρ−1.

Instead, when T = n ≥ 2, one has

Un(ĉa) =
n∑
i=0

e−iρU1(ĉa) = U1(ĉa) + U1(ĉa)
e−ρ − e−nρ

1− e−ρ

Un(cmra) = U1(cmra) +
n∑
i=1

e−iρ
u(1)

ρ

(
1− e−ρ

)
= U1(cmra) +

u(1)

ρ
(e−ρ − e−nρ).

As a consequence, limn→∞ (Un(ĉa)− Un(cmra)) =

=
1− e−ρa

ρ

[
u(1− a)− u(1)

1− e−ρ
+
u(1 + a)− u(1)

1− e−ρ
e−ρa − u(1− a+ af(1− a)) + u(1)

]
.

The sign of the sum in the square brackets, null at a = 0, for a > 0 in a neighborhood

of 0 is given by the sign of the lowest non-zero derivative order evaluated at 0. Simple

calculations show that the first derivative is null, while the second is given by 2(u′′(1)−

ρu′(1)) + 2f ′(1)u′(1)(1 − e−ρ), which is strictly negative, as f ′(1)(1 − e−ρ) = ρ by
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definition of Mρ = 1. Hence the Faustmann Policy is not optimal starting at xa(s) in

a complete neighborhood of the steady state.

5. Conclusions

In this paper we developed and analyzed a continuous time version of the Mitra

and Wan (1985) model of optimal forest management. One of our main purposes was

to isolate the set of phenomena that are independent of the way time is modeled.

Table 1 gives an overview of the results we have established in continuous-time. It

turned out that many of the results in discrete time carry over to continuous time,

with an important exception: cyclical optimal solutions, proper of the discounted

strictly-concave discrete model, disappear in continuous time. Unlike in discrete

ρ = 0 ρ > 0

u
li

n
ea

r • IfA0 is singleton, GR maximal, but not optimal

• If A0 is singleton, FS maximal at any admissi-

ble x0 with supp(x0) ⊂ [0,Mρ]

• There do not exist optimal controls

• Any MGR is optimal

• FS is optimal at any admissible x0 satisfying

supp(x0) ⊂ [0,Mρ]

u
st
ri
ct
ly

co
n
c. If A0 singleton:

• GR is the unique optimal stationary couple

• There exists an optimal control

• Any optimal trajectory converges to the GR

• Any MGR is optimal

• It is not true (as in discrete time) that FS is

optimal for all initial forests close to the MGR.

u
co

n
c. If A0 singleton:

• GR is the unique maximal stationary couple

• There exists a maximal (admissible) control

• Any MGR is optimal

Table 1. Results at one glance: FS stands for Faustmann Solution,

GR for Golden Rule, MGR for modified golden rule.

time, modeling timber production in continuous time required a quantum leap from

the received vintage capital theory. Indeed, in the typical vintage capital model in

continuous time, (e.g. for optimal investment Feichtinger et al., 2003, 2006) optimal

investments are spread over a continuum of ages, so that controls are functions.

In forest management in continuous time, however, timber production cannot be

modeled this way, because the Faustmann condition implies that generically it is
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optimal to fell down only trees of a single age. Therefore, we had to develop an

entirely new class of vintage models in which measure-valued controls are allowed.

Since this is the first attempt to formulate the Mitra-Wan model in continuous time,

we have been concentrating on the basic features of the model, without attempting to

use minimal assumptions and without taking into account recent refinements of the

theory (Khan and Piazza, 2012). We expect that our results and methods of analysis

will find useful applications in studying other models with non-homogeneous natural

resources, as age distributed fisheries (see Tahvonen, 2009) or the so called orchard

model (Mitra et al., 1991), vintage capital models, as the continuous-time Ramsey

version of the clay-clay vintage capital model of Solow et al. (1966) developed by

Boucekkine et al. (1997) (see also Boucekkine et al., 1998), and more in general, all

kind of models comprising age distributed state variables (e.g., demographic models).
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Appendix A. The Abstract Problem and Proofs

We advise that a full understanding of the content of the Appendix requires a good

knowledge of functional analysis. We refer the reader to Engel and Nagel (1999) or

Pazy (1983) for the general theory of strongly continuous semigroups and evolution

equations, to Bensoussan et al. (2007) for control in infinite dimension.

A.1. The extended framework. We start by formulating an intermediate abstract

problem in L2(0, S), using the translation semigroup {T (t)}t≥0 on L2(0, S), namely

the linear operators T (t) : L2(0, S)→ L2(0, S) such that [T (t)f ](s) = f (s− t) , if s ∈

[t, S], and [T (t)f ](s) = 0 otherwise. The generator of T (t) is the operator A : D(A)→

L2(0, S) where D(A) = {f ∈ H1(0, S) : f(0) = 0}, given by [Af ](s) = −∂f(s)/∂s.

The adjoint of A is then A∗ : D(A∗) → L2(0, S) with D(A∗) = {f ∈ H1(0, S) :

f(S) = 0} defined by [A∗f ](s) = ∂f(s)/∂s, generating itself a translation semigroup

T ∗(t) : L2(0, S) → L2(0, S) given by T ∗(t)f(s) = f (s+ t) , if s ∈ [0, S − t], and

T ∗(t)f(s) = 0 otherwise. Then we generalize of all previous notions to a wider space.

We set D ≡ D(A∗), and D′ ≡ D(A∗)′, and assume D′ is both the control space and

the state space of the abstract problem. Indeed by standard arguments, in particular

by replacing the scalar product in L2 with the duality pairing 〈φ, ψ〉D′,D with φ ∈ D′,

ψ ∈ D (coinciding with the scalar product in L2 when φ ∈ L2 – we use the notation

〈·, ·〉 in both cases, unless it is ambiguous); the semigroup {T (t)}t≥0 can be extended

to a strongly continuous semigroup on D′, while T ∗(t) can be restricted to a strongly

continuous semigroup on D; their generators are respectively an extension and a

restriction of those in L2(0, S).3 For simplicity we keep denoting such operators by

3For details we refer the reader to Faggian (2005) and Faggian and Gozzi (2010).
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T (t), T ∗(t), A, and A∗. The role of L2(0, S) is that of pivot space between D and D′,

namelyD ⊂ L2 ⊂ D′, with continuous inclusions. It is very important to say that such

formulation enables the possibility of choosing controls which are positive measures

rather than functions. More precisely, we use the subset R ⊂ D′ (with continuous

inclusion) containing all Dirac’s measures δs0 , with s0 ∈ [0, s̄]. The cut-off function

ψ defined in Section 2.1 is in D2 ≡ D([A∗]2) = {g ∈ H2(0, S) : g(S) = g′(S) = 0},

namely, the domain of the generator of the adjoint semigroup T ∗(t) restricted to D.

When c has support in [0, s̄], by means of the linear bounded functional D′ → R,

c 7→ 〈c, ψ〉 we write the boundary condition as x(t, 0) = 〈c(t), ψ〉, and enclose it

in the definition of the control operator B : D′ → D′, with Bc := −c + 〈c, ψ〉δ0,

where δ0 is the Dirac’s Delta at 0 (see Barucci and Gozzi (2001), pp. 25-26 for a

detailed explanation).4 The adjoint operator of B is given by B∗ : D → D, with

B∗v := −v + 〈δ0, v〉ψ. Then (3)(4)(5) become the state equation

(30)

 x′(t) = Ax(t) +Bc(t), t > 0

x(0) = x0

and rewritten in mild form (see e.g. Bensoussan et al., 2007 Section 3.II.1) as

(31) x(t) = T (t)x0 +

∫ t

0

T (t− τ)Bc(τ) dτ.

The total wood harvested at t may be written as w(c(t)) = 〈c(t), f〉, coinciding with∫ S
0
f(s)c(t, s)ds when c(t) is in L2(0, S). Then the objective functional is written as

(32) UT (c) =

∫ T

0

e−ρtu (〈c(t), f〉) dt, 0 ≤ T ≤ +∞.

When c ∈ R, (12) may be interpreted in the following abstract way.

4The lift of the boundary condition in the state equation can be understood as follows: as the

abstract equation aggregates quantities with respect to s, it accounts for both the distributed control

−c (cutting) and the boundary control 〈c, ψ〉δ0 (replanting), the latter with effect concentrating (by

means of δ0) on the subdomain {0} × [0,+∞) of trees of age 0. It is a case of unbounded boundary

control operators (Bensoussan et al., 2007, Sections II-2-1.1.2 page 177 and II-2-2.1 page 188).
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Definition A.1 We say that (x̃, c̃) ∈ Π×R is a stationary couple if, for all t ≥ 0,

(33) x̃ = T (t)x̃+

∫ t

0

T (t− s)Bc̃ ds.

A stationary couple (x̃, c̃) is optimal if c(t) ≡ c̃ is optimal at x̃.

A.2. Proofs for Section 2.3.

Proposition A.2 For any T > 0, the operator S : D′×L2(0, T ;D′)→ C([0, T ];D′)

defined by S(x0, c)(t) := T (t)x0 +
∫ t

0
e(t−s)ABc(s) ds is continuous. In particular, for

any x0 ∈ D′, and for any c ∈ Ux0, the function [0, T ] → D′, t 7→ S(x0, c)(t) is also

continuous.

Proof. See e.g. Bensoussan et al. (2007) Section II.1.3. �

Proof of Proposition 2.3. The first statement follows from Proposition A.2. To

prove the second, note that (31) implies

(34) x(t) = T (t)x0 +

∫ t

0

〈c(τ), ψ〉T (t− τ)δ0 dτ −
∫ t

0

T (t− τ)c(τ) dτ.

It is enough to show that the right hand side defines a measure with null singular

part. Indeed, by definition, the first two addenda are both positive functions in

L2(0, S); in particular, the second lies in L2(0, S) as a consequence of Proposition 3.1

in Bensoussan et al. (2007) p. 212, as Hypothesis 3.1 there contained holds true: if

B1 : D′ → D′, B1φ := 〈φ, ψ〉 δ0 then B∗1 : D → D is given by B∗1h := 〈δ0, h〉ψ, and

|B∗1T ∗(τ)h|D ≤ |h(τ)|R |ψ|D, so that∫ T

0

|B∗1T ∗(τ)h|2D dτ ≤ |ψ|2D
∫ S

0

|h(τ)|2R dτ = |ψ|2D|h|2L2(0,S).

In addition, the term −
∫ t

0
T (t − τ)c(s) dτ is a negative distribution in D′, it is a

negative measure on [0, S] by Proposition 2.3 page 270 of Hirsch and Lacombe (1999),

and then the sum of an absolutely continuous and a singular part (w.r.t. the Lebesgue

measure on [0, S]), both negative. Hence the singular part of right side of (34) is

negative, whereas that on the left hand side is positive, hence the singular part on

both is null. �
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Proposition A.3 Assume x0 ∈ Π. Then the trajectory x = x(·;x0, c) of (31)

satisfies 〈x(t), ψ〉 ≡ 〈x0, ψ〉 for all t ≥ 0, and for all c ∈ Ux0.

Proof. Let first c ∈ L2
loc(0,+∞;L2(0, S)), so that (7) implies

〈x(t), ψ〉 = 〈x0, ψ〉 −
∫ s̄

0

∫ t∧s

0

c(t− τ, s− τ) dτ ds+

∫ t∧s

0

∫ s̄

0

c(t− s, τ) dτ ds.

By a change of variables, the second and the third addenda are opposites, so that

〈x(t), ψ〉 = 〈x0, ψ〉 . The claim for a general c in Ux0 follows by density and by conti-

nuity of the operator S defined in Proposition A.2. �

Proposition A.4 Let x be the solution to (31) when x0 ∈ Π, c ∈ Ux0. Let also

T > 0 and p in D2. Then x(t) is a weak solution (31), that is d
dt
〈x(t), p〉 = 〈x(t), A∗p〉 − 〈c(t), p〉+ 〈δ0, p〉 〈ψ, c(t)〉 , ∀t ∈ (0, T ]

〈x(0), p〉 = 〈x0, p〉 = 1.

Proof. As suggested at p.204 in Bensoussan et al., 2007 Section II.3.1, it is enough

to repeat the construction of the weak solution at p. 203, with k ∈ D2. �

Remark A.5 The function pρ defined in (20) is in D2.

A.3. Proofs for Section 3. For a selection Mρ in Aρ, we define the support function

(35) hρ(s) = gρ(Mρ)(e
ρs − 1), when ρ > 0, h0(s) = f(M0)M0

−1.

Note that since hρ(s) ≥ f(s), for all s in (0, S] and hρ(Mρ) = f(Mρ), one has

(36) Aρ = {s ∈ (0, S] : hρ(s) = f(s)}.

Proof of Proposition 3.1. Note that gρ(·) continuous with compact support in

[λ, s̄] implies Aρ 6= ∅, while (8) implies 0 6∈ Aρ for any ρ ≥ 0. Now let MρA ∈ AρA and

MρB ∈ AρB . A simple analysis shows that ρB < ρA implies hρAdefinitively greater

than hρB , and there exists s̃ ∈ (0,+∞) such that hρA(s̃) = hρB(s̃), hρA(s) < hρB(s)

for all s ∈ (0, s̃), and hρA(s) > hρB(s) for all s ∈ (s̃,+∞). Indeed (0, s̃] 3 MρA , as

gρB maximal at MρB implies hρA(MρA) ≤ hρB(MρA). Moreover, by maximality of gρA

at MρA , one derives hρA(MρB) ≥ hρB(MρB), which implies s̃ ≤ S and MρB ∈ [s̃, S],

and the first assertion in (i) is proved. If in addition f is differentiable at s̃ and,
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by contradiction, AρA ∩ AρB = {s̃}, then (36) implies f(s̃) = hρA(s̃) = hρB(s̃), and

h′ρA(s̃) > h′ρB(s̃), against the fact that the graph of f lies underneath the graph of

both support functions.

Next we prove (ii). The selection ρ 7→Mρ is nonincreasing as a direct consequence

of (i). From MρA ≤ MρB and the convexity of hρB(s) it follows hρB(MρB)/MρB ≥

hρB(MρA)/MρA . Then (36) implies f(MρB) = hρB(MρB) and hρB(MρA) ≥ f(MρA),

and then f(MρB)/MρB ≥ f(MρA)/MρA . The last claim in (ii) is a consequence of

(i) and of countability of the discontinuities of a decreasing function. The limit m0

in (iii) exists and is in [0, S], as any selection Mρ in Aρ is nonincreasing and there

contained. By continuity of f any Aρ has a positive minimum, and Aρ ∩A0 contains

at most one element, which implies m0 ≤ minA0. Suppose by contradiction that

m0 < minA0, then h0(s) − f(s) is always strictly positive on [λ,m0]. Moreover,

if we define kρ(s) = f(minA0)(eρs − 1)/(eρminA0 − 1), we may observe that: (i)

hρ(s) ≥ kρ(s), and (ii) kρ(s)−h0(s) converges uniformly to 0 on [λ,m0], when ρ→ 0.

Hence there exists ρ̂ small enough such that, hρ̂(s) ≥ kρ̂(s) > f(s), for any s ∈ [λ,m0].

This implies Aρ̂ ⊂ (m0,minA0], a contradiction. �

Lemma A.6 Let a, b ∈ [0, S], a ≤ b. Then

(37) T (t)χ[a,b] = χ[a+t,(b+t)∧S], and

∫ t

0

T (τ)δb dτ = χ[b,(b+t)∧S].

Proof. The first assertion follows from

T (t)χ[a,b](s) = χ[a,b](s− t)χ[t,S](s) = χ[a+t,b+t](s)χ[t,S](s) = χ[a+t,(b+t)∧S](s).

For the second, note that, if φ is any test function in D, one has 〈δb, T ∗(τ)φ〉 = φ(b+τ)

if b+τ ≤ S, and 0 otherwise, then by changing the variable in the integral one derives〈∫ t

0

T (τ)δb dτ, φ

〉
=

∫ t

0

〈δb, T ∗(τ)φ〉 dτ =

∫ (b+t)∧S

b

φ(σ) dσ = 〈χ[b,(b+t)∧S], φ〉. �

Lemma A.7 Let g ∈ L2
loc(0,+∞;R), and a ∈ [0, S).

(38)

(∫ t

0

g(τ)T (t− τ)δa dτ

)
(s) = χ[a,t+a](s)g(t+a−s), ∀t ∈ [0, S−a], ∀s ∈ [0, S].
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Proof. The proof is follow by Lemma A.6 and by density of step-functions approxi-

mating g and satisfying (38). �

Lemma A.8 Assume (8) (9), and let ρ ≥ 0, and xρ, cρ pρ be defined by means of

(17) (18) (20). Let x0 ∈ Π, c ∈ Ux0, and x(t) = x(t;x0, c) a solution of (30). Then

(39) 〈c(t)− cρ, f − p〉 ≤ ρ 〈x(t)− xρ, pρ〉 − 〈x(t)− xρ, A∗pρ〉 , ∀t ≥ 0.

Proof. Proposition 3.1 implies there exists Mρ ∈ Aρ 6= ∅, with f(s) ≤ pρ(s) for all

s ∈ [0, s̄], and f(Mρ) = pρ(Mρ). This implies 〈f, c〉 ≤ 〈pρ, c〉 for all positive c ∈ D′,

with equality holding at c = γδMρ , with any γ ≥ 0. In particular, for γ = 1, one has

(40) 〈c(t), f − pρ〉 ≤ 0 = 〈cρ, f − pρ〉, ∀t ≥ 0

By means of Proposition 2.3, x(t) lies in L2(0, S) and A∗pρ = pρ
′ so that

(41) −ρ 〈x(t), pρ〉+ 〈x(t), A∗pρ〉 = −ρ
∫ s̄

0

pρ(s)x(t, s) ds+

∫ s̄

0

pρ
′(s)x(t, s) ds =: ∆(ρ).

If ρ > 0, then supp(x(t)) ⊂ [0, s̄], pρ
′(s) = ρηρe

ρs on [0, s̄]. Proposition A.3 gives

(42) ∆(ρ) = ρηρ

∫ s̄

0

x(t, s) ds = ρηρ

∫ s̄

0

x0(s) ds = ρηρ

that is, the quantity on the left of (41) hand side is constant for all admissible tra-

jectories, and in particular for x = xρ. Then (40), (41) and (42) imply the claim.

Similarly for ρ = 0, p′0(s) = β0 on [0, s̄], so that

∆(0) =

∫ s̄

0

p′0(s)x(t, s) ds = β0

∫ s̄

0

x(t, s) ds = β0,

which leads to the same conclusion. �

Corollary A.9 In the assumption of Lemma A.8, set βρ := f(Mρ)/Mρ, and αρ :=

u′ (βρ). The value-loss function (21) satisfies θρ(c(t), x(t)) ≥ 0, for all t ≥ 0.

Proof For all c in D′, set h : D′ → R, h(c) := u(〈c, f〉), so that h(cρ) = u(〈cρ, f〉) =

u(βρ); h is differentiable with h′(c) = u′(〈c, f〉)f ∈ D, h′(cρ) = u′(βρ)f = αρf . Since

h is concave, u(〈c, f〉)− u(βρ) ≤ αρ 〈c− cρ, f〉, for all c ∈ D′, and Lemma A.8 gives

u(〈c(t), f〉) ≤ u(βρ) + αρ
[
〈c(t)− cρ, pρ〉+ ρ 〈x(t)− xρ, pρ〉 − 〈x(t)− xρ, A∗pρ〉

]
.
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To complete the proof, we need to show that −〈cρ, pρ〉+ 〈xρ, A∗pρ〉 = 0. For ρ > 0

−〈cρ, pρ〉+ 〈xρ, A∗pρ〉 = − ηρ
Mρ

(
eρMρ − 1

)
+
ρηρ
Mρ

∫ Mρ

0

eρs ds = 0,

while, for ρ = 0 and with x̄, c̄ given by (26), one has

(43) 〈x̄, A∗p0〉 = β0 = 〈c̄, p0〉. �

Remark A.10 The previous results remain true when cρ is replaced by any positive

multiple γδMρ of the Dirac’s Delta at Mρ. If moreover ρ = 0, (39) holds true for a

general initial datum x0 in place of xρ, as 〈x,A∗p0〉 = β0 for all x ∈ Π. We summarize

these facts in the following generalized version of Lemma A.8 for the case ρ = 0. �

Corollary A.11 Let ρ = 0, and x(t) = x(t;x0, c), with x0 ∈ Π, c ∈ Ux0. Then

〈c(t)− γδM0 , f − p0〉 ≤ − 〈x(t)− x0, A
∗p0〉 , ∀t ≥ 0, ∀γ ≥ 0.

Corollary A.12 In the assumption of Corollary A.9

(44) UT (cρ)− UT (c) ≥ αρ
(
〈xρ − x0, pρ〉 − e−ρT〈xρ − x(T ), pρ〉

)
,

Proof. From Corollary A.9 u(βρ)− u(〈c(t), f〉) is greater than

αρ
[
ρ 〈xρ − x(t), pρ〉 − 〈c(t), pρ〉+ 〈x(t), A∗pρ〉

]
= eρt

d

dt

〈
x(t)− xρ, e−ρtpρ

〉
.

which promptly implies the thesis. �

Lemma A.13 Let ρ > 0, xρ, pρ defined by (17) (20), x(t) = x(t;xρ, c), with c ∈ Uxρ.

Then

lim
T→+∞

∫ T

0

d

dt

[〈
xρ − x(t), e−ρtp

〉]
dt = 0.

Proof. Note that∫ T

0

d

dt

[〈
xρ − x(t), e−ρtp

〉]
dt = e−ρT 〈xρ − x(T ), pρ〉 .

Since x(T ) and xρ are supported in [0, s̄], and Proposition A.3 holds∣∣e−ρT 〈xρ − x(T ), pρ〉
∣∣ ≤ e−ρT

∫ S

0

|xρ(s)− x(T, s)||pρ(s)|ds ≤ 2e−ρTηρ
(
eρS − 1

)
.

The last expression converges to 0 as T → +∞ and then we get the claim. �
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Proof of Proposition 3.2. By definition of B one has

Bcρ = − 1

Mρ

δMρ + 〈 1

Mρ

δMρ , ψ〉δ0 =
1

Mρ

(
δ0 − δMρ

)
so that, by making use of (37) one obtains

T (t)xρ+

∫ t

0

T (t−τ)Bcρ dτ =
1

Mρ

χ[t,(t+Mρ)∧S]+
1

Mρ

(
χ[0,t∧S] − χ[Mρ,(Mρ+t)∧S]

)
= xρ

which implies that (cρ, xρ) satisfies Definition A.1. �

Proof of Theorem 3.4. Let c ∈ Uxρ , x(t) = x(t;xρ, c), and UT be given by (32).

(45) UT (cρ)− UT (c) + αρ

∫ T

0

d

dt

[〈
xρ − x(t), e−ρtpρ

〉]
dt =

=

∫ T

0

e−ρt
[
u(βρ)−u (〈c(t), f〉)+αρ

(
ρ 〈xρ − x(t), pρ〉−〈x(t), A∗pρ〉+ 〈c(t), pρ〉

)]
dt.

where the last equality follows from Proposition A.4 with p = pρ and from 〈pρ, δ0〉 = 0.

By means of Corollary A.9 the right hand side is positive, so that Lemma A.13 implies

lim inf
T→+∞

(UT (cρ)− UT (c)) ≥ 0.

Now we assume Aρ singleton and (x̃, c̃) optimal stationary couple, and we show that it

necessarily coincides with (xρ, cρ). First we show that supp(c̃) = {Mρ}, by separately

proving supp(c̃) ∩ [0,Mρ) = ∅ and supp(c̃) ∩ (Mρ, s̄] = ∅. Assume by contradiction

that supp(c̃) ∩ [0,Mρ) 6= ∅ and define, for ε > 0, the control cε, admissible at x̃, as

(46) cε(t) ≡ (1− ε)χ[0,Mρ) c̃+ χ(Mρ,s̄] c̃+ εδMρ

∫ Mρ

(Mρ−t)∨0

c̃(s) ds

coinciding with c̃ when ε = 05. If we show that U(cε) is strictly increasing at ε = 0,

then U(cε) > U(c̃) for a small ε, and c̃ is not optimal. Then

d

dε
U(cε)

∣∣∣∣
ε=0

= u′ (〈c̃, f〉)

(
1

ρ

〈
−c̃χ[0,Mρ], f

〉
+ f(Mρ)

∫ +∞

0

e−ρt
∫ Mρ

(Mρ−t)∨0

c̃(s)dsdt

)
5 Recall that x̃ is decreasing, then c̃ = −∂x a positive Radon measure. Then those in (46) need be

interpreted as Lebesgue-Stieltjes integrals (see e.g. Ash, 2000 Section 1.5 page 35), more precisely∫Mρ

0
c̃(s) ds =

∫Mρ

Mρ−t ∂x̃(s) and
∫ t
0
c̃(Mρ − s) ds =

∫Mρ

0
∂x̃(s).
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= ρ−1u′ (〈c̃, f〉)
(
−
〈
f, c̃χ[0,Mρ]

〉
+ f(Mρ)e

−ρMρ

∫ Mρ

0

eρsc̃(s) ds

)
= ρ−1u′(〈c̃, f〉)

(〈
pρ − f, c̃χ[0,Mρ]

〉
+ e−ρMρ

〈
c̃χ[0,Mρ], f(Mρ)ψ − pρ

〉)
.

where the first equality is obtained by separately integrating over [0,Mρ) and

[Mρ,+∞) in t and exchanging the order of integration, while the second by observing

that eρs = (pρ(s)/ηρ+1) on [0,Mρ] and (20) holds. The last expression is strictly posi-

tive, in fact u′ > 0, the first addendum in brackets is positive as pρ ≥ f , and the second

is strictly positive as pρ(s) < f(Mρ)ψ for all s ∈ [0,Mρ) and supp(c̃)∩ [0,Mρ) 6= ∅. By

a similar argument one may prove that, if supp(c̃)∩ (Mρ, s̄] 6= ∅, then (x̃, c̃) cannot be

optimal as well, so that necessarily supp(c̃) = {Mρ}. Since the only measures whose

support is {Mρ} are of type c̃ = γδMρ , for some real γ ≥ 0, then x̃ ∈ Π if and only if

γ = 1/Mρ. Then c̃ = cρ and x̃ = xρ. �

Proof of Remark 3.5. By linearity, x̃ satisfies Definition A.1 and hence is a sta-

tionary program. What is left to show is that (c̃, x̃) is optimal. Let c ∈ Ux̃ and let

x(t) = x(t; x̃; c). Then by optimality of ciρ, equation (45), and concavity of UT

lim inf
T→+∞

(UT (c̃)− UT (c)) ≥
n∑
i=1

λi lim inf
T→+∞

(
U(ciρ)− UT (c)

)
≥ 0.

Proof of Lemma 3.7. It is straightforward from definition that x̂ is Mρ-periodic.

Then it is enough to show that x̂ solves (24) for t ∈ (0,Mρ), more precisely

(47) 〈x̂(t)− T (t)x0, ϕ〉 =

〈∫ t

0

T (t− τ)Bx̂(τ,Mρ) δMρdτ, ϕ

〉
, ∀ϕ ∈ D.

Note that 〈T (t)x0, ϕ〉 =
∫ S
t
x0(s− t)ϕ(s) ds while

〈x̂(t), ϕ〉 =

∫ S

0

x̂(t, s) ϕ(s)ds =

∫ M

t

x0(s− t)ϕ(s) ds+

∫ t

0

x0(s+M − t)ϕ(s) ds

so that the left hand side in (47) may be rewritten as follows

(48) 〈x̂(t)− T (t)x0, ϕ〉 = −
∫ S

M

x0(s− t)ϕ(s) ds+

∫ t

0

x0(M − τ)ϕ(t− τ) dτ

On the other hand x̂(t,M) = x0(M−t), ĉ(t) = x0(M−t)δMρ , and
〈
δMρ , ψ

〉
= ψ(M) =

1 so that Bx̂(τ,Mρ) δMρ = x̂(τ,Mρ) δMρ+
〈
x̂(τ,Mρ) δMρ , ψ

〉
δ0 = x0(M − t)(δ0 − δMρ),
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and the right hand side in (47) is∫ t

0

〈
Bx̂(τ,Mρ) δMρ , T

∗(t− τ)ϕ
〉

dτ =

∫ t

0

x0(M − t)
〈
(δ0 − δMρ), T

∗(t− τ)ϕ
〉

dτ

=

∫ t

0

x0(M − t) ([T ∗(t− τ)ϕ] (0)− [T ∗(t− τ)ϕ] (Mρ)) dτ

=

∫ t

0

x0(M − τ)ϕ(t− τ) dτ −
∫ t

M+t−S
x0(M − τ)ϕ(t− τ +M) dτ

which is equal, by means of a change of variables, to the right hand side in (48). �

Proof of Lemma 3.8. Since, by Lemma 3.7, x̂ is Mρ–periodic with x̂(t,Mρ) =

x0(Mρ − σ(t)), then 〈ĉ(t), f〉 = f(Mρ)x0(Mρ − σ(t)). Hence

UT (ĉ) =
n−1∑
i=0

e−ρiMρ

∫ Mρ

0

e−ρtu (f(Mρ)x0(Mρ − t)) dt+

+ e−ρnMρ

∫ T−nMρ

0

e−ρt u (f(Mρ)x0(Mρ − t)) dt =
1− e−nρMρ

eρMρ − 1
Uρ

1 + e−ρ(n+1)MρUρ
2 (T )

where n ≡ [T/Mρ]. When ρ = 0, similarly, UT (ĉ) is given by

n−1∑
i=0

∫ Mρ

0

u ( f(Mρ)x0(Mρ − t)) dt+

∫ T−nMρ

0

u (f(Mρ)x0(Mρ − t)) dt = nU0
1 + e−ρMρU0

2 (T )

�

A.3.1. Optimality and good controls. In order to prove Proposition 3.11, we need some

preliminary results, contained in the following lemmata.

Lemma A.14 Assume (8) and (9). Let T > 0. Then there exists a constant BT > 0

(independent of c and x0), such that UT0(c) ≤ BT , for all T0 ≤ T , x0 ∈ Π, c ∈ Ux0.

Proof. We prove the assertion for ρ = 0, as for ρ > 0 it holds a fortiori. Let x0 ∈ Π,

c ∈ Ux0 and x(t) = x(t;x0, c). Set ε := min {λ, S − s1}, where s1 is that in the

definition of cut-off function (see Subsection 2.1), and consider φ ∈ C1([0, S];R) such

that φ(s) = 1 for all s ∈ [0, ε/2], φ(s) = 0 for all s ∈ [ε, S], and φ′(s) ≤ 0 for all

s ∈ [0, S]. Now ψ ≥ φ and φ ∈ D, so that Proposition A.3 and (31) imply

(49) 〈T (ε/2)x0, φ〉+
∫ ε/2

0

〈c(τ), B∗T ∗(ε/2− τ)φ〉 dτ = 〈x(ε/2), φ〉 ≤ 〈x(ε/2), ψ〉 = 1.
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One defines φτ (s) ≡ [T ∗(ε/2 − τ)φ](s) = φ(s + ε/2 − τ)χ[0,S−(ε/2−τ)](s) for all τ ∈

[0, ε/2], so that B∗T ∗(ε/2− τ)φ = −φτ + 〈δ0, φτ 〉ψ = −φτ + ψ, which implies

〈c(τ), B∗T ∗(ε/2− τ)φ〉 = 〈c(τ), ψ − φτ 〉 ≥ 〈c(τ), ψ − φ〉, ∀τ ≤ ε/2.

Since 〈T (ε/2)x0, φ〉 ≥ 0, the latter and (49) give
∫ ε/2

0
〈c(τ), ψ − φ〉 dτ ≤ 1. Now the

argument is iterated. A consequence of (31) is

x(t) = T (t− r)x(r) +

∫ t

r

T (t− τ)Bc(τ) dτ, 0 ≤ r ≤ τ

which yields ∫ (n+1)ε/2

nε/2

〈c(τ), ψ − φ〉 dτ ≤ 1

when applied with t = r + ε
2
, r = n ε

2
and n ∈ {0, 1, .., [2T/ε]}, so that

(50)

∫ T

0

〈c(t), ψ − φ〉 dt ≤
[2T/ε]∑
n=0

∫ (n+1) ε
2

n ε
2

〈
c(τ), χ[λ,s̄]

〉
dτ ≤ 2T

ε
+ 1.

Since u is concave, there exist a and b in R such that u(q) ≤ a + bq for all q ∈ R+.

Moreover chosen b1 ≥ maxs∈[λ,s̄] f(s), on has b1(ψ − φ) ≥ f and

u(〈c(t), f〉) ≤ a+ b 〈c(t), f〉 ≤ a+ b1b 〈c(t), ψ − φ〉

and hence by (50) there exists BT > 0 independent of (x0, c) such that

UT (c) =

∫ T

0

u(〈c(t), f〉) dt ≤ aT + b1b

(
1 +

2T

ε

)
=: BT .

Since (9) implies UT (c) increasing in T , one has UT0(c) ≤ UT (c) ≤ BT . �

Remark A.15 Note that for ρ = 0 the value-loss function (21) satisfies

(51) θ(c) ≡ θ0(c, x) = u (β0)− u (〈c, f〉) + α0 〈c− c̄, p0〉 .

The concavity of u implies θ(c) ≥ 0, with θ(c̄) = 0. Although evaluated in (21) along

the trajectories of the system, θ is a well defined real function on D′. �
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Remark A.16 We say that the continuous function ω : R+ × R+ → R+ is a local

modulus if for all b > 0, lima→0+ ω(a; b) = 0. Throughout this section we denote

by ω(·; ·) any local modulus, or by ω(·), if there is no explicit dependence from a

parameter b. Since (43) and x ∈ Π, imply α0 〈x,A∗p0〉 = α0β0, then (51) implies

(52) θ(c(t)) = u (β0)− u (〈c(t), f〉) + α0 〈c(t), p0〉 − α0 〈x(t), A∗p0〉 .

for x0 ∈ Π and c ∈ Ux0 , and x(t) the associated trajectory. It is also straightforward

that θ : D′ → R is a continuous function, indeed

|θ(c)− θ(c1)| ≤ |u (〈c, f〉)− u (〈c1, f〉) |+ α0|c− c1|D′|po|D ≤ ωθ(|c− c1|D′)

for some modulus ωθ, and for c, c1 ∈ D′ (u is a uniformly continuous function). �

Lemma A.17 Given a good control c(·) ∈ Ux0 then it exists and is finite the limit

Lc := lim
T→∞

∫ T

0

θ(c(t)) dt ∈ [0,+∞).

Proof. As θ ≥ 0 implies T 7→ ∆T :=
∫ T

0
θ(c(t)) dt positive and increasing, then Lc

exists in [0,+∞]. Now d
dt

[〈x(t), p0〉] = 〈c(t), p0〉 − 〈x(t), A∗p0〉, Proposition A.4 and

(52) imply ∆T = UT (c̄)−UT (c)−α0 〈x(T )− x0, p0〉. As c is good, there exists η ∈ R

such that UT (c̄)−UT (c) ≤ η for all T . Moreover, x(T )− x0 is in L2(0, S), and, since

p0 lies in L∞(0, S) with |p0|L∞ ≤ β0S, Hölder inequality implies | 〈x(T )− x0, p0〉 | ≤

|p0|L∞(|x(T )|L1 + |x0|L1) = 2|p0|L∞ , so that ∆T ≤ η + 2α0β0S. �

Remark A.18 As a consequence Lemma A.17, for any fixed A ∈ (0,+∞), we have∫ t

t−A
θ(c(τ)) dτ ≤ ω(1/t)

for a suitable modulus ω, that is, the integral is infinitesimal as t tends to +∞. �

Lemma A.19 For any given x0 and x1 in Π, there exists a control č(·) =

č(·;x0, x1, s̄) in Ux0, driving the system from x0 to x1 in a time length at most s̄.

Proof. We define d+(s) := (x0(s)− x1(s)) ∨ 0, and d−(s) := (x1(s)− x0(s)) ∨ 0, for

s ∈ [0, S], so that d+(s) (respectively, d−(s)) is strictly positive at points where x0 is
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strictly more (respectively, less) than x1. Since
∫ S

0
x0(s) ds =

∫ S
0
x1(s) ds = 1, then

J :=

∫ S

0

d+(s) ds =

∫ S

0

d−(s) ds =

∫ s̄

0

d+(s) ds =

∫ s̄

0

d−(s) ds.

If J = 0, then x0 = x1 and there is nothing to prove. Now assume J > 0. We define

(53) e−(t) :=

∫ s̄

s̄−t
d−(τ) dτ, t ∈ [0, s̄].

Note that e− is increasing, with e−(0) = 0, e−(s̄) = J . Set also

(54) D+(t, s) := d+(s− t)χ[t,s̄](s) + d+(s− t+ s̄)[0,t)(s), t ∈ [0, s̄], s ∈ [0, S].

We show that the claim of the lemma is satisfied by the control č in a time length s̄

č(t, ·) =

(
x0(s̄− t)− d+(s̄− t)e−(t)

J

)
δs̄ + d−(s̄− t)D

+(t, ·)
J

, t ∈ [0, s̄].

Note that x0, x1 ∈ L2(0, S) imply d+, d− ∈ L2(0, S), D+(t) ∈ L2(0, S) for any t ∈

[0, s̄], and t 7→ D(T ) belongs to C(0, s̄;L2(0, S)). Moreover e− ∈ C(0, s̄), implies

č ∈ L2(0, s̄, D′). Set x̌(t) = x̌(t;x0, č) we need to show x̌(s̄, s) = x1(s) for all s:

x̌(t) = I1(t) + I2(t) + I3(t) ≡
[
T (t)x0 +

∫ t

0

T (t− τ)Bx0(t− τ)δs̄ dτ

]
− 1

J

[∫ t

0

d+(s̄− τ)e−(τ)T (t− τ)Bδs̄ dτ

]
+

1

J

[∫ t

0

d−(s̄− τ)T (t− τ)BD+(τ) dτ

]
.

From (23), one has I1(s̄) = x0. Regarding I3(t), note that

T (t− τ)BD+(τ) = T (t− τ)
〈
D+(τ), ψ

〉
δ0 − T (t− τ)D+(τ) = Jδ0 − T (t− τ)D+(τ)

so that I3(t) = I31(t) + I32(t) with

I31(t, s) =

∫ t

0

d−(s̄− τ)T (t− τ)δ0 dτ = d−(s̄− t+ s)χ[0,t](s)

where the last equality is derived by means of (38), while

I32(t) = −
∫ t

0

d−(s̄− τ)T (t− τ)
D+(τ)

J
dτ.
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Now note that T (t−τ)D+(τ)(s) = D+(τ)(s−t+τ) if s−t+τ ≥ 0 and 0 if s−t+τ < 0,

so that the last expression, evaluated at s, gives

1

J

∫ t

(t−s)∨0

d−(s̄−τ)D+(τ)(s−t+τ) dτ = − 1

J

∫ t∧(s̄+t−s)

(t−s)∨0

d−(s̄−τ)D+(τ)(s−t+τ) dτ.

By means of (53) (54) respectively, the latter is explicited and we find the following

expression of I32(t)(s)
− 1
J

∫ t
t−s d

−(s̄− τ)d+(s− t+ s̄) dτ = − 1
J
d+(s− t+ s̄) (e−(t)− e−(t− s)) , s ∈ [0, t)

− 1
J

∫ t
0
d−(s̄− τ)d+(s− t) dτ = − 1

J
d+(s− t)e−(t), s ∈ (t, s̄]

− 1
J

∫ (s̄+t−s)
0

d−(s̄− τ)d+(s− t) dτ = − 1
J
d+(s− t)e−(s̄+ t− s), s > s̄

Regarding I2(t), since −Bδs̄ = δs̄ − δ0, we may apply again (38) and derive

I2(t, s) = J−1
[
d+(s− t)e−(t+ s̄− s)χ[s̄,s̄+t)(s)− d+(s̄+ s− t)e−(t− s)χ[0,t)(s)

]
.

As a whole

x̌(t, s) =


x0(s) + d−(s̄− t+ s)− d+(s̄− t+ s)e−(t)J−1

x0(s)− d+(s− t)e−(t)J−1

0

if s ∈ [0, t)

if s ∈ [t, s̄]

if s > s̄.

so that at all t ≥ 0 one has supp(x(t)) ∈ [0, s̄]. Moreover e−(s̄) = J at t = s̄ implies

x̌(s̄, s) = [x0(s) + d−(s)− d+(s)]χ[0,s̄](s) = x1(s). �

Proof of Proposition 3.11 Assume by contradiction that the maximal control c∗

is not good, and denote by x∗ the associated trajectory. Then, for any θ ∈ R, there

exists Tθ ≥ 0 with UTθ(c
∗) − UTθ(c̄) < −θ. Next we show that Tθ may be chosen

arbitrarily large, for instance Tθ > 2s̄, if θ is chosen sufficiently large. Indeed by

means of Lemma A.14 one has supt∈[0,2s̄] |Ut(c∗)−Ut(c̄)| ≤ B2s̄ so that for θ > B2s̄, we

have UT (c∗)− UT (c̄) < −θ only for values of T which are greater than 2s̄. We select

θ > 2Bs̄ > B2s̄ and Tθ > 2s̄ and define, with the notation of the previous lemma,

c1(t) = c(t;x0, x̄) and c2(t) = c(t; x̄, x∗(Tθ)), stirring respectively the system from x0

to x̄ and from x̄ to x∗(T ) in time s̄, moreover

c̃(t) = c1(t)χ[0,s̄)(s) + c̄χ[s̄,Tθ−s̄)(s) + c2(t)χ[Tθ−s̄,Tθ)(s) + c∗(t)χ[Tθ,+∞)(s)
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We show that c̃ catches up to c∗, so that c∗ cannot be maximal, yielding a contradic-

tion. To do so it is enough to observe that, for any T ≥ Tθ

UTθ(c̃)−UTθ(c∗) = Us̄(c̃)−Us̄(c̄) +UTθ(c̄)−UTθ(c∗) +

∫ T

T−s̄
[u(〈c̃(t), f〉)−u(〈c̄, f〉)] dt

≥ Us̄(c̃)− Us̄(c̄) + θ + Us̄(c̃(·+ T − s̄))− Us̄(〈c̄, f〉) ≥ θ − 2Bs̄ > 0. �

A.4. Proofs for Section 4.

A.4.1. Linear utility, positive discount. Proof of Theorem 4.1. Assume u(r) = r

(the proof may be easily adapted to the case u(r) = ar+ b). Note that ĉ(t) coincides

with cρ when x0 = xρ, so that (25) applies also with (xρ, cρ) in place of (x∗, ĉ).

If n = [T/Mρ], σ(T ) = {T/Mρ}Mρ, then UT (ĉ)− UT (cρ) =

= ηρ(1−e−ρnMρ)

∫ Mρ

0

eρτ (x0(τ)− 1/Mρ) dτ+e−ρ(n+1)Mρ

∫ Mρ

Mρ−σ(T )

eρτ (x0(τ)− 1/Mρ) dτ.

Hence when T → +∞, and once set φ(t) = eρt, we derive

(55) U(ĉ)− U(cρ) = lim
T→+∞

(
UT (ĉ)− UT (cρ)

)
= ηρ〈x0 − xρ, φ〉 = 〈x0 − xρ, pρ〉.

Now let c ∈ Ux0 , with x(t) = x(t; c, x0). Let T > 0, and note that Corollary A.12

implies (αρ = 1 for u(r) = r ) UT (cρ)−UT (c) ≥ −e−ρT〈xρ − x(T ), pρ〉+ 〈xρ − x0, pρ〉.

Coupling the previous relation with (55) we derive UT (ĉ)−UT (c) ≥ ω(T ) for a suitable

function ω, ω(T )→ 0 as T → +∞, which implies the thesis. �

A.4.2. Linear Utility, Null discount. Average of a trajectory. Assume x0 ∈ Π and

c ∈ Ux0 . The average xA(t) of the trajectory x(s;x0, c) over a time interval [0, t] is

(56) xA(t) :=
1

t

∫ t

0

x(s;x0, c) ds.

Lemma A.20 Let ρ = 0, c ∈ Ux0 ∩ L∞(0,+∞;D′) a good control, x0 ∈ Π. Then

(57)
〈
xA(t), h

〉
→ 〈x̄, h〉 , as t→ +∞ for all h ∈ D.

Proof. Apply Theorem 9.1.3 in Zaslavski (2006) to the modified objective functional

ŨT (c) =
∫ T

0
u (〈c(t), f〉)− u(〈cρ, f〉) dt. �
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Proof of Theorem 4.3. We divide the long proof into several steps.

Claim 1: ĉ is a maximal control. Let x̂ = x(·;x0, ĉ), and let T > 0. The control ĉ is

good, indeed by Lemma 3.8 with ρ = 0 and u(r) = r applied both to ĉ and c̄ one has

UT (ĉ)− UT (c) = f(M)

∫ M

M−σ(T )

(x0(τ)− 1/M) dτ ≥ −f(M).

By contradiction, if ĉ is not maximal there exists c̃ in Ux0 and T̂ , a > 0 such that

(58) UT (ĉ)− UT (c̃) < −a, ∀T ≥ T̂ .

Now we assume R ≥ 6T̂ , integrate on [0, R] and divide by R, obtaining

1

R

∫ T̂

0

(UT (ĉ)− UT (c̃)) dT +
1

R

∫ R

T̂

(UT (ĉ)− UT (c̃)) dT

and the first addendum converges to 0 for R → ∞ while, for R large enough, the

second is smaller than −5
6
a as (58) holds. Then for R big enough one has

(59)
1

R

∫ R

0

(UT (ĉ)− UT (c̃)) dT < −2

3
a.

On the other hand, if x̃(t) = x(t;x0, c̃), and x̃A(t) its average, Corollary A.12 implies

(60) UT (ĉ)− UT (c̃) ≥
∫ T

0

d

dt
〈x̃(t)− x̂(t), p0〉 dt = 〈x̃(T )− x̂(T ), p0〉

Integrating on [0, R] and dividing by R one gets, for a sufficiently large R,

1

R

∫ R

0

(UT (ĉ)− UT (c̃)) dT ≥
〈
x̃A(R)− x̂A(R), p0

〉
≥ −1

3
a

as
〈
x̂A(R)− x̃A(R), p0

〉
→ 0, as R→ +∞, in view of (57): a contradiction.

Claim 2: the control ĉ is not optimal. Assume c1 defined in (28), and x1(t, s) ≡

x1(t, s; c1, x0). Since f is continuous and f(M) > 0, we may choose N big enough so

that f(sN−1) > 0. Assume also x0 ∈ Π satisfies

(61)

∫ sN−1

sN−2

x0(r)dr > 0.
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To prove ĉ not optimal, it is sufficient to show that there exists a > 0 such that

UTn(ĉ)− UTn(c1) = −a, ∀Tn = M/N + nM,with n ∈ N. Note that for t in [0,M/N ]

x1(t, s) =
N∑
j=0

x0(sj + s− t)χ[0,t](s) + x0(s− t)
N∑
j=1

χ[sj ,sj+t](s)

while for t > M/N the solution becomes M-periodic and repeatedly equal to

x1(t, s) =


χ[t−MN ,t](s)

∑N
j=1 x0(sj−1 + s+ M

N
− t) t ∈

[
M
N
,M
]

χ[0,t−M ](s)
∑N

j=1 x0(sj−1 + s+ N+1
N
M − t)+

+χ[t−MN ,M](s)
∑N

j=1 x0(sj−1 + s+ M
N
− t) t ∈

[
M,M + M

N

]
(the general formula is obtained by replacing t with ξ(t) = t− [M/N ]M−M/N in the

right hand side). Since t ∈ [0,M/N ] implies x1(t, sj) = x0(sj−t), and
〈
δsj , f

〉
= f(sj),

UM
N

(c1) =
N∑
j=1

f(sj)

∫ M
N

0

x0(sj − t)dt =
N∑
j=1

f(sj)

∫ sj

sj−1

x0(r)dr.

Moreover, the facts that x1 M -periodic for t ≥M/N , x1(t,M) = 0 for M/N < t < M ,

and x1(t,M) =
∑N

j=1 x0(sj−1 +M + M
N
− t) for M < t < M +M/N imply

UTn(c1)− UM
N

(c1) = n f(M)

∫ sj

sj−1

x0(r)dr = nf(M).

Hence if ĉ is the Faustmann policy

(62) UTn(ĉ)− UTn(c1) = −
N−1∑
j=1

f(sj)

∫ sj

sj−1

x0(r)dr =: −a

Note that (61) implies a > 0. As a consequence, ĉ is not optimal. The proof for the

case when (61) is not satisfied is easily obtained by applying a control c2 in place of

c1 shaped as follows: if m := max{j : 1 ≤ j ≤ N − 1,
∫ sj
sj−1

x0(r)dr > 0} (a maximum

exists as the forest has positive density and extension 1), and τ := M
N

(N−1−m), then

c2(t) := c̄ χ[0,τ ](t)+ c1(t− τ)χ[τ,+∞)(t), that is, c2 coincides with c̄ until the associated

trajectory x2 yields a positive integral on [sN−2, sN−1], and with c1 afterwards.
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Claim 3: an optimal control does not exist. We assume by contradiction that c̃(t) in

Ux0 is optimal. Then in particular, given any ε > 0, there exists Tε such that

(63) UT (c̃)− UT (ĉ) ≥ −ε and UT (c̃)− UT (c1) ≥ −ε ∀T ≥ Tε.

On the other hand (62) implies , for a sufficiently small ν ∈ [0,M ] not depending on

n, that UT (c1)−UT (ĉ) ≥ a
2

for all T ∈ [Tn, Tn + ν] from which, if nε ∈ N is such that

Tn > Tε for all n ≥ nε, we derive also

(64) UT (c̃)− UT (ĉ) ≥ a

2
− ε, ∀T ∈ [Tn, Tn + ν], ∀n ≥ nε.

We show first that

(65) lim inf
n→+∞

1

Tn + ν

∫ Tn+ν

0

(UT (c̃)− UT (ĉ)) dT ≥ νa

4
.

Set
∫ Tn+ν

0
(UT (c̃)− UT (ĉ)) dT ≡ A+Bn + Cn, where A ≡

∫ Tnε
0

(UT (c̃)− UT (ĉ)) dT ,

Bn ≡
n−1∑
i=nε

∫ Ti+1

Ti+ν

(UT (c̃)− UT (ĉ)) dT ≥ −ε ν (n− nε)

in view of (63), while (64) implies

Cn ≡
n∑

i=nε

∫ Ti+ν

Ti

(UT (c̃)− UT (ĉ)) dT ≥
(a

2
− ε
)
ν (n− nε + 1)

so that (recall that Tn = nM +M/N), if ω(1/n) is infinitesimal as n→∞, we have

1

Tn + ν

∫ Tn+ν

0

(UT (c̃)− UT (ĉ)) dT ≥ ν

M

(a
2
− 2ε

)
+ ω(1/n).

Choosing ε ≤ a(2−M/2), and passing to limits we obtain (65). On the other hand,

Lemma A.11 with γ = x̂(t,M), Proposition A.4, and Remark A.10 imply

〈c̃(t)− ĉ(t), f〉 ≤ 〈c̃(t)− ĉ(t), p0〉 − 〈x̃(t)− x0, A
∗p0〉 = − d

dt
〈x̃(t)− x̂(t), p0〉

Then, for all T, integrating on [0, T ] one derives

UT (c̃)− UT (ĉ) ≤ −
∫ T

0

d

dt
〈x̂(t)− x̃(t), p0〉 dt = 〈x̃(T )− x̂(T ), p0〉

If xA(t) is defined by (56), we integrate in [0, S] both sides and divide by S obtaining

(66)
1

S

∫ S

0

(UT (c̃)− UT (ĉ)) dT ≤
〈
x̃A(S)− x̂A(S), p0

〉 S→∞−−−→ 0
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as ĉ and c̃ are good and Lemma A.20 holds. That and (66), contradict (65). �

A.4.3. Strictly concave utility, null discount.

Proof of Theorem 4.6. Set H := L2(0, S), so that D ↪→ H (with continuous

inclusion). Since c(t) ∈ L∞(0,+∞;R) we have that K := sup |x(t)|R < +∞. Let

ε > 0 be fixed. We have to prove that there exists t(ε) > 0, such that

(67) i(t) := |x(t)− x̄|H ≤ ε, for all t ≥ t(ε).

Any c ∈ R may be decomposed as c = cn + cf , with cn, cf defined as follows. Since

M maximum of f(s)/s implies p0(s)−f(s) ≥ 0 for all s ∈ [0, S] with equality holding

at s = 0 and s = M , and f continuous, then for a sufficiently small ξ > 0, there

exists a smallest ζ(ξ) > 0, with λ < M − ζ(ξ), such that |s −M | ≥ ζ(ξ) implies

p(s) − f(s) ≥ ξ. Note that ζ(ξ)
ξ→0−−→ 0. Then, since c is a positive measure with

supp(c) ⊆ [λ, S], one may set cn = cνξ and cf = c(1− νξ), where νξ is a [0, 1]-valued

smooth cut-off function with νξ(s) ≡ 1 for |s −M | ≤ ζ(ξ)/2 and νξ(s) ≡ 0 when

|s −M | ≥ ζ(ξ). Now, we may assume t > S. Hence, in (31) we have T (t)x0(s) = 0

for all s ∈ [0, S], and T (t− τ)Bc(τ) = 0 for all τ ≤ t− S, so that in (67)

(68) x(t)− x̄ =

∫ t

t−S
T (t− τ)B (c(τ)− c̄) dτ = I1(t, ξ) + I2(t, ξ) + I3(t, ξ),

where I1(t, ξ) :=
∫ t
t−S T (t− τ)Bcf (τ) dτ , I2(t, ξ) :=

∫ t
t−S T (t− τ)B(cn(τ) −

|cn(τ)|RδM) dτ , and I3(t, ξ) :=
∫ t
t−S T (t− τ)B(|cn(τ)|RδM − c̄) dτ . We estimate H-

norms of I1, I2 and I3.

Step 1: A preliminary estimate. We first estimate |cf |D′ . Given x ∈ Π, and c ∈ R,

we use Remark A.16, and u(〈c̄, f〉)− u(〈c, f〉) ≥ −α0 〈c− c̄, f〉 to derive

θ(c) = θ(c)− θ(c̄) ≥ α0 〈c− c̄, p0 − f〉 = α0 〈c, p0 − f〉 ≥ α0ξ|cf |R,

as c is positive and 〈c̄, p0 − f〉 = 0. Observe that D ↪→ C0([0, S]) with continuous

inclusion so that R ↪→ D′, in particular |cf |D′ ≤ C|cf |R for a constant C > 0. Then

(69) |cf |D′ ≤ C|cf |R ≤
C

α0ξ
θ(c), ∀x ∈ Π, ∀c ∈ R.
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Step 2: Estimate on I1(t, ξ). Note that ‖T (t)‖L(D′) ≤ 1, so that (69) implies

|I1(t, ξ)|H ≤ ‖B‖L(D′)

∫ t

t−S
|cf (τ)|D′ dτ ≤

C‖B‖L(D′)

α0ξ

∫ t

t−S
θ(c(τ)) dτ ≤ ω1(1/t; ξ)

for a modulus ω1 (see Remark A.18).

Step 3: Estimate on I2. Given φ ∈ D one has

max
|s−M |≤ζ(ξ)

|φ(s)− φ(M)| ≤
∫ M+ζ(ξ)

M−ζ(ξ)
|φ′(s)| ds ≤

√
2ζ(ξ) |φ′|H ≤

√
2ζ(ξ) |φ|D.

Then for c ∈ R one has | 〈c− |c|RδM , φ〉 | ≤
√

2ζ(ξ) |c|R|φ|D which implies

(70) |cn(τ)− |cn(τ)|RδM |D′ ≤
√

2ζ(ξ) |cn(τ)|R ≤
√

2ζ(ξ) K, τ ∈ [t− S, t]

and then |cn(·)− |cn(·)|δM |L2(t−S,t;D′) ≤
√
S
√

2ζ(ξ) K. By means of Proposition 3.1

p. 212 in Bensoussan et al. (2007), there exists C > 0 independent from c such that

|I2(t, ξ)|H ≤ C|cn(·)− |cn(·)|RδM |L2(tS,t;D′) ≤ C
√

2ζ(ξ)
√
SK ≤ ω2(ξ)

for a modulus ω2, with ω2(ξ)
ξ→0−−→ 0.

Step 4: Estimate on I3(t, ξ). Since u is strictly concave and differentiable, u′ is

strictly decreasing, α0 = u′(〈c̄, p0〉), β0 = 〈c̄, p0〉, one defines βη = (1+η)〈c̄, p0〉 = (1+

η)β0. Then there exist γ > 0 and 0 < η < 1 such that γ = u(β0)−u(βη) +α0ηβ0 > 0,

and ∆ = −[u′(βη)− α0] < 0. Note that γ as a function of η is strictly increasing and

attains the value zero at η = 0, so that its inverse η(γ) is well defined and enjoys the

same property, in particular η(γ)
γ→0−−→ 0. As a consequence, ∆ may itself be regarded

as a function of γ, with ∆(γ)
γ→0−−→ 0. We set I3 ≡ I31 + I32 + I33 + I34 with

I31(t, ξ) =

∫ t

t−S

(
|cn(τ)|R −

1

M
− η − θ(|cn(τ)|RδM)

∆

)
T (t− τ)BδM dτ

I32(t, ξ) =

∫ t

t−S

θ(|cn(τ)|RδM)− θ(c(τ))

∆
T (t− τ)BδM dτ

I33(t, ξ) =

∫ t

t−S

θ(c(τ))

∆
T (t− τ)BδM dτ, I34(t, ξ) = η

∫ t

t−S
T (t− τ)BδM dτ.

To estimate I34(t, ξ) it suffices to observe that for every fixed γ,

(71) |I34(t, ξ)|H ≤ ‖B‖|δM |D′Sη =: ω34(γ; ξ)
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where ω34 is a local modulus. Next, Remark A.18 implies

(72) |I33(t, ξ)|H ≤ ‖B‖|δM |D′
∫ t

t−S

∣∣∣∣θ(c(τ))

∆

∣∣∣∣ dτ ≤ ω33(1/t; γ, ξ)

for some local modulus ω33. Then, Remark A.16 implies

|θ(c(τ))− θ(cn(τ))| ≤ ωθ(|cf |D′) ≤ ωθ ((C/α0ξ)θ(c(τ))) .

Thus, by Remark Remark A.18∫ t

t−S

|θ(c(τ))− θ(cn(τ))|
∆

dτ ≤ ω̂(1/t; γ, ξ)

for some local modulus ω̂. Moreover, in view of (70), one has

|θ(|cn(τ)|RδM)− θ(cn(τ))| ≤ ωθ(||cn(τ)|RδM − cn(τ)|D′) ≤ ωθ(
√

2ζ(ξ)K)

so that ∫ t

t−S

|θ(|cn(τ)|RδM)− θ(cn(τ))|
∆

dτ ≤ ω̌(γ; ξ),

for some modulus ω̌. Hence, once set ω32 = ‖B‖|δM |D′ (ω̂ + ω̌), one derives

(73) I32(t, ξ) ≤ ω32(1/t; γ, ξ).

Next we estimate I31. By definition of θ(c) and concavity of u

−θ(c) + α0 〈c− c̄, p0〉+ γ − α0η 〈c̄, p0〉 = u (β0)− u (βη) ≤ u′ (βη) 〈c− (1 + η)c̄, f〉 .

Recalling that 〈c̄, p0〉 = 〈c̄, f〉 = β0, that implies

θ(c) ≥ γ + α0 〈c, p0〉 − α0β0 − α0ηβ0 − u′(βη) 〈f, c〉+ u′(βη)(1 + η)β0

and then θ(c) ≥ γ − ηα0∆ + 〈c− c̄, α0p− u′(βη)f〉 . Then for c ≡ |cn(t)|RδM

ϕ(τ) := |cn(t)|R −
1

M
− η − θ(|cn(t)|RδM)

∆
≤ 0.

Now note that, as a consequence of (68), step 2 and step 3, (71) (72) (73), Hölder

inequality and the fact that 〈x(t)− x̄, ψ〉 = 0, one has |〈x(t)− x̄− I31(t, ξ), ψ〉| =

=

∣∣∣∣∫ t

t−S
ϕ(τ) 〈T (t− τ)BδM , ψ〉 ds

∣∣∣∣+|〈I1 + I2 + I32 + I33 + I34, ψ〉| ≤ ω31(1/t; γ, ξ),
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with ω31 =
√
S(ω1 + ω2 + ω32 + ω33 + ω34). Now since

〈T (t− τ)BδM , ψ〉 = 〈δ0 − δM , T ∗(t− τ)ψ〉 = ψ(t− τ)− ψ(t− τ +M)

the previous estimate may be rewritten as∣∣∣∣∫ t

t−S
ϕ(τ)(ψ(t− τ)− ψ(t− τ +M)) dτ

∣∣∣∣ ≤ ω4(1/t; γ, ξ)

for a modulus ω4. By definition of ψ we have 0 ≤ ψ(t− τ)− ψ(t− τ +M) ≤ 1, and

ϕ(τ) ≤ 0, so that the integrand of the last equation is negative. Since by definition

of ψ one may show there exists [t1, t2] ⊆ [0, S] such that ψ(t− τ)−ψ(t− τ +M) ≥ c,

for a suitable c > 0, then

(74) c

∫ t2

t1

|ϕ(t− σ)| dσ ≤
∫ t2

t1

|ϕ(t− σ)| |(ψ(σ)− ψ(σ +M))| dσ ≤ ω4(1/t; γ, ξ).

Since (74) is true for all t, we iterate the argument [S/(t2 − t1)] + 1 times to obtain∫ S

0

|ϕ(t− σ)| dσ ≤ 1

c

S

(t2 − t1)
ω4(1/t; γ, ξ) = ω5(1/t; γ, ξ).

Thus |I31(t, ξ)|H ≤ ‖B‖|δM |D′ω4(1/t; γ, ξ). To draw the conclusion, one uses (68),

steps 2, 3 and 4, and chooses in order, ξ, γ sufficiently small and t(ε) sufficiently

large, so to derive that t ≥ t(ε) implies i(t) ≤ ε. �

Proof of Theorem 4.7. For any good control c, and for x(t) = x(t; x̄, c)

lim
T→+∞

∫ T

0

d

dt
[〈x̄− x(t), α0p0〉] dt = lim

T→+∞
〈x̄− x(T ), α0p0〉 = 0.

as a consequence of Theorem 4.6, so that Corollary A.9 implies

liminf
T→∞

(
UT (c̄)− UT (c)

)
= liminf

T→∞

∫ T

0

(
UT (c̄)− UT (c) +

d

dt
[〈x̄− xx̄,c(t), α0p0〉]

)
dt

= liminf
T→∞

∫ T

0

[u (〈f, c̄〉)− u (〈f, c(t)〉)− α0 〈x(t), A∗p0〉+ 〈c(t), p0〉]udt ≥ 0

Then the proof is complete in view of Proposition 3.11. �

Proof of Theorem 4.9 We build the candidate optimal control c̃ as limit of a

suitable sequence. Set

S ≡ sup
c∈UK,λx0

(lim sup
T→+∞

[UT (c)− UT (c̄)]), (S possibly equa lto +∞).
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Let {cn} be a maximizing sequence in UK,λx0
, and let θ be defined by (51). Then we

can express UT (cn)− UT (c̄) as

(75) −
∫ T

0

(
θ(cn(t)) +

d

dt
α0〈xn(t), p0〉

)
dt = −

∫ T

0

θ(cn(t)) dt− α0〈xn(T )− x0, p0〉

for all T > 0. Since |p0|∞ < +∞ and |xn(t)|L1 = |x0|L1 = 1, then

|α0 〈xn(t)− x0, p0〉 | ≤ 2α0|p0|∞, so that, being θ(cn(t)) positive for all t, it may hap-

pen either (a) limT→+∞ (UT (cn)− UT (c̄)) = −∞, ruled out as {cn} is a maximizing

sequence, or (b) lim infT→+∞ (UT (cn)− UT (c̄)) > −∞, the latter implying cn is a good

control. From (75) and the positivity of θ follows also UT (cn) − UT (c̄) ≤ 2α0|p0|∞,

implying S < +∞. Hence with no loss of generality, we may assume that cn are good

controls. For any good control c ∈ UK,λx0
, Lemma A.17 and Theorem 4.6 imply the

following exists and is finite

lim
T→+∞

(UT (c)− UT (c̄)) = lim
T→+∞

∫ T

0

−
(
θ(c(t)) +

d

dt
α0 〈x(t), p0〉

)
dt=−Lc−α0〈x̄−x0, p0〉,

so that S = lim
n→∞

lim
T→+∞

[UT (cn)− UT (c̄)] . Now, set h > 0 and L2
h([0,+∞);D′)

the Hilbert space of all functions φ : [0,+∞) → D′ such that the norm∫ +∞
0

e−ht|φ(t)|2D′ dt < +∞. It may be shown UK,λx0
is a sequentially weakly com-

pact subset of L2
h([0,+∞);D′), then {cn(·)} has a subsequence weakly converging to

some c̃(·) ∈ L2
h([0,+∞);D′) and c̃(·) ∈ UK,λx0

. Since

(76) lim inf
T→+∞

(UT (c̃)− UT (c)) ≥ lim inf
T→+∞

[UT (c̃)− UT (c̄)]− S.

c̃ is optimal if the right hand side in (76) is positive (or null). We first prove that

lim sup
T→+∞

[UT (c̃)− UT (c̄)] = S. Indeed by definition of S, the inequality ≥ holds, while

the reverse is obtained by observing that c 7→ lim sup
T→+∞

[UT (c) − UT (c̄)] is a concave

functional on the convex subset UK,λx0
of L2

h([0,+∞);D′), so that passing to limits one

obtains limn limT→+∞[UT (cn) − UT (c̄)] ≤ S. Now note that {cn} maximizing for the

limsup, implies {cn} is maximizing also for the liminf, more precisely

sup
c∈UK,λx0

[
lim inf

T→+∞
(UT (c)− UT (c̄))

]
= sup

c∈UK,λx0

[
limsup

T→+∞
(UT (c)− UT (c̄))

]
= S.
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Arguing as before about concavity of c 7→ liminfT→+∞[UT (c) − UT (c̄)], one derives

lim inf
T→+∞

[UT (c̃)− UT (c̄)] = S.

Next we prove (ii). Let c ∈ UK,λx0
be good, x(t) = x(t, x0, c), and R > 0. Then

1

R

∫ R

0

(UT (c)− UT (c̄)) dT =
1

R

∫ R

0

∫ T

0

θ(c(t)) +
d

dt
α0 〈x(t), p0〉 dt dT

=
1

R

∫ R

0

∫ T

0

θ(c(t)) dt dT +
α0

R

∫ R

0

[〈x(T )− x̄, p0〉 − 〈x0 − x̄, p0〉] dT.

On one hand, Lemma A.17 implies the first addendum converges to Lc when R→∞,

on the other hand, as a consequence of Theorem 9.1.3 p. 260 in Zaslavski (2006)

1

R

∫ R

0

〈x(T )− x̄, p0〉 dT =

〈
1

R

∫ R

0

x(T ) dT − x̄, p0

〉
→ 0, R→∞.

Hence limR→+∞
1
R

∫ R
0

(UT (c)− UT (c̄)) dT = Lc + α0 〈x̄− x0, p0〉 , so that the limit

exists and is finite. Now, given c in UK,λx0
, there exists c̃ maximizing, in UK,λx0

,

limsupR→+∞
1
R

∫ R
0

(UT (c)− UT (c̄)) dT so that, arguing as in (i)

limsup
R→+∞

1

R

∫ R

0

(UT (c̃)− UT (c)) dT ≥ limsup
R→+∞

1

R

∫ R

0

(UT (c̃)− UT (c̄)) dT+

− limsup
R→+∞

1

R

∫ R

0

(UT (c)− UT (c̄)) dT ≥ 0

which implies limsupT→∞
(
UT (c̃)− UT (c)

)
≥ 0, for all c in UK,λx0

, and the thesis. �

Remark A.21 The control computed above as maximal is the one minimizing

limT→∞
∫ T

0
θ(c(t)) dt. �
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