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a b s t r a c t 

Stochastic optimization models have been extensively applied to financial portfolios and have proven 

their effectiveness in asset and asset-liability management. Occasionally, however, they have been applied 

to dynamic portfolio problems including not only assets traded in secondary markets but also derivative 

contracts such as options or futures with their dedicated payoff functions. Such extension allows the 

construction of asymmetric payoffs for hedging or speculative purposes but also leads to several math- 

ematical issues. Derivatives-based nonlinear portfolios in a discrete multistage stochastic programming 

(MSP) framework can be potentially very beneficial to shape dynamically a portfolio return distribution 

and attain superior performance. In this article we present a portfolio model with equity options, which 

extends significantly previous effort s in this area, and analyse the potential of such extension from a 

modeling and methodological viewpoints. We consider an asset universe and model portfolio set-up in- 

cluding equity, bonds, money market, a volatility-based exchange-traded-fund (ETF) and over-the-counter 

(OTC) option contracts on the equity. Relying on this market structure we formulate and analyse, to the 

best of our knowledge, for the first time, a comprehensive set of optimal option strategies in a discrete 

framework, including canonical protective puts, covered calls and straddles, as well as more advanced 

combined strategies based on equity options and the volatility index. The problem formulation relies on 

a data-driven scenario generation method for asset returns and option prices consistent with arbitrage- 

free conditions and incomplete market assumptions. The joint inclusion of option contracts and the VIX 

as asset class in a dynamic portfolio problem extends previous effort s in the domain of volatility-driven 

optimal policies. By introducing an optimal trade-off problem based on expected wealth and Conditional 

Value-at-Risk (CVaR), we formulate the problem as a stochastic linear program and present an extended 

set of numerical results across different market phases, to discuss the interplay among asset classes and 

options, relevant to financial engineers and fund managers. We find that options’ portfolios and trading 

in options strengthen an effective tail risk control, and help shaping portfolios returns’ distributions, con- 

sistently with an investor’s risk attitude. Furthermore the introduction of a volatility index in the asset 

universe, jointly with equity options, leads to superior risk-adjusted returns, both in- and out-of-sample, 

as shown in the final case-study. 

© 2022 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Stochastic optimization models have been extensively applied 

o asset and asset-liability management in the past with con- 
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ributions dating back to Nielsen and Zenios (1996) ; Carino and 

iemba (1998) ; Høyland (1998) ; Consigli and Dempster (1998) ; 

ouwenberg (2001) . The inclusion in dynamic portfolios of deriva- 

ive contracts, such as options or futures, with their specific pay- 

ff functions was initially attempted in continous time markets 

y Merton et al. (1978) ; Harrison and Pliska (1981) ; Brennan and 

ao (1996) relying on stochastic control methods to formulate and 

olve optimal pricing and hedging problems. Key pricing results 

ere then extended to a discrete time set-up mainly through nu- 
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erical approaches and stochastic optimization methods ( Klaassen, 

998; Consiglio and De Giovanni, 2008; Haarbrücker and Kuhn, 

0 09; Pflug and Broussev, 20 09 ). In a multistage stochastic pro- 

ramming (MSP) framework, optimal portfolio strategies are de- 

ermined as, and contingent on, scenario tree processes adopted 

s models of an evolving market uncertainty. The MSP formula- 

ion is very popular and practical in several application domains 

 Bertocchi et al., 2011; Consigli et al., 2016 ). Contributions involv- 

ng financial derivatives, however have not been so frequent and 

ainly fall in these areas: 

• Valuation of contingent claims in a discrete setting: 

King (2002) ; Blomvall and Lindberg (2003) initially in complete 

then in incomplete markets ( Pennanen and King, 2004; Pınar 

et al., 2010; Consiglio et al., 2016 ). 

• Hedging and risk control problem solutions for specific problem 

classes: since ( Wu and Sen, 20 0 0; Gondzio et al., 20 03 ), then

more recently thanks to Pınar (2013) ; Barkhagen and Blom- 

vall (2016) . 

• Under more general model instances and decision criteria 

optimal dynamic portfolio management models with deriva- 

tives have been proposed by Topaloglou et al. (2011) ; 

Geyer et al. (2010) ; Yin and Han (2013) . 

Recently ( Topaloglou et al., 2020 ) have presented an integrated 

odel for market and currency hedging in international portfolios: 

he contribution is relevant for all the above-mentioned three per- 

pectives and includes an extended in- and out-of-sample model 

alidation. This research relies and extends results from the first 

roblem class but falls mainly in the last one and through a rather 

eneral and comprehensive modeling framework, aims at extend- 

ng significantly the scope of previously proposed SP-based fi- 

ancial portfolio models with equity options. None of past con- 

ributions, even in dynamic frameworks, allowed indeed for op- 

ion contracts with different maturities and moneyness condi- 

ions, nor any effort to derive structured optimal option portfo- 

ios’ strategies has been previously attempted within a genuine 

ulti-stage framework. Key to this application domain is the for- 

ulation of a dynamic portfolio problem in markets which do 

ot allow any arbitrage opportunity nor return generation with- 

ut any risk exposure. Along this research line ( Klaassen, 1998; 

002 ) tackled effectively the issue of arbitrage-free scenario trees 

n a stochastic programming ALM problem. Following ( Høyland 

nd Wallace, 2001 ), Klaassen extended the arbitrage-free condi- 

ions to allow for moment matching scenario generation. In the 

ame period, King (2002) formulated the contingent claim pricing 

roblem as an optimal portfolio replication problem and opened 

he way to the solution of the pricing problem under an assump- 

ion of market incompleteness with stochastic programming meth- 

ds: the incomplete market assumption is relevant whenever the 

sset universe is not sufficient to hedge all underlying risk sources, 

s in presence of a stochastic volatility or market frictions: see 

ore details on this point in Section 4.2 . Still under an incomplete 

arket assumption, Haarbrücker and Kuhn (2009) and Pflug and 

roussev (2009) solved an electricity swing option pricing prob- 

em. More recently ( Consiglio et al., 2016 ) proposed a parsimonious 

odel for generating arbitrage free scenario trees with an option 

ricing application to insurance contracts, while ( Barkhagen and 

lomvall, 2016 ) considered a hedging probem for an option book 

sing stochastic programming. Topaloglou et al. (2020) presents 

n arbitrage-free pricing model for currency and equity options as 

ell as quantos (these are stock options with a currency-based 

ayoff) with a novel closed-form pricing scheme specifically for 

uantos. By extending the investment universe to include equity 

ptions in a multiperiod setting, without imposing, a-priori, any 

pecific restriction on the set of eligible option contracts we intend 
2 
o analyze under pretty general assumptions and, to our knowl- 

dge, for the first time: 

• The hedging effectiveness and the potential for risk mitigation 

and performance enhancement of portfolios including equity, 

volatility, bonds and money market indices together with OTC 

European equity options in specific US equity market periods. 

• The out-of-sample performance from January 2011 to June 

2021, of optimal portfolios including options of different ma- 

turities, available for trading and terminal exercise. 

• The interaction between investment processes with nonlinear 

payoffs, volatility and investors’ risk preferences, as captured by 

an expected wealth- Conditional value-at-risk (CVaR) trade-off. 

• The modeling and financial engineering implications of com- 

plex derivatives-based option strategies. 

In these contexts, previous works on derivatives’ portfolios had 

everal limitations. Topaloglou et al. (2011) , for instance, even if 

ormulating rigorously an optimal portfolio problem with deriva- 

ives, considered a single-stage model in which the options’ ex- 

iry was forced to coincide with the problem investment hori- 

on. By including both call and put options, though, they extended 

 Blomvall and Lindberg, 2003 ) where only call options were con- 

idered, in this way allowing more flexible option strategies. In 

heir recent contribution ( Topaloglou et al., 2020 ) extend and gen- 

ralise significantly their previous results, but still within a 2-stage 

roblem formulation. Yin and Han (2013) were the first to include 

ptions in a genuine multistage framework, with option contracts 

vailable in each stage but always expiring at the stage immedi- 

tely following. Such financial and modeling constraint was later 

n removed by Davari-Ardakani et al. (2016) but only to consider 

ong options’ exposure and focusing mainly on a novel scenario 

eneration model. Nowhere options’ portfolios including, through 

ptions strategies or as specific trading instruments, several types 

f options were considered, nor options’ dynamic trading opportu- 

ities, nor the volatility as asset class. 

We build on those grounds and analyse in this article the impli- 

ations of extending the investment universe to equity options and 

olatility contracts for a portfolio manager with a short (6 month) 

nvestment horizon, assumed to revise her strategy monthly. Our 

mbition is to extend the state-of-the-art in SP-based portfolio 

anagement with derivatives by providing a rather general and 

omprehensive modeling framework for European-style equity op- 

ions and associated volatility-based option strategies. The follow- 

ngs can be regarded as specific contributions of this article: 

• A consistent model extension to incorporate asymmetric pay- 

offs in a discrete decision model and optimize complex deriva- 

tive strategies within a linear MSP framework, where long as 

well as short option exposures with several maturities over the 

investment horizon are considered. 

• A fully integrated management of a specific class of derivatives 

into a portfolio, holistic view as contrasted with overlays. Trad- 

ing in options at any intermediate time before expiry is in- 

cluded together with the possibility to trade volatility contracts: 

such possibility becomes today realistic thanks to the exchange 

traded funds (ETF) contracts on the VIX. 

• The pricing of equity options in a data-driven scenario method, 

consistent with an underlying assumption of incomplete mar- 

kets. 

In a previous work, Barro et al. (2019) presented an extended 

et of results on portfolio selection with an investment universe 

ased on S&P500 subindices and the index itself as reference 

enchmark. The asymmetric payoffs associated with volatility con- 

rol or downside risk minimization were introduced relying on a 

et of mean-absolute-deviation (MAD) models. Here we do explicitly 

onsider option contracts in the optimization problem and in this 
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ay allow a set of relevant generalizations. The VIX, furthermore 

s here treated as a potential investment opportunity, rather than 

s an early-warning-signal as was in Barro et al. (2019) . We model 

n optimization problem from the viewpoint of an investor whose 

ecision paradigm considers a trade-off between expected wealth 

nd CVaR. The collected results support the effort both in terms of 

n-sample model validation as for out-of-sample performance and 

edging analysis. We focus on selected equity market periods and 

hen extend the analysis to a decade from January 2011 to June 

021, thus including the recent pandemic period. We find, in par- 

icular, that options’ strategies are systematically included in opti- 

al dynamic portfolios under different modeling assumptions and 

isk-reward trade-offs. This evidence remains valid under different 

sset universe definitions, and in presence of a volatility index as 

nvestment opportunity. 

The article evolves from Section 2 with the development of 

 portfolio optimization model where buying and selling deci- 

ions on options are allowed, to Section 3 in which the model- 

ng of derivative strategies is considered before summarizing in 

ection 4 the adopted option pricing methods and scenario gen- 

ration approach for the asset universe. In Section 5 we present an 

xtended set of results and analyse the overall implications of the 

roposed extensions. The conclusions complete the article. 

. Optimal investment model with equity options 

In a discrete financial market, information is assumed to evolve 

ccording to a non recombining scenario tree. We label nodes in 

he tree as n ∈ N t at time stage t , where every n has a unique

ncestor n − ∈ N t−1 and for t ≤ T − 1 there exists a non-empty set

f children nodes n + ∈ N t+1 whose cardinality is denoted by # n + .

or every n ∈ N T a scenario is a path ω n , ω n −, ω n −−, . . . , ω n 0 where

 0 is the root node. We use a (n ) to denote the set of ances-

or nodes of n . The decision horizon is discrete and finite, t ∈ T ,
 := { t 0 , t 1 , t 2 . . . , t J = T } . In our application, a 6-month planning

orizon, T = 6 is considered with monthly steps. The modeling 

ramework, however, can naturally accommodate a variety of deci- 

ion frequency and planning horizon pairs, yet avoiding the curse- 

f-dimensionality of MSP models. See, in this respect, the compu- 

ational results in Section 5 where problems with a scenario tree 

ased on 10 240 scenarios, are solved in seconds of CPU time. For 

very node n ∈ N t we denote with t n the time associated with 

ode n . Each node carries a probability of occurrence given by 

p(n ) such that 
∑ 

n ∈ N T p(n ) = 1 and for every non-terminal node 

p(n ) = 

∑ 

m ∈ n + p(m ) , ∀ n ∈ N t , t ≤ T − 1 . At t = 0 there is a unique

ode n 0 which is the root -node and it is labelled as 0. A set of

ssets in I , i ∈ I including equity, bond, money market indices, a 

olatility index and equity options exposures to complete the in- 

estment universe, will be considered in the computational study. 

We consider the following random parameters: 

• r n is the risk-free rate in node n for the period from t n to t n + . 
• v in is the price of asset i , in node n and we indicate with ρi,n =

v in 
v in −

− 1 the asset return over the period t n − t n −. 

• O 

c 
1 n 

( j, k ) is the price in node n of a European call option on the

asset i = 1 (equity) with strike price equal to k and expiry t j . 

• O 

p 
1 n 

( j, k ) is the price in node n of a European put option on

asset 1 with strike k and expiry t j . 

nd decision variables: 

• x + 
in 

nominal amount of asset i purchased in node n , 

• x −
in 

nominal amount of asset i sold in node n , 

• x in amount of asset i held in node n , 

• c l 
1 n 

( j, k ) long position in equity call options with strike k and

expiry t j . 
3 
• c l+ 
1 n 

( j, k ) and c l−
1 n 

( j, k ) purchases and sales of equity calls, re-

spectively. 

• c s 
1 n 

( j, k ) short positions on equity call options with strike k and 

expiry t j 
• c s + 

1 n 
( j, k ) and c s −

1 n 
( j, k ) increments and decrements of short eq-

uity call positions, respectively. 

• p l 
1 n 

( j, k ) long positions in equity put options with strike k and 

expiry t j . 

• p l+ 
1 n 

( j, k ) and p l−
1 n 

( j, k ) purchases and sales of equity puts, re-

spectively. 

• p s 
1 n 

( j, k ) short positions in equity put options with strike k and 

expiry t j 
• p s + 

1 n 
( j, k ) and p s −

1 n 
( j, k ) increments and decrements of short eq-

uity put positions, respectively. 

o ease notation and facilitate a compact model representation we 

se C h 
1 n 

( j, k ) to define a generic option position on the equity with

aturity t j and strike k in node n where C = { c, p} , h = { l, s } to

ccommodate the above derivatives transactions. 

Specific to the options’ trading definition is the distinction 

etween increasing-decreasing long and short option exposures: 

hanks to the introduced notation we capture in a sufficiently sim- 

le way, options trading decisions, hedging policies and protection 

elling due to short positions. Different model specifications will 

hen support alternative option strategies and associated portfo- 

io dynamics. All decision variables, including options, are assumed 

 + -valued: after optimization, actual options’ exposures may be 

etermined for given contract size and market convention, by de- 

iving the associated number of call and/or put options to buy 

r sell. We will not address this operational detail, which how- 

ver, from a mathematical programming perspective would require 

he formulation of a mixed-integer stochastic program. Model vari- 

bles, as shown below, include W n , the value of the portfolio in 

ode n , C n the cash generated by transactions involving the call 

ptions, P n similarly for put options. The model specification is 

ompleted including policy constraints on the asset portfolio in the 

orm of asset-specific lower L i and upper U i portfolio proportions. 

ptions exposures depend instead on the adopted strategy as ex- 

lained in what follows. 

Under these assumptions, the following model details are of in- 

erest: 

• The exposure on options, either long or short, is determined by 

the problem solution and may span from specific subperiods to 

the entire investment horizon. 

• Investors’ risk profiles are determined by combining asymmet- 

ric payoffs of derivatives together with a canonical risk-reward 

trade-off function in the objective function specification in (1) . 

• Bullish or bearish portfolio strategies may rely on derivative 

contracts and again be employed over specific subperiods of the 

planning horizon. 

• The optimal hedge ratio is determined endogenously by intro- 

ducing for every contract different strikes and level of money- 

ness, making optimal partial hedging strategies possible. 

.1. Volatility as an asset class 

The introduction in 2014 of an ETF on VIX futures, as expected, 

as had a significant impact on market practice with remarkable 

rading activity since its launch, particularly intraday. Relying on 

uch evidence, still within a model portfolio setting (thus based on 

ndices as canonical in fund management), we treat the volatility 

ndex as a possible investment opportunity. The VIX has shown al- 

ost perfect positive correlation with the ETF over the quotation 

eriod and its negative correlation with the S&P500 index (S&P in 

hat follows), is well known and a standard assumption by market 

gents. 
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Its introduction in the asset universe leads to several interesting 

ssues and expands the scope of financial innovation under an MSP 

pproach: 

• Due to the VIX-S&P negative correlation and thus, the potential 

indirect hedging role of the ETF on the VIX, would option-based 

policies be still needed? Indeed, unlike the other indices, the 

VIX fluctuates in a given range with mean around 20 in normal 

market conditions: such mean-reverting pattern can also lead 

to performance protection and hedging opportunities within a 

multiperiod setting. 

• The assumption of a constant equity volatility is ruled out and 

we need to consider such evidence when pricing the option 

contracts. 

• Option premiums are known to increase in presence of high 

market volatility: from a portfolio optimization perspective the 

VIX and the options can thus very well jointly enhance the 

portfolio performance. 

• Low interest rate environments are typically associated with 

positive equity premia and low volatility, and the contrary in 

presence of growing or high interest rates: it is then interesting 

to analyse how optimal policies exploit such evidence. 

.2. Model set-up 

We present the mathematical detail of the optimization prob- 

em by first sketching its overall structure and then by focusing 

n the constraints and in particular on the equations devoted to 

quity options. The objective function is defined through a canoni- 

al risk-reward function, whose trade-off is determined by a coeffi- 

ient λ ∈ [0 , 1] and, whose risk measure is the terminal CVaR with 

olerance α ( Rockafellar and Uryasev, 2002 ). We indicate here the 

nvestment opportunities, the call and put option positions with 

, c, p, respectively: 

ax 
x,c,p 

(1 − λ) E [ W n ∈N T ] − λCV aR (α, W n ∈N T ) (1) 

.t. for all t ∈ T , n ∈ N t and given initial conditions x 0 
0 
, x i, 0 , W 0 (no

ptions in the initial portfolio): 

 n = x 0 n + 

∑ 

i ∈I 
x in v 1 n + NCP n + NP P n (2) 

 

0 
n = x 0 n −(1 + r n −) + 

∑ 

i ∈I 
x −

in 
v 1 n δ− −

∑ 

i ∈I 
x + 

in 
v 1 n δ+ + C n + P n (3) 

 i,n = x i,n − + x + 
i,n 

− x −
i,n 

∀ i ∈ I (4) 

 

h 
1 n ( j, k ) = C h 1 n −( j, k ) + C h + 1 n ( j, k ) − C h −1 n ( j, k ) ∀ h, j, k (5) 

 i W n ≤ x in ≤ U i W n , ∀ i ∈ I (6) 

 

+ 
i,n 

= x −
in 

= C h, + 
1 ,n 

( j, k ) = C h, −
1 ,n 

( j, k ) = C h 1 n ( j, k ) = 0 

∀ i ∈ I, h ∈ H, n ∈ N T (7) 

e clarify first the overall model structure, the objective function 

nd the specific definition of the wealth equation. Afterwards the 

erivatives’ specific variables C n and P n in the cash balance con- 

traint (3) and the option constracts inventory balance Eqs. (5) are 

onsidered. The latter in particular may imply pretty different 

nderlying options’ exposures and they represent a key model- 

ng contribution of the optimal problem formulation. Through the 

roblem solution optimal options exposures will be determined. 
4 
The optimization problem (1) subject to (2) –(7) includes a 

anonical objective function based on a terminal expected wealth- 

VaR trade-off, a wealth equation in (2) , a cash balance constraint 

n (3) accounting for all cash inflows and outflows at every stage, 

wo inventory balance equations: for asset positions in (4) and for 

erivatives in (5) . In (6) we set lower and upper bounds on asset 

roportions within the current portfolio value and in (7) we rule 

ut possible rebalancing decisions at T . 

Consider the wealth Eq. (2) : in each node n this is the sum 

f the cash surplus, the value of the investment portfolio plus 

he long and minus the short positions in calls and puts. Under 

his definition protection buying increases the value of the portfolio 

hile protection selling reduces the wealth value. We have: 

CP n = 

∑ 

t n <t j ≤T −1 ,k [ c 
l 
1 n ( j, k ) O 

c 
1 n ( j, k ) − c s 1 n ( j, k ) O 

c 
1 n ( j, k )] (8) 

P P n = 

∑ 

t n <t j ≤T −1 ,k [ p 
l 
1 n ( j, k ) O 

p 
1 n 

( j, k ) − p s 1 n ( j, k ) O 

p 
1 n 

( j, k )] . (9) 

∀ n ∈ N t , t ≤ T − 1 , thus excluding options expirying at the final

orizon T . 

Constraints (4) trace standard stage-by-stage rebalancing deci- 

ions on assets i ∈ I . The policy constraints (6) are canonical in 

ultiperiod portfolio management and define asset-specific lower 

 i and upper U i bounds on asset positions, relative to the current 

ortfolio wealth. Finally due to (7) neither rebalancing nor varia- 

ions in option exposures or trading on derivatives are allowed at 

he end of the planning horizon. 

Consider now the cash account (3) : it will depend on the cash 

vailable at the beginning of the period and interests thereof, on 

ssets sellings and buyings and on options. Indeed C n and P n for all 

 ∈ N t , t ∈ T are generated by the options trading and cash settle-

ents at expiry. Before expiry any option position can be traded at 

he current price: 

• C n is the monetary amount from cash settlement of call option 

positions: this includes purchases and sales of long and short 

call options and cash settlement of expiring options. 

• P n is the monetary amount from cash settlement of put option 

positions: it includes purchases and sales of put long and short 

options and cash settlement of expiring options. 

We present in Section 5 , an extended set of evidences on the 

enefits generated by the trading as well as the exercise, when in- 

he-money, of option contracts at maturity. We have: 

 n = C l n + C s n = 

∑ 

t n ≤t j ≤T,k [ −c l+ 
1 n 

( j, k ) O 

c 
1 n ( j, k ) + c l−

1 n 
( j, k ) O 

c 
1 n ( j, k )] 

+ 

∑ 

t n − ≤t j ≤t n ,k 
c l 1 n ( j, k ) max (0 , v 1 n − k ) 

+ 

∑ 

t n ≤t j ≤T,k [ c 
s + 
1 n 

( j, k ) O 

c 
1 n ( j, k ) − c s −

1 n 
( j, k ) O 

c 
1 n ( j, k )] 

−∑ 

t n − ≤t j ≤t n ,k 
c s 1 n ( j, k ) max (0 , v 1 n − k ) (10) 

 n = P l n + P s n = 

∑ 

t n ≤t j ≤T,k [ −p l+ 
1 n 

( j, k ) O 

p 
1 n 

( j, k ) + p l−
1 n 

( j, k ) O 

p 
1 n 

( j, k )] 

+ 

∑ 

t n − ≤t j ≤t n ,k 
p l 1 n ( j, k ) max (0 , k − v 1 n ) 

+ 

∑ 

t n ≤t j ≤T,k [ p 
s + 
1 n 

( j, k ) O 

p 
1 n 

( j, k ) − p s −
1 n 

( j, k ) O 

p 
1 n 

( j, k )] 

−∑ 

t n − ≤t j ≤t n ,k 
p s 1 n ( j, k ) max (0 , k − v 1 n ) (11) 

here at expiry the value of the options coincides with the pay- 

ffs max (0 , v 1 n − k ) for a call and max (0 , k − v 1 n ) for a put option.

n every node we consider separately the cash flows generated by 

all and put contracts, taking into account only selling and buying 

ecisions and options maturities, as detailed in (10) and (11) . All 

quations are linear and the asymmetry associated with the op- 

ions’ terminal payoffs is handled through the cash settlement for 

iven option price at expiry. 
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Upon expiry the contract will be cash-settled so if expiring ITM 

he payoffs will generate a cash inflow or outflow and in this way 

ffect the cash balance x 0 n . If expiring OTM the associated premi- 

ms were already accounted for at the time in which the option 

osition was open and otherwise during their life, before expiry, 

he options will just be treated as assets or liabilities. 

For modeling, as well as for financial consistency, reducing a 

ong option position is different from taking a short position. The 

erm selling will be kept distinct from the term writing . The same 

pplies to all long and short options on call or put contracts. 

hroughout the article we consider a long equity investor and as- 

ume that none of the assets but the derivatives can go short. Con- 

ider the inventory balance equation for option contracts (5) , with 

 

h 
1 n 

( j, k ) where C stands for call or put and h reflects long or short

ositions on asset i = 1 , the equity. In each node n ∈ N t and for

very option, we have the following updating on long positions, in 

ominal terms: 

 

l 
1 n ( j, k ) = 

{ 

c l 1 n −( j, k ) if t j ≤ t n , ∀ k , 

c l 1 n −( j, k ) + c l+ 
1 n 

( j, k ) − c l−
1 n 

( j, k ) if t j > t n , ∀ k 

p l 1 n ( j, k ) = 

{ 

p l 1 n −( j, k ) if t j ≤ t n , ∀ k , 

p l 1 n −( j, k ) + p l+ 
1 n 

( j, k ) − p l−
1 n 

( j, k ) if t j > t n , ∀ k 

And on short positions: 

 

s 
1 n ( j, k ) = 

{ 

c s 1 n −( j, k ) if t j ≤ t n , ∀ k , 

c s 1 n −( j, k ) + c s + 
1 n 

( j, k ) − c s −
1 n 

( j, k ) if t j > t n , ∀ k 

p s 1 n ( j, k ) = 

{ 

p s 1 n −( j, k ) if t j ≤ t n , ∀ k , 

p s 1 n −( j, k ) + p s + 
1 n 

( j, k ) − p s −
1 n 

( j, k ) if t j > t n , ∀ k 

 

Following this scheme it becomes possible to adopt strategies 

nvolving long and short positions simultaneously on contracts on 

he same underlying but different maturities and strikes. The pro- 

ection can increase or decrease over time and the solution of the 

ptimization problem will determine, through the selection of spe- 

ific option contracts, the optimal degree of protection (depending 

n the moneyness) and the protection period (relative to the plan- 

ing horizon). 

. Derivatives strategies 

Following the cash balance constraints (3) and the details in C n 
nd P n , we devote this section to analyse more in detail the possi-

le combinations of options and their modeling implications from 

 portfolio management perspective. The popularity of option con- 

racts is well known to depend on their theoretically unlimited re- 

urn potential particularly under uncovered speculative portfolios’ 

xposure and on the effective hedging strategies in case of equity 

xposures. 

By increasing long positions in options an investor will be pro- 

ecting future buying and selling decisions from price increases (for 

alls) or decreases (for puts). The final wealth distribution, further- 

ore, is expected to be positively skewed with a left tail cut. In 

he presented case study, however, only covered equity option po- 

itions will be allowed. By instead increasing short positions, either 

n call or put contracts, an investor will be offering protection to 

he market and assume a liability: an effective hedging strategy 

y the market maker through an underlying continuously adjusted 

quity position should result in the generation of a risk-free re- 

urn. Here, however, we won’t consider the possibility of short eq- 

ity positions and thus short put positions will not be considered 

ither. 
5 
The proposed modeling approach, though, allows several inter- 

sting applications, with relevant, previously unexplored in an MSP 

et-up, financial engineering implications: 

• Simple call- or put-based strategies with equity, bonds and 

money market, plus volatility, with or without constraints on 

equity positions: hedging or speculative strategies are allowed 

in general and the investor may exploit the options’ leverage 

effect. 

• Under the same investment universe, but with a lower bound 

on equity investment, portfolio insurance policies such as a pro- 

tective put or a covered call may be adopted: in the first case 

through a long put and negative equity market expectations, 

while in the second case looking for a profit under stable mar- 

ket expectations. 

• More complex strategies based on joint call and put contracts 

such as straddles, strips and straps depending on expectations 

on equity prices and volatility. 

e are interested in particular on the following strategies based on 

quity options: (i) protective put, (ii) covered call, (iii) straddle and 

iv) strip and strap strategies. Notice however that several other 

ption strategies with even more complex payoffs may be handled 

n this framework preserving a linear programming formulation. In 

ection 5 we analyse each such strategy and assess their effective- 

ess to determine the portfolio evolution and shape the risk expo- 

ure, eventually reflected in the wealth probability distribution at 

he horizon. 

.1. Protective put 

This is the classical portfolio insurance strategy based on a long 

quity position, whose value in specific periods, is protected by a 

ong equity put position: given the nodal equity value upon incep- 

ion of the strategy, the strike of the option and its maturity will 

etermine the extent of the protection (based on OTM, ATM, ITM 

ptions) and the hedging period (depending on the put contract 

aturity). Equity selling and portfolio rebalancing are always pos- 

ible and the optimal solution may include rebalancing and pro- 

ection. Constraints (5) take in this case the following characteri- 

ation, for all n ∈ N t , t ∈ T : 

C l 1 n = 

∑ 

j,k p 
l 
1 n ( j, k ) (12) 

C l 1 n = C l 1 n − + C l+ 
1 n 

− C l−
1 n ∑ 

j,k p 
l 
1 n ( j, k ) ≤ x 1 n 

c l,s 
1 n 

( j, k ) = p s 1 n ( j, k ) = 0 ∀ j, k 

.2. Covered call 

A covered call strategy is typically undertaken by an equity in- 

estor who, rather than taking a put position at a desirable price, 

ecides to go short a call option and earn the premium: the higher 

he market volatility the higher the premium for given exercise 

robability. The investor will in this case loose if the market goes 

own and the option is exercised but such loss will be compen- 

ated by the premium. Portfolio rebalancing will always be possi- 

le and the covered call strategy will be activated with given ex- 

osure in case of a positive impact on the problem objective value. 

he maximum profit generated by a covered call strategy will be 

ealized when during the holding period, market volatility will de- 

rease and the option expiring slightly OTM to avoid any loss on 

he equity position. The following constraints employ the strat- 

gy: 

C s 1 n = 

∑ 

j,k c 
s 
1 n ( j, k ) (13) 

C s 1 n = C s 1 n − + C s + 
1 n 

− C s −
1 n 
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∑ 

j,k c 
s 
1 n ( j, k ) ≤ x 1 n 

c l 1 n ( j, k ) = p s,l 
1 n 

( j, k ) = 0 ∀ j, k 

.3. Straddle 

A long straddle strategy combines an equity exposure with long 

TM call and put contracts: such strategy will thus generate in- 

reasing profits in presence of high market volatility and would 

equire the following constraints on the option positions: 

C l 1 n = 

∑ 

j,k p 
l 
1 n ( j, k ) + 

∑ 

j,k c 
l 
1 n ( j, k ) (14) ∑ 

j,k p 
l 
1 n ( j, k ) = 

∑ 

j,k c 
l 
1 n ( j, k ) ∑ 

j,k p 
l 
1 n ( j, k ) ≤ x 1 n 

C l 1 n = C l 1 n − + C l+ 
1 n 

− C l−
1 n 

c s 1 n ( j, k ) = p s 1 n ( j, k ) = 0 ∀ j, k 

A long straddle would generate a loss in presence of stable mar- 

et conditions. In case of growing or decreasing equity prices be- 

ore expiry, on the other hand, this strategy may generate substan- 

ial profits. 

.4. Strip and strap 

These strategies are very much related to straddles but differ 

ecause, still under a volatile equity market expectation, in the 

ase of a strip a negative outlook is judged more likely than a pos- 

tive one and the opposite holds for a strap: those different ex- 

ectations will lead in the first case to buy put contracts in ex- 

eedance of call contracts, actually the double and in the second 

o revert the exposure with calls double the puts. A strip strategy 

ould consider: 

C l 1 n = 

∑ 

j,k p 
l 
1 n ( j, k ) + 

∑ 

j,k c 
l 
1 n ( j, k ) (15) ∑ 

j,k p 
l 
1 n ( j, k ) = 

[∑ 

j,k c 
l 
1 n ( j, k ) 

]
× 2 ∑ 

j,k p 
l 
1 n ( j, k ) ≤ x 1 n 

C l 1 n = C l 1 n − + C l+ 
1 n 

− C l−
1 n 

c s 1 n ( j, k ) = p s 1 n ( j, k ) = 0 ∀ j, k 

While for a strap, we would have 
∑ 

j,k c 
l 
1 n 

( j, k ) = ∑ 

j,k p 
l 
1 n 

( j, k ) 
]

× 2 and the put position still imposing a con- 

traint on the equity investment. 

.5. Derivatives-based strategy summary 

Protective put, covered call and plain straddle or strip and strap 

ortfolios represent popular strategies based on portfolios of op- 

ions . What is new in this setting is that we wish to determine, 

s a result of the stochastic program solution, an optimal options 

xposure in terms of combined strategies or employing individual 

ptions contracts in specific market phases. We assume investors 

ong on equity: a put contract will protect the equity value in case 

f possible market drops. The strike of the put and its money- 

ess will determine the extent of such protection. The covered call, 

hanks to the call premium revenue, allows a compensation of po- 

ential equity losses generated by market drops. Both the protec- 

ive put and covered call together with an underlying equity posi- 

ion would lead to a maximum potential profit determined by the 

ptions strike price. Finally the two at-the-money long positions 

n calls and puts in a straddle lead to a maximum potential loss 

iven by the sum of the two premiums. Relative to the straddle 

he strip and strap portfolios introduce an asymmetry in the pay- 

ff which reflects different market expectations. 

Each such strategy has an initial cost or revenue determined by 

he option prices and it will generate a profit according to their 
6 
nal payoffs. In terms of portfolio optimization, a perfect hedging 

trategy, with only equity and options in the portfolio, is bound 

o generate a sure risk-free return over the planning horizon. On 

he other hand a fully speculative strategy is known to expose the 

nvestor to unlimited profits and losses. When extending the as- 

et universe to include money market and bond indices, a reduc- 

ion of potential losses may be attained without the investment in 

erivatives but just by rebalancing the portfolio. When also volatil- 

ty comes in as asset class, the portfolio risk exposure may be af- 

ected substantially. An increasing volatility leads jointly to increas- 

ng option premiums and, likely, decreasing equity values making 

eneficial a long volatility exposure and a reduced equity expo- 

ure. On the contrary under a decreasing VIX dynamics, the eq- 

ity exposure is likely to increase in a bullish market. The VIX as a 

arket signal, rather than its ETF as asset class, is commonly used 

o assess market expectations, as anticipating forthcoming market 

djustments already priced-in by the market. Together with recent 

&P dynamics, this is the signal that as in Barro et al. (2019) will

e adopted to assess the inclusion in the investment universe of 

ne or the other option strategy. 

From a methodological perspective, the above stylized observa- 

ions may be assessed by solving the stochastic program (1) under 

he constraints (2) –(7) and, depending on the strategy to be eval- 

ated, from (12) to (15) additional conditions. 

When implementing an option strategy a key and central issue 

as to do with the adopted pricing model: in principle as the mar- 

et evolves and equity volatility fluctuates so will option prices. 

hese are the market premiums quoted in options exchanges as 

he CBOT or OTC in bilateral agreements. On the other hand mar- 

et makers will quote option prices according to a risk-neutral 

rinciple, or hedging principle which may differ from current mar- 

et quotations: the market clearing will determine the trading 

rice. In this article we do not distinguish between market and 

isk-neutral prices but just consider as relevant the fair price de- 

ermined by the market maker. Indeed the option contracts in- 

luded in the investment universe will be tailored on the specific 

ase study with monthly rebalancing and 6 month planning hori- 

on. The options actually adopted in the computational part are to 

e considered synthetic instruments on the S&P. 

. Tree processes and pricing 

Consider a price tree process as the one in Fig. 1 (for a 4-stage

6-scenario tree, where a scenario is a unique price path from the 

oot node to a leaf node). The tree structure adopted for pricing a 

nancial instrument, say an option, is the same as the one consid- 

red to formulate and solve the optimization problem. The associ- 

ted scenario probabilities, however, need not be the same. 

In what follows, we assume that the maturity of option con- 

racts coincides with one of the stages in the tree. Any option con- 

ract, whatever the maturity and strike, will be priced from the 

oot node to expiry. 

The introduction of derivatives contracts in a multi stage prob- 

em calls for the adoption of a consistent arbitrage-free pric- 

ng method. Theoretical foundations of no-arbitrage pricing go 

ack as mentioned to Stephen (1976) ; Harrison and Kreps (1979) ; 

arrison and Pliska (1981) ; Jacod and Shiryaev (1998) . According 

o the well and longly established fundamental theorem of asset 

ricing, absence of arbitrage requires the existence of at least one 

robability measure under which the underlying stock price dis- 

ounted at the risk-free interest rate will be a martingale, thus 

onstant in expectation. Such measure will be unique if the market 

s complete. In this article, we take a simple data-driven method to 

enerate price and return scenarios and accordingly in full gener- 

lity, we do not require the market to be complete. 
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Fig. 1. A scenario and decision tree. 
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Algorithm 1: Arbitrage-free scenario tree generation (S&P, US 

10Y Bond Index, Bill Index and VIX). 

1 Set initial conditions: 

2 Set data history [ t a , t b ] and investment horizon 

T = { t 0 , t 1 , ., t n } with t 0 ≥ t b and t n = T ; 

3 Upload time series v and compute historical returns ρ; 

4 Set v (0 ) root nodal price at time t 0 = 0 ; 

5 Specify scenario tree structure: 

6 For every t ∈ T , t < T and ∀ n ∈ N t ; 

7 Set the branching degree # n + for every t and n ∈ N t 

resulting in a symmetric scenario tree; 

8 Specify the Nodal Partion Matrix (NPM) of dimension N T × T : 
columns for stages and rows for scenarios.; 

9 Generate scenario tree: 

10 while t ≤ T − 1 and for each node n ∈ N t do 

11 Randomly generate # n + uniform random number 

u ∈ [ t a , t b ] ; 

12 Sample, according to u , from the matrix of historical 

returns ˜ ρ(u ) ; 

13 Specify the NPM-based leaf nodal labels n ∈ N T and 

scenario labels n −, n − −, . . . , n 0 ; 

14 Compute for every scenario: 

v (n +) = v (n )(1 + 

˜ ρ(u ) ) , ∀ n + ∈ N t+1 ; 

15 end 

16 Check for absence of arbitrage: 

17 while t ≤ T − 1 , for every n ∈ N t do 

18 Find the dual variables νn + for which: 

19 
∑ # n + 

n +=1 νn + (1 + ρi,n + ) = 1 , ∀ i ∈ I ; 

20 if ∃ νn + > 0 n + = 1 , . . . , # n + solution then 

21 No arbitrage opportunities exist; 

22 else 

23 An arbitrage opportunity is present, Go to Line 9; 

24 end 

25 end 

Algorithm 2: Option pricing. 

1 Compute risk neutral probability measure Q: 

2 Set n 0 = { 1 } root node, n ∈ N t , 0 ≤ t < T , and for every t: 

n + ∈ (t + 1) and branching degree # n + ; 

3 Set v 1 , n be the stock price in every node n ∈ N t for every 

t ∈ T ; 
4 Set ρ1 , n be the corresponding return process and R n = 1 + r n ; 

5 while t ≤ T − 1 , for each node n ∈ N t do 

6 Set p n,n + = 

1 
# n + for the physical conditional probability; 

7 Solve problem (16); 

8 end 

9 Compute option price: 

10 while t ≤ T , t = t j and n ∈ N t j 
do 

11 Compute for C = { c, p} and any h (no distinction between 

short and long)the payoff C h 
1 n 

; 

12 end 

13 while t ≤ t j−1 and for each node n ∈ N t do 

14 derive by backward recursion 

C h 1 n = (1 + r n ) 
−1 

∑ 

n + ∈N t+1 

q n,n + C h 1 n + . (17) 

15 end 
In a discrete, tree-based framework, we rely on a two-steps ap- 

roach: we first verify the no-arbitrage conditions in the market 

nd then determine the option price. We rely on Klaassen (1997, 

002) ’s procedure to verify the arbitrage-free pricing method. We 

efer to Topaloglou et al. (2008) for a detailed description of the 

ricing rule applied to a scenario tree price process. More recently 

 Geyer et al., 2010; Consiglio et al., 2016; Barkhagen and Blom- 

all, 2016; Topaloglou et al., 2020 ) presented viable approaches to 

nforce arbitrage free conditions in a multi-asset portfolio prob- 

em and clarified the relationship between branching degree along 

he tree and financial market equilibrium. They also pointed out 

hat under conditions of incomplete markets, due to lack of a 

nique replicating portfolio, a more general pricing approach must 

e taken as clarified in Section 4.2 . 

.1. Data-driven arbitrage-free scenario generation 

We adopt a data-driven scenario generation approach to de- 

ermine the asset prices evolution first, verify for absence of ar- 

itrage and then derive a risk-neutral probability measure to de- 

ermine the option prices, for given equity price dynamics. As 

pposed to a model-based approach, a data-driven approach re- 

ies on a given data history and without any filtering but only 

hrough bootstrapping, it generates the sample space of the vec- 

or tree price process. To preserve contemporary dependence be- 

ween time series, we sample simultaneously from each past asset 

ata path. The bootstrapping procedure is based on the generation 

f random outcomes from a uniform distribution and simultane- 

us extraction of corresponding realizations from the past history 

f assets’ returns. Once generated the scenario tree is tested for 

bsence of arbitrage according to Klaassen (2002) . If the require- 

ent is satisfied the risk neutral probabilities are computed ac- 

ording to Frittelli (20 0 0) . The scenario tree generation and arbi- 

rage checking are summarized in Algorithm 1 , while the deriva- 

ion of the risk neutral probability measure and the option pric- 

ng are described below in Algorithm 2 . We recall the notation 

dopted in the scenario tree. For every n ∈ N t , t < T , # n + defines

he cardinality of node n ’s children or descendant nodes, while 

 n,n + and p n,n + are the conditional risk neutral and empirical prob- 
7 
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Table 1 

Arbitrage checking: convergence properties for different number of scenarios and branch- 

ing degrees. Average acceptance rate (AR) over 40 independent experiments, maximum 

number of draws registered over the nodes of the tree before accepting the first draw 

(Max). Results are averages over 40 independent experiments. Total CPU time in seconds 

(CPU) for each experiment. 

# Scenarios 729 4096 6144 8192 10,240 1,0 0 0,0 0 0 

Branching degree 3 6 4 6 6 − 4 5 8 − 4 5 10 − 4 5 10 6 

AR 0.8002 0.8002 0.8007 0.8048 0.8082 0.8078 

Max 6 8 7 7 8 8 

CPU 109.90 303.73 487.56 606.12 950.46 73 324.41 
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Fig. 2. Average acceptance rate (red dashed line) and node specific acceptance rate 

computed for 10 − 4 5 scenario tree. All results are averages over 40 independent 

experiments. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 
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bilities associated with every arc in the subtree originating from 

 . We use R n = 1 + r n for a risk-free compounded return in node

 and ρi,n + = 

v i,n + 
v i,n 

− 1 for one-period return of asset i ∈ I , with 

 = { 1 , . . . , m } : according to the asset pricing rule for every sub-

ree and parent node, the assets’ expected return must be equal to 

he risk free interest rate R n . In the pseudo-code, to simplify no- 

ation we use v for asset price vectors and ρ for associated return 

ectors. 

According to Klaassen (2002) , the presence of a strictly positive 

ual vector νn + on every subtree is sufficient to guarantee absence 

f arbitrage of both the first and second type. 

The algorithm travels through the tree node-by-node and 

hecks the arbitrage free condition on the dual variables (line 20 

f the algorithm), considering the sequence of two-stage subtrees 

riginating from every node until the last stage. At each node the 

lgorithm bootstraps a proposal for assets returns and checks for 

he absence of arbitrage. In a data-driven model, the algorithm’s 

ermination will depend on the tree branching structure and the 

utcome of the sampling procedure (line 12 of the algorithm). In 

able 1 we report results on the number of runs necessary to ter- 

inate this recursive procedure for a set of scenario trees with in- 

reasing branching degree, spanning a 6 month period and relying 

n the same data history of 208 monthly returns (June 2002–June 

020). We present computational times and assess the algorithm 

fficiency by estimating the acceptance rate in each node: this is 

efined by the ratio of the accepted to the total draws. For every 

cenario tree with given number of scenarios, we include the ac- 

eptance rate averaged over the nodes and we report results on 

he maximum number of rejections, (line 18 in Algorithm 1 ), reg- 

stered before accepting the first draw. All results are averages over 

0 independent experiments. We see that the maximum number 

f necessary draws is rather stable over increasing number of sce- 

arios and branching structure. For computationally tractable prob- 

ems it stabilizes around 8 and this is confirmed also for a much 

igger tree dimension ( 10 6 scenarios). For illustrative purposes in 

ig. 2 we present the average acceptance rate (red line) and the 

odal specific acceptance rate computed for a { 10 − 4 5 } scenario 

ree structure that corresponds to the size of the scenario trees 

sed in the computational section of this article. 

Once an arbitrage free scenario tree for the asset universe is 

etermined, we address the option pricing problem under a risk 

eutral probability measure. 

.2. Risk-neutral pricing: dealing with market incompleteness 

The existence of market frictions, such as transaction costs or 

rading constraints, or in presence of additional sources of un- 

ertainty such as stochastic volatility or a random interest rate 

ntensity, a condition of market incompleteness may arise. See 

taum (2008) for a comprehensive review on incomplete mar- 

ets in finance and possible pricing approaches. Under an as- 

umption of incomplete market, there won’t be a unique martin- 

ale measure nor a unique self-financed trading strategy able to 
8 
erfectly replicate the option payoff under any price scenario. In 

his setting the arbitrage-free condition will be satisfied within 

 given stock price interval. Jacod and Protter (2017) summa- 

ize key pricing results under alternative underlying price pro- 

esses. In general, given the uncertainty over the pricing measure 

o adopt, any contingent claim cannot be determined without first 

ntroducing a criterion to select a specific risk neutral probabil- 

ty measure. Popular approaches to come around this issue are in 

chweitzer (1999) for the minimization of quadratic hedging risk 

rror, and ( Carmona, 2008 ), with references therein, for indiffer- 

nce pricing. Frittelli (20 0 0) developed a financial pricing principle 

ased on a minimal entropy martingale (MEM) measure, a concept 

ollowed in this article. This measure can be determined by min- 

mizing the relative entropy of the risk neutral measure with re- 

pect to the physical measure, a particularly desirable property in 

 derivatives’ portfolio problem. In a discrete setting, furthermore 

s shown next, this method finds an easy and effective im plemen- 

ation. 

Following ( Frittelli, 20 0 0 ), in a finite state incomplete but 

rbitrage-free market with a random riskfree return, the MEM 

easure can be found by solving the following optimization prob- 

ems, for t ∈ T , t < T , on all (one-stage-deep) subtrees in the sce-

ario tree and parent nodes n : 

min 

 ∈ R # n + ,q> 0 

( 

# n + ∑ 

n +=1 

q n,n + ln 

(
q n,n + 
p n,n + 

)) 

(16) 

q T · 1 = 1 

q T · (1 + ρi,n + ) = R n i = 1 , . . . , m 

here for every n ∈ N t , t < T , # n + , q n,n + and p n,n + are the condi-

ional risk neutral and empirical probabilities associated with ev- 

ry arc in the subtree originating from n : according to the asset 

ricing rule for every subtree and parent node, the assets’ expected 

eturn must be equal to the risk free interest rate R n . Notice that
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Table 2 

Means and standard deviations for 6 month ATM put and call option prices, computed on 10 − 4 5 arbitrage free 

scenario tree, strike price K = 2363 . 

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 

Put 6m - mean 76.5684 67.8615 71.6968 74.0275 81.2782 82.4417 83.7332 

Put 6m - std.dev. 0 44.9576 70.0919 84.4653 106.8597 120.7577 132.3791 

Call 6m - mean 80.2228 88.8555 107.0804 107.5494 109.268 114.1283 118.5068 

Call 6m - std.dev. 0 48.7582 90.6608 113.1371 130.9058 148.5491 164.5495 

Fig. 3. MEM measure and physical measure on the left-hand-side plot and terminal pricing kernel on the right-hand-side plot. 
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Table 3 

Statistics for S&P, bond index, money market (MM) monthly 

returns and VIX. Entire period (Jan 2002–Jun . 

S&P Bond MM VIX 

mean 0.0057 0.0036 0.0010 19.5906 

std.dev 0.0428 0.0098 0.0012 8.4200 

skewness −0.8558 −0.2640 1.3407 1.8782 

kurtosis 2.0905 1.2472 0.8772 4.4644 

q(0.01) −0.1165 −0.0239 0.0000 10.3125 

q(0.5) 0.0118 0.0036 0.0005 16.9800 

q(0.99) 0.0978 0.0259 0.0043 51.0235 
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he system q T · (1 + ρi,n + ) = R n for every asset i forces the branch-

ng degree # n + to be equal or greater than the m assets in the in-

estment universe. We assume equal conditional probabilities for 

ll branches, and these probabilities are used as starting point for 

he algorithm. We indicate with t j an option expiry date. 

Given the arbitrage-free scenario tree and risk neutral prob- 

bility measure the price of a derivative contract can be easily 

omputed by backward recursion, where in each node of the tree 

 ∈ N t , t < T the entropy price of the contingent claim is computed

s the expected value under the minimal entropy measure over the 

erivative prices in descendant nodes. 

For 6-month ATM put and call option prices, we report in 

able 2 the mean and standard deviation estimated at every 

tage t = 0 , 1 , . . . , 6 , from an arbitrage free scenario tree gener-

ted acccording to algorithms 1 and 2 , with 10 240 scenarios 

nd S&P strike price equal to K = 2363 . Option prices for 1,3 

nd 6 month ATM put options can also be computed and they 

re put = [35 . 3696 , 53 . 9619 , 76 . 5684] , whereas for call options we

ave call = [39 . 0120 , 57 . 6089 , 80 . 2228] . 

Option prices are determined under the risk-neutral measure 

hile the optimization problem is solved under the assumption of 

qually likely scenarios, thus preserving any risk premium in finan- 

ial data. 

Once all the conditional risk-neutral probabilities are deter- 

ined along the tree, we can compute the unconditional prob- 

bilities on the leaf nodes and compare the associated density 

unctions. In Fig. 3 we compare two smooth probability density 

unctions generated to exemplify the outcome of Algorithm 2 : the 

EM probability measure and the physical one at the horizon of 

he planning period and the corresponding pricing kernel that pro- 

ides information on likelihood ratio of the risk neutral to the 

hysical probability and as such allows the switch between the 

wo. 

. Computational evidence 

In this section we present an extended set of results to vali- 

ate the adopted modeling framework on specific US equity mar- 
9 
et phases and discuss the most relevant financial evidences. The 

nalysis is based on a data history of monthly observations from 

anuary 2002 to June 2021. We take the perspective of a generic US 

nvestor with a 6-month planning horizon and a monthly portfolio 

ebalancing frequency. Every test problem is formulated and solved 

n the face of uncertainty, with 10 240 scenarios with branching 

0 1 − 4 5 over the 6 stages: at t = 0 we generate scenarios relying 

n the data-driven approach presented in Section 4 and solve the 

roblem to derive the corresponding optimal policy. Every scenario 

ree is generated with returns sampled from the past history. The 

sset universe includes the S&P equity index, the Barclays US Ag- 

regate bond index, the Bloomberg 1–3 month Treasury Bill index 

or the money market and the VIX. Cash is treated as slack, resid- 

al investment option. The option strategies rely on at-the-money 

ATM) European call and put options with 1, 3 and 6 month expiry. 

ption contracts are treated as synthetic instruments with a matu- 

ity consistent with the investment horizon discretization. One op- 

ion contract is assumed to be written on a unit equity investment 

nd priced according to the arbitrage-free approach in incomplete 

arkets presented in Section 4.2 . 

We present in Table 3 descriptive statistics of the asset returns 

nd the VIX over the Jan 2002–June 2021 period. 

We assume a unit initial wealth W 0 = 1 and, unless otherwise 

pecified, a minimum 60% investment in equity to reflect a risky 

nvestor strategy, seeking the maximization of (1) at the 6 month 
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Table 4 

Rolling average of S&P, bond and money market monthly returns and VIX level computed on 6-month windows 

with monthly data on specific sub-periods. 

S&P Bond MM VIX 

mean std.dev mean std.dev mean std.dev. mean std.dev 

Period 1 

Jul–Dec 2008 −0.0581 0.0769 −0.0062 0.0116 0.0014 0.0005 39.6917 16.089 

Period 2 

Jan–Jun 2017 0.0132 0.0129 0.0037 0.0041 0.0005 0.0002 11.615 0.9682 

Period 3 

Jan –Jun 2018 0.0027 0.0339 −0.0027 0.0081 0.0013 0.0002 16.801 2.5735 

Fig. 4. Rolling S&P average returns, left y axis, VIX level, right y axis, computed on 

6-month windows with monthly data (Jan 2002–Jun 2021). Horizontal lines denote 

long term S&P average return and VIX level, respectively. 
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orizon. We set α = 0 . 95 in (1) for the CVaR and as λ varies from

 to 0.5 and to 0 different risk-reward trade-offs are tested. 

Over the Jan 2002–Jun 2021 period we identify three periods in 

he equity market and test the impact of alternative option strate- 

ies on the optimal portfolios. Specifically, we focus on the S&P 

eturns’ and the VIX mean and standard deviations to identify dif- 

erent market phases. The stylized evidence of the two being neg- 

tively correlated over time is confirmed over this extended period 

s shown in Fig. 4 also with monthly data. Means and volatility 

ynamics for S&P and VIX are computed on 6-month rolling win- 

ows. While the S&P monthly returns’ standard deviation provides 

n historical estimate of monthly volatility, the VIX level captures 

he 1 month forward (annual) equity volatility implied in the op- 

ion market. Table 4 describes the three test periods considered 

nd the shaded bands in Fig. 4 help associating the market phases 

o the identified periods 1, 2 and 3. 

Period 1, through fall 2008, is characterized, as well known, by 

egative equity market returns, a high level of volatility and high 

IX values. In period 2 we observe a positive equity market phase 

nd low level of equity volatility as shown by both the S&P data 

nd the VIX. Finally, period 3 is characterized by a stable equity 

arket with moderate, but not negligible market volatility. 

In period 1 the VIX level is almost at its 95% quantile of the 

hole data set, whereas in period 3 the VIX is around its 50% 

uantile and close to its long-term average. In period 2 the VIX 

s approximately at its 5% quantile. Following operational evidence, 

e test the impact on portfolio distributions and optimal asset and 

erivative exposures of: a protective put strategy in period 1, a cov- 

red call strategy in period 2 and a straddle strategy, or variations 

hereof, in period 3. 

By calibrating the risk-reward trade-off in the objective func- 

ion, through the choice of λ in (1) and relying on equity as well as

he VIX, bonds and money market indices, an investor might very 
10 
ell control her risk exposure by rebalancing from risky towards 

ess risky assets. 

Ultimately, our interest is on the assessment in- and out-of- 

ample of downside protection and return generation specifically 

nduced by option exposures as the asset universe is expanded 

o include an asset reflecting volatility patterns and the trade-off

etween expected return maximisation and tail risk minimization 

aries. 

.1. Set-up and experimental design 

We develop a set of analyses to validate the model key assump- 

ions and through a sequence of MSP instances, evaluate the op- 

imal policies and wealth distributions under different model as- 

umptions. A selected set of optimal option portfolios is also tested 

ut-of-sample over the 2011–2021 period. 

Several option strategies are tested by solving the stochastic 

roblem (1) under the constraints (2) –(7) and, depending on the 

arket phase, by evaluating option strategies based on a protective 

ut (12) , or a covered call (13) , or a straddle (14) , or a strip or strap

quations as from Eqs. (15) . All option portfolios are thus solutions 

f an instance of the optimization problem. A set of stochastic pro- 

rams with call and put contracts treated as generic investment 

pportunities is also analyzed in detail in what follows. 

For computational evidence, Table 5 includes several details 

n the hardware and software environment, the adopted solution 

ethod (Cplex dual simplex algorithm), the problems’ sizes, gen- 

ration and solution times for a representative set of test prob- 

ems. We see that total generation and solution times vary around 

 minute for these very large problem instances. The problems di- 

ension is greatly influenced by the number of scenarios over the 

iven stages. 

To summarize the collected evidences, we adopt the follow- 

ng convention for every problem instance: L (λ, C h 
j,k 

, I i , m ) where:

∈ { 0 , 0 . 5 , 1 } defines the trade-off in the objective function (1) ,

 

h 
j,k 

the option strategy with h = 1 , 2 , 3 , 4 , 5 , 6 respectively for pro-

ective put, covered call, straddle, strip and strap, and with call 

nd put contracts (but no specific strategy), with associated op- 

ion maturities t j = { 1 , 3 , 6 } and moneyness k = { IT M, AT M, OT M} .
or h = 0 we have no options involved. I i specifies the investment 

niverse where for i = { 1 , 2 , 3 , 4 } we have respectively: equity, eq-

ity plus the VIX, all assets, all assets plus the VIX; under any i the

nvestor may opt for a cash deposit. m = { 1 , 2 , 3 } identifies the test

eriod. 

Optimal investment and hedging strategies are presented in 

erms of current (nodal) portfolio value composition along selected 

cenarios: we define a best, median and worst scenario by select- 

ng, after optimization, those scenarios ending at the horizon in 

orrespondence, respectively, to the 99% (best), 50% (median) and 

% (worst) quantiles of the wealth distribution. Portfolio dynamics 

nd terminal wealth distributions are determined by summing the 

urrent investment values in each asset class. 

Through the solution of an extended set of problems we verify: 
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Table 5 

Generation and solution CPU times in seconds for a selected set of test problems. 

HP ProBook 450G5 Scenario tree Solution MPS gen 

Intel(R) Core i5 10240 scen.s Cplex 12.6.3.1 CPU time 

1.60 GHz,16 GB RAM 10 1 − 4 5 Dual simplex 19.5 (1) 

period 1 period 2 period 3 period 3 

{ i = 4 , h = 1 } { i = 4 , h = 2 } { i = 4 , h = 3 } { i = 4 , h = 6 } 
No. eq.s 249 138 303 743 290 091 262 789 

No. var.s 327 636 450 495 368 589 491 448 

Non-zeroes 862 650 1 134 905 1 04 500 1 110 654 

Pre-solve time (2) 0.36 0.27 0.08 0.33 

CPU sol time (3) 52.961 25.156 55.05 38.876 

(1) + (2) + (3) 72.82 44.73 74.63 58.71 
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Fig. 5. Protective put strategy L (1 , C h 
j,ATM 

, I i , 1) , long put options and i = 1 , 2 , 4 with 

λ = 1 . Terminal wealth distributions for an equity portfolio with no options, h = 0 

(“Equity” cdf) and with options h = 1 , i = 1 , 2 , 4 (cdf’s “E 136 put”, “EV 136 put” and 

“EBMV 136 put”, respectively). 

Table 6 

Statistics from solutions L (1 , C 1 
j,ATM 

, I i , 1) , t j = { 1 , 3 , 6 } , i = 

1 , 2 , 4 . Expected terminal wealth E (W T ) and standard devi- 

ation σ (W T ) , skewness s (W T ) , kurtosis κ(W T ) , Sharpe Ratio 

SR = 

E (W T ) −W 0 
σ (W T ) 

and quantiles at the 1% , 50% and 99% over a 6 

month investment horizon. 

Strategy Protective put (h = 1) 

Investment universe i = 1 i = 2 i = 4 

E (W T ) 0.9901 1.0096 1.0088 

σ (W T ) 0.0191 0.0194 0.011 

s (W T ) 2.4032 2.4819 3.0669 

κ(W T ) 9.9946 16.3244 22.4172 

SR −0.5175 0.4928 0.798 

q 0 . 01 (W T ) 0.979 0.981 0.989 

q 0 . 5 (W T ) 0.98 1 1.005 

q 0 . 99 (W T ) 1.06 1.078 1.054 
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• The role played by alternative option strategies in optimal dy- 

namic portfolios in every test period: we analyse the terminal 

wealth distributions and a set of statistical evidences and opti- 

mal option exposures for different specifications of the invest- 

ment universe i = 1 , 2 , 3 , 4 and without options h = 0 . The op-

timal root-node investment decision is the here-and-now (h&n) 

decision. 

• Similar evidences for the case, h = 6 , in which call and put con-

tracts are jointly available and without any constraint within 

multi-asset portfolio problems. 

• The sensitivity of the optimal wealth distributions and invest- 

ment policies to alternative risk-reward trade-offs as λ varies in 

(1) . We are also interested to verify the interplay between eq- 

uity, VIX and option positions under different optimal problems 

specifications. 

• The out-of-sample performance of a set of optimal policies 

through back testing over the selected test periods as well as 

the January 2011–June 2021 period. 

The scenario generation and pricing procedures have been im- 

lemented in Matlab 2019b, MPS instances have been generated 

nd solved using GAMS. 

.2. Optimal option portfolios in different equity market phases 

The three periods identified in Table 4 are all half year and 

s mentioned they reflect different equity market conditions. We 

hus take an event study approach to verify whether and to which 

xtent optimal dynamic portfolios exploit the introduced option 

trategies. In this section we consider the case of specific problem 

nstances in each period m = 1 , 2 , 3 and derive a set of observa-

ions. In particular: 

• For m = 1 we solve L (1 , C 1 
j,k 

, I i , 1) : λ = 1 for CVaR minimiza-

tion, h = 1 for a protective put and under alternative asset uni- 

verse assumptions, i = 1 , 2 , 4 . 

• For m = 2 we solve L (0 , C 2 
j,k 

, I i , 2) : λ = 0 for expected wealth

maximization, h = 2 for a covered call and under alternative as- 

set universes, i = 1 , 2 , 4 . 

• For m = 3 we solve L (0 , C 3 
j,k 

, I i , 3) : λ = 0 . 5 for balanced ex-

pected wealth-CVaR trade-off, h = 3 , 4 , 5 for a straddle, strip or

strap and under alternative asset universes, i = 1 , 2 , 4 . 

.2.1. Adverse market conditions, m = 1 

The second half of 2008 has represented a period of relevant 

quity market instability globally and specifically in the US mar- 

et, where in September Lehman Brothers filed for bankruptcy. We 

est in this semester the most classical portfolio insurance strategy 

ith λ = 1 in the objective function (1) . We present in Fig. 5 the

erminal wealth distributions generated by optimal policies when 

quity and ATM put options, with 1,3,6 month maturities, are con- 

idered ( i = 1 , h = 1 ); when the investment universe is enlarged

o include the VIX ( i = 2 , h = 1 ) and then when all other assets
11 
 i = 4 , h = 1 ) are considered. The terminal wealth distribution for

n equity only portfolio (with cash) is also included. 

Table 6 allows a comparison between terminal wealth statistics 

enerated by optimal policies during this crisis period, as the in- 

estment universe increases according to the above scheme. 

With specific reference to a multi-asset portfolio with puts ( h = 

 , i = 4 ), we analyze in Fig. 6 the portfolio composition along the

orst, median and best scenarios. From the above first percentile 

f the terminal portfolio distribution even under the worst sce- 

ario the left tail of the distribution is tight and close to 1 with 

vidence of an effective hedging strategy. Along any scenario a 60% 

ower bound on the equity must be satisfied. The h&n decision in- 

ludes equity, bond, VIX and a long 6 month put contract. 
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Fig. 6. Protective put L (1 , C 1 
j,ATM 

, I 4 , 1) , t j = { 1 , 3 , 6 } . Portfolio composition along 1% (worst), 50% (median) and 99% (best) quantiles (scenarios) during period 1. i = 4 , λ = 1 . 
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Fig. 7. Covered call strategy L (0 , C 2 
j,ATM 

, I i , 2) with t j = { 1 , 3 , 6 } short ATM call posi- 

tion and i = 1 , 2 , 4 with λ = 0 . Terminal wealth distributions for an equity portfolio 

with no options, h = 0 (“Equity” cdf), and cdf’s associated with the canonical cov- 

ered call ( h = 1 ), plus volatility ( h = 2 ) and plus the other assets ( h = 4 ), “E 136 

call”, “EV 136 call” and “EBMV 136 call”, respectively. 

Table 7 

Statistics from problems’ solution L (0 , C 2 
j,ATM 

, I i , 2) , t j = 

{ 1 , 3 , 6 } , i = 1 , 2 , 4 . Expected terminal wealth E (W T ) and 

standard deviation σ (W T ) , skewness s (W T ) , kurtosis 

κ(W T ) , Sharpe Ratio SR = 

E (W T ) −W 0 
σ (W T ) 

and quantiles at the 

1% , 50% and 99% over a 6 month investment horizon. 

Strategy Covered call (h = 2) 

Investment universe i = 1 i = 2 i = 4 

E (W T ) 1.0337 1.1278 1.1306 

σ (W T ) 0.0876 0.1494 0.1408 

s (W T ) 0.1796 0.9526 1.0215 

κ(W T ) 3.4999 5.2087 5.3887 

SR 0.385 0.8554 0.9272 

q 0 . 01 (W T ) 0.834 0.8499 0.8779 

q 0 . 5 (W T ) 1.036 1.108 1.111 

q 0 . 99 (W T ) 1.2561 1.581 1.5672 
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The return achieved in the worst scenario on the left tail of the 

istribution reflects the adopted hedging policy and we see, on the 

eft plot of Fig. 6 that the investment in put contracts is persistent 

nd increasing over the investment horizon specifically thanks to 

he 6 month puts. When considering the strategies along the me- 

ian and best scenarios we still observe a role of put contracts over 

he planning horizon but with a predominant role of bonds and 

he VIX. 

Several remarks can be drawn from the above graphical evi- 

ences. 

• Under any problem instance a protective put leads to a tight 

control of the left tail and a good hedging performance. 

• The inclusion of a volatility index in the investment universe 

has a positive impact on the portfolio return distribution and 

on the portfolio risk-adjusted return. Over the investment hori- 

zon volatility exposure through the VIX comes together with 

long put positions. 

• As we extend the invstment universe to include also bonds and 

money market the terminal wealth distribution improves fur- 

ther and in Fig. 6 we see that scenario-specific investment poli- 

cies show a good diversification pattern. 

.2.2. Favourable equity market phase with low volatility, m = 2 

During the first half of 2017 the US equity market experienced 

 period of relatively low volatility with a positive trend. Under al- 

ernative specifications of the investment universe, we test in this 

ase the effects of a covered call strategy; this is characterized by a 

ong equity position together with a short call. The rationale being 

hat the premiums from the call would compensate possible neg- 

tive equity returns and the selling of the equity portfolio at the 

trike in case of an expiring ITM call would still be convenient to 

he portfolio manager. In presence of a volatility index and bonds 

r money market such rationale would still hold but may be less 

elevant to the portfolio manager. 

In Fig. 7 we display the terminal wealth distributions for a cov- 

red call strategy when ATM options are available and the invest- 

ent universe includes only equity and cash ( i = 1 , h = 2 ), or the

IX as well ( i = 2 , h = 2 ) or including all assets ( i = 4 , h = 2 ). Here

= 0 and the investor is assumed to seek an expected terminal 

ealth maximisation. 

We see that short call positions have a positive impact on the 

ean and the right tail of an equity portfolio distribution and 

hen other assets are considered for investment the benefits on 

he terminal wealth are relevant, while eventually the left tail 

orsens sightly. Table 7 shows the terminal portfolio statistics with 

 positive outcome under any asset universe specification but at 

he cost of a relatively poor volatility control. The wealth distribu- 
12 
ion and statistical evidence are consistent with the assumed risk 

eutral growth objective for λ = 0 . 

Focusing again on a multi-asset investor we show in Fig. 8 the 

ptimal portfolio strategy along three wealth scenarios, from left- 

and-side to right-hand-side plots, from worst to best scenarios. 

nlike in the previous section, to convey the short call exposure 

e analyse here the portfolio evolution in terms of assets’ nom- 

nal exposures rather than in terms of portfolio relative weights. 

o short calls are included in the h&n portfolio. While there is a 
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Fig. 8. Covered call L (0 , C 2 
j,ATM 

, I 4 , 2) , t j = { 1 , 3 , 6 } . Portfolio composition along 1% (worst), 50% (median) and 99% (best) quantiles (scenarios) during period 1. i = 4 , λ = 0 . 
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Fig. 9. Straddle strategy L (0 . 5 , C 3 
j,k 

, I i , 3) , with t j = { 1 , 3 , 6 } ATM straddle positions 

and i = 1 , 2 , 4 and λ = 0 . 5 . Terminal wealth distributions for an equity portfolio 

with no options, h = 0 (“Equity” cdf), and cdfs associated with the canonical strad- 

dle ( h = 1 ), plus volatility ( h = 2 ) and plus the other assets ( h = 4 ), “E 136 straddle”, 

“EV 136 straddle” and “EBMV 136 straddle”, respectively. 
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all exposure in all intermediate stages and particularly along the 

est scenario, jointly with the investment in equity and VIX. 

A covered call strategy is exploited dynamically with a rele- 

ant exposure along the median and the best scenarios, slightly 

ess along the worst case scenario in which nevertheless short calls 

elp improving the portfolio distribution. Period 2 is characterized 

y a positive equity market and low volatility: volatility exposure 

eads in the worst scenario to a negative outcome partially com- 

ensated by call premiums. 

Few concluding remarks on this strategy: 

• Short call positions are included in optimal dynamic multi-asset 

portfolios with a positive impact on portfolio returns but, dur- 

ing a positive market phase, always sold out before expiry. 

• In case of an equity portfolio, covered call strategies are em- 

ployed more extensively over the 6 month investment horizon 

with a positive effect on the portfolio distribution. 

.2.3. Steady equity market with moderate volatility, m = 3 

Consider now period 3: this is a very stable equity market with 

owever, non negligible market volatility. We assume a balanced 

isk-reward trade-off in (1) with λ = 0 . 5 and consider the possibil- 

ty to invest in an ATM straddle or strip or strap: we recall that in

hese two latter cases, respectively: either 2 long put option con- 

racts for 1 call contract are considered or the opposite. A straddle 

nstead is based on symmetric ATM long call and put positions. The 

traddle would then generate a loss equal to the sum of the option 

remiums whenever the S&P remains at the initial price but would 

enerate a profit whenever it moves away from the current value, 

ither left or right with the put protecting the downside and the 

all the upside. We analyse the terminal wealth distributions and 

he associated optimal strategies along specific scenarios. 

In Fig. 9 we compare the terminal wealth distributions of op- 

imal portfolios with equity and straddle options ( i = 1 ), including 

IX ( i = 2 ), and all assets ( i = 4 ), or equity without options ( h = 0 ).

Also in this case the option strategies allow an effective control 

f the left tail of the wealth distribution and a remarkable upside. 

he most performing strategy is generated by a straddle together 

ith equity and VIX or all assets and VIX. The probability of a loss 

nder any scenario and portfolio composition is negligible while 

he straddle has a remarkable impact on the portfolio performance 

nd risk-adjusted returns. 

For the case in which all assets and the VIX are included in the 

sset universe we analyse the optimal portfolio strategy leading to 

hose extreme negative and positive quantiles and along the me- 

ian scenario in Fig. 10 . Now the investor is assumed to balance 

he growth objective with the control of the tail risk. At the root 

ode the h&n decision is almost entirely in equity, a small pro- 

ortion in the VIX and two long straddle positions with 1 and 3 
13 
onth maturities. Straddle contracts together with equity and VIX 

o characterise the median and best scenarios while on the worst, 

ood though, scenario bond and equity play a predominant role. As 

or any option, when the straddle expired OTM then we had a cost 

pon inception and no effect on the portfolio return is accounted 

or, while when ITM the cash-settlement will generate a profit that 

ill depend on the nodal equity value. 

Most of the conclusions and remarks of the previous sec- 

ions can be confirmed. In this section we have considered the 

mpact of different option strategies on optimal dynamic portfo- 

ios under different equity market conditions. Even more than in 

eriods 1 and 2 here optimal strategies are risky and do involve 

traddle exposures, whose impact, given the adopted scenario tree, 

n the terminal wealth distribution is very positive. Portfolios are 

ostly well diversified and volatility as asset class is exploited to- 

ether with straddle contracts. 

In the following section we present a set of results on each test 

eriod when allowing free equity investments and analysing the 

ptimal portfolios as the λ varies and the asset universe includes 

ll assets and the VIX. 

.3. Option portfolios comparative results 

We develop a comprehensive model assessment by allowing 

all and put options with different maturity to enter the asset uni- 
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Fig. 10. Straddle L (0 , C 2 
j,ATM 

, I 1 , 2) with t j = { 1 , 3 , 6 } , with m = 3 . Optimal nominal strategy along three scenarios 1% (worst), 50% (median), 100% (best). 

Table 8 

Statistics for L (0 . 5 , C 3 
j,ATM 

, I i , 3) , t j = { 1 , 3 , 6 } , i = 1 , 2 , 4 . Expected terminal wealth E (W T ) and 

standard deviation σ (W T ) , skewness s (W T ) , kurtosis κ(W T ) , Sharpe Ratio SR = 

E (W T ) −W 0 
σ (W T ) 

and 

quantiles at the 1% , 50% and 99% over a 6 month horizon. 

Strategy Straddle (h = 3) Strip (h = 4) Strap (h = 5) 

Investment universe i = 1 i = 2 i = 4 i = 4 i = 4 

E (W T ) 1.1025 1.1641 1.1635 1.1546 1.224 

σ (W T ) 0.1472 0.1689 0.1652 0.1583 0.2334 

s (W T ) 1.0992 1.9572 2.0376 2.1702 1.5875 

κ(W T ) 3.7096 11.4667 12.1516 13.0282 7.7258 

SR 0.6963 0.9719 0.9897 0.9771 0.9597 

q 0 . 01 (W T ) 0.942 0.97 0.976 0.976 0.96 

q 0 . 5 (W T ) 1.061 1.125 1.124 1.114 1.157 

q 0 . 99 (W T ) 1.5331 1.7432 1.7415 1.7292 1.975 

v

s

r

m  

t

t

a

t

t

p

fi

t

l  

p

a

W  

1

f  

s

o

a

t

(

T

 

 

 

5

o

f  

s  

f

r

o

d

f

m

i

w

 

w  
erse and be jointly and independently available for hedging or 

peculative purposes. In each test period and for different risk- 

eward trade-offs. The asset universe includes equity, bond and 

oney market, i = 3 , or with the VIX i = 4 . As before we consider

he terminal wealth distributions under the different assumptions 

o assess the effectiveness of the adopted option strategies, if any, 

nd whether such effect depends on the risk-reward trade-off and 

he inclusion of the VIX in the investment universe. All results in 

his section are collected after removing the lower bound on equity 

ositions. We see that under these assumptions, several interesting 

nancial observations can be made and confirm the generality of 

he adopted modeling framework. 

In Table 9 we present a set of statistics for every test prob- 

em. We allow m = 1 , 2 , 3 and in each period compute the terminal

ortfolio statistics generated by optimal strategies over 6 months, 

lways starting with a unit initial wealth W 0 = 1 when λ varies. 

ithin each test period, m = 12 , 3 , the same scenario trees with

0 240 scenarios are adopted. 

The key differences between the results displayed here above 

or m = 1 , 2 , 3 and those in Section 5.2 , even under the same as-

et universe structure and λ’s, refer to the different treatment 

f option portfolios: here call and put contracts of any maturity, 

re treated as investment opportunities while in the previous sec- 

ions they were structured and constrained as described in models 

12), (13), (14) and (15) . 

We summarize the main relevant evidences resulting from 

able 9 : 

• In each problem instance the introduction of the VIX for i = 4 

has a positive impact on almost all quantiles of the terminal 

wealth distributions and independently of m , it leads to im- 

proved expected wealths and however increasing volatility: the 

Sharpe ratios do mostly increase anyhow. 

• Under λ = 0 in anyone of the three periods, the volatility and 

tail risk controls are less effective and the terminal wealth sup- 
14 
ports larger than under the other risk-reward trade-offs. As λ
increases to 0.5 and to 1, but already in the former case the tail 

risk at the 1 st percentile is very close if not above 1. 

• The CVaR minimization problem for λ = 1 generates consis- 

tently a positive risk-adjusted return and very effective tail con- 

trol. We show below explicitly that already for λ0 . 5 call and put 

contracts play a role in the optimal policy even jointly with the 

VIX. 

• When comparing the outcomes in Table 9 with those in the 

previous sections under the same λ’s and in each period m = 

1 , 2 , 3 , we can see that the results, in terms of terminal wealth

quantiles and Sharpe ratios do not differ significantly and in the 

2008 period an optimal strategy based on i = 3 without the VIX 

would have led to very good tail risk control and risk-adjusted 

returns. When m = 2 , λ = 0 . 5 for i = 4 results are pretty simi-

lar here and above, while for m = 3 , λ = 0 the portfolio returns’

statistics here above are very positive but not as good as those 

presented in Table 8 . 

.3.1. Risk-reward trade-off analysis 

Further to the previous remarks, to focus more directly on the 

ptimal portfolio sensitivity to λ, let’s focus on the results collected 

or m = 3 . Consider the last two columns in Table 9 . The portfolio

tatistics for i = 3 and i = 4 are associated with the cdf’s in Fig. 11

or h = 6 . 

Call and put contracts have an impact on both cases and play a 

ole in determining the optimal portfolio processes. On either plots 

f Fig. 11 the choice of λ is shown to affect the portfolio returns 

istributions and for λ = 1 the control of the left tail is very ef- 

ective and it is shown below to involve options’ positions. As we 

ove towards a maximum expected wealth objective the upside 

mproves with a negative impact on the left tail which is tolerable 

hen i = 4 . 

When considering λ = 0 . 5 and still m = 3 Fig. 12 displays the

ealth processes over the planning horizon when i = 1 or i = 4 .
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Table 9 

Statistics for different strategies L (λ, C h 
j,ATM 

, I i , m ) in periods m = 1 , 2 , 3 with i = 3 , 4 

and for every λ row-wise: the expected terminal wealth E (W T ) and standard deviation 

σ (W T ) , skewness s (W T ) , kurtosis κ(W T ) and Sharpe Ratio SR == 

E (W T ) −W 0 
σ (W T ) 

, the quantiles 

at the 1% , 50% and 99% level. 

Strategy No strategy - Free investment in equity options 

Period m = 1 Period m = 2 Period m = 3 

( i = 3 ) ( i = 4 ) ( i = 3 ) ( i = 4 ) ( i = 3 ) ( i = 4 ) 

λ = 0 

E (W T ) 1.054 1.1591 1.0795 1.1593 1.0503 1.1513 

σ (W T ) 0.0821 0.1636 0.1312 0.1948 0.0797 0.1601 

s (W T ) 0.7675 0.509 1.0424 1.3173 0.776 0.5227 

κ(W T ) 4.9261 3.2532 4.7621 6.7847 5.052 3.2649 

SR 0.6575 0.9727 0.6057 0.8175 0.6307 0.9447 

q 0 . 01 (W T ) 0.8789 0.843 0.866 0.835 0.877 0.844 

q 0 . 50 (W T ) 1.047 1.144 1.063 1.131 1.043 1.136 

q 0 . 99 (W T ) 1.309 1.5982 1.485 1.796 1.302 1.581 

λ = 0 . 5 

E (W T ) 1.0124 1.021 1.0571 1.1303 1.0363 1.1144 

σ (W T ) 0.0042 0.0083 0.0728 0.1445 0.0378 0.1216 

s (W T ) 8.0227 4.1866 1.8872 2.1317 2.4852 1.2259 

κ(W T ) 139.7824 44.7861 7.2337 10.1825 12.6595 4.4447 

SR 2.9644 2.5177 0.7838 0.9019 0.9622 0.9406 

q 0 . 01 (W T ) 1.008 1.007 0.988 0.988 0.998 0.956 

q 0 . 50 (W T ) 1.011 1.018 1.031 1.082 1.026 1.076 

q 0 . 99 (W T ) 1.0291 1.053 1.319 1.656 1.19 1.487 

λ = 1 

E (W T ) 1.039 1.1209 1.0078 1.036 1.0118 1.0201 

σ (W T ) 0.0397 0.1251 0.0099 0.0241 0.0041 0.0082 

s (W T ) 2.4021 1.1991 4.6886 4.0277 6.4911 3.5868 

κ(W T ) 11.8899 4.3443 31.9791 26.9331 115.7215 40.0636 

SR 0.9834 0.9662 0.7868 1.4958 2.8613 2.4524 

q 0 . 01 (W T ) 1.001 0.963 0.998 1.002 1.004 1.002 

q 0 . 50 (W T ) 1.028 1.083 1.005 1.027 1.011 1.018 

q 0 . 99 (W T ) 1.1981 1.506 1.056 1.151 1.028 1.051 

Fig. 11. Terminal wealth distributions with free long call and put investment opportunities in period 3 L (0 . 5 , C h 
j,ATM 

, I i , 3) , i = 1 , h = 0 , i = 1 , h = 6 , i = 4 , h = 6 . 
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et the control over the left tail is effective throughout and the 

pside when including the VIX and exploiting the options leverage 

ffect is relevant. As λ increases to 1 these optimal wealth pro- 

esses reduce their dispersion and improve the performance along 

he worst scenario. 

In the following section, we comment on the optimal hedging 

trategies and volatility-driven policies for h = 6 , i = 3 . 

.3.2. Volatility-based portfolios and hedging policies 

Fig. 13 shows the optimal investment strategies, left-hand-side 

o right-hand-side along the usual worst, median and best scenar- 

os when the asset universe includes all assets, the VIX and the 

ptions. The h&n portfolio is the only one under full uncertainty 
15 
nd includes equity, the VIX and 3 month call contracts. Along the 

hree scenarios the optimal portfolios evolve with a good diversifi- 

ation including equity, bonds, the VIX and the options. Along the 

est scenario, the optimal portfolio includes a large proportion of 

quity, VIX and 3 and 6 month call and put contracts. The cash 

ettlement of the 6 month call contract at maturity generates the 

ash position and positive return in the best scenario. 

Since the first stages, the investor exploits the opportunity of 

edging the equity exposure in a negative market scenario and in- 

reases the investment in calls to benefit from a potential positive 

quity scenario. At the root node and in the second stage, the in- 

estor buys call and put contracts, with limited impact in terms of 

nvestment value but with high return potential. The option expo- 
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Fig. 12. Optimal wealth evolutions with h = 6 : long call and put free investment opportunities in period 3 with only equity i = 1 or all assets and the VIX i = 4 : 

L (0 . 5 , C 6 
j,ATM 

, I i , 3) . 

Fig. 13. Optimal portfolio strategies for an investor with long call and puts together with bond, money market index and VIX, over a medium volatility L (0 . 5 , C 6 
j,ATM 

, I 4 , 3) , 

t j = { 1 , 3 , 6 } . 
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ure evolves over time with increasing investment in longer ma- 

urity call and puts. The risky portfolio exposure during the first 

tages of the worst scenario is reduced at the end of the planning 

orizon when the portfolio concentrates in bonds. 

From the collected results we can draw similar conclusions as 

hose in the previous sections. In particular: 

• Options are consistently included in optimal portfolios and have 

a positive impact on the tail risk control also when λ = 0 . 5 or

0 and the optimal strategy seeks a growth objective. 

• In presence of the VIX as asset class, the investor exploits the 

negative correlation between S&P and VIX but yet option con- 

tracts enter the optimal portfolio. 

All the above results refer to portfolios and wealth dynamics as- 

ociated with the generated problem instances. Once the scenario 

rees are generated by bootstrapping from the past market history, 

 given instance of future possible scenario evolutions is given and 

e have tested a rich set of model specifications and problems for- 

ulation leading to optimal portfolio tree processes as those anal- 

sed so far. We complete this study by analyzing the out-of-sample 

vidence, yet considering an event study approach limited to se- 

ected test periods. 

.4. Out-of-sample validation 

In order to provide additional evidences on the effectiveness 

f the proposed modeling framework, we present in this sec- 

ion a set of out-of-sample results based on a backtesting proce- 
16 
ure to be introduced first. We adopt here an approach inspired 

y Dempster and Thompson (2002) , and aimed at preserving the 

nvestment policy time consistency when options with different 

aturities and spanning the entire investment horizon are consid- 

red. Moreover, it accounts for the impact of options’ trading be- 

ore maturity over the planning horizon. Its final purpose remains 

he evaluation of the portfolio wealth dynamics at realized market 

rices. 

In particular: after the scenario tree has been generated we first 

elect the scenario path closest, according to the Euclidan distance, 

o the realized equity market price scenario and then we evaluate 

he associated optimal investment policy (including all assets) at 

he realized prices. 

We refer to that scenario as replicating market scenario or just 

eplicating scenario and to the associated optimal strategy as opti- 

al replicating strategy. The approach deals with the delicate issue 

nduced by the presence of option contracts in those portfolios: 

ndeed those contracts have been introduced as synthetic OTC in- 

truments with an ad-hoc maturity set. When present in the op- 

imal portfolio, their impact on realized returns is then evaluated 

hrough the cash flows they generate. 

The backtesting procedure is first carried out on the three 6- 

onth periods described in Table 4 , and then extended to span 

he 2011–2021 period. We consider a comprehensive portfolio for- 

ulation including long put and call options and as asset universe, 

quity, bond, money market and VIX. In each test period, a spe- 

ific risk-reward trade-off is considered according to the following 

airs: λ = 1 for m = 1 , λ = 0 for m = 2 and λ = 0 . 5 for m = 3 . 
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Fig. 14. Optimal portfolio compositions(left-hand-side) and corresponding wealth evolution (right-hand-side) along the replicating scenario for the test problem 

L (1 , C 6 
j,ATM 

, I 4 ) , 1) , t j = { 1 , 3 , 6 } and m = 1 . 

Fig. 15. Optimal portfolio compositions(left-hand-side) and corresponding wealth evolution (right-hand-side) along the replicating scenario for the test problem 

L (0 , C 6 
j,ATM 

, I 4 , 2) , t j = { 1 , 3 , 6 } and m = 2 . 
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In the more extended out-of-sample analysis a problem in- 

tance with λ = 0 . 5 , a 50% lower bound on the equity investment

nd a 10% upper bound on the VIX investment are considered. Af- 

er solving the 6 month MPS problem, the optimal policy to be 

ested is determined as follows: at time t = 0 , the h&n decision is

aken for period [0,1]; at t = 1 we take the point of view of an

nvestor who will rebalance her portfolio along the replicating sce- 

ario path. The procedure is then rolled forward till the horizon. 

.4.1. Results over specific subperiods 

In Fig. 14 we present on the left-hand-side plot the optimal 

eplicating strategy and on the right-hand-side plot the evolution 

f the portfolio value evaluated at actual market prices and at tree 

rices along the same scenario. For comparison three benchmarks 

ssociated with an equity only, bond only and fix-mix (equity- 

ond: 60% − 40% ) portfolios are included. 

Portfolio composition along the scenario is in line with a neg- 

tive equity performance registered also by the scenario tree and, 

iven the downside risk minimization objective, leads to limited, 

nd decreasing exposure in equity with bond, MM and VIX domi- 

ating the root node decision. 

In Fig. 15 the same validation procedure is applied to the solu- 

ion for period m = 2 . On the left-hand-side plot the replicating 

ortfolio composition is presented. On the right-hand-side plot: 
17 
he evolution of the wealth along the scenario at market prices is 

ompared with the optimal wealth along the tree and the same 

enchmarks as before. 

Finally, in Fig. 16 we evaluate the strategy associated with the 

olution in period m = 3 . 

Portfolio composition along the scenario includes 3 and 6 

onth call options and trading on them, from an initial consistent 

xposure to equity, the portfolio switches to a safer cash and bond 

ortfolio composition and back to equity again towards the end of 

he horizon. 

Finally, in Fig. 16 this backtesting approach is applied to period 

 = 3 . On the left-hand-side plot the portfolio composition along 

he replicating scenario and on the right-hand-side the evolution 

f the optimal portfolio value at market prices, compared with the 

ame tree prices and the three benchmark dynamics. 

Portfolio composition in Fig. 16 (left-hand-side) along the repli- 

ating scenario is presented: a risky portfolio strategy is adopted 

ogether with call options and a switch from S&P to VIX over the 

 months. 

.4.2. Out-of-sample results over 2011–2021 

We present here the out-of-sample results from January 2011 

o June 2021, thus including the recent 2020–2021 pandemic cri- 

is. The backtesting procedure is extended with a rolling window 
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Fig. 16. Optimal portfolio compositions(left-hand-side) and corresponding wealth evolution (right-hand-side) along the replicating scenario for the test problem 

L (0 . 5 , C 6 
j,ATM 

, I 4 , 3) , t j = { 1 , 3 , 6 } and m = 3 . 

Table 10 

Statistics on semiannual out-of-sample returns of different portfolio strategies over the Jan 

2011–June 2021 period: from left to right optimal portfolios with options: L (0 . 5 , 6 , 4) , with- 

out options: L (0 . 5 , 0 , 4) , fix-mix strategy: equity-bond 60% − 40% , equally weighted portfo- 

lio over the 4 asset classes: 1 /N, and only Bond- or only Equity-portfolios. Row-wise: 2011–

2021 average ex-post semiannual returns E (r T ) , their standard deviation σ (r T ) , skewness 

s (r T ) , kurtosis κ(r T ) , Sharpe Ratio SR = 

E (r T ) 
σ (r T ) 

, minimum and maximum ex-post performance 

over the testperiod. 

L (0 . 5 , 6 , 4) L (0 . 5 , 0 , 4) Fix-mix 1/N Bond Equity 

E (r t ) 0.0589 0.0559 0.0460 0.0257 0.0176 0.0585 

σ (r t ) 0.0351 0.0466 0.0417 0.0538 0.0251 0.0605 

s (r t ) 1.0777 0.5479 −0.2834 −0.3241 −0.2114 −0.3962 

κ(r t ) 3.3172 2.6630 3.0446 2.1880 1.8266 2.8694 

SR 1.6792 1.1996 1.1035 0.4775 0.7020 0.9680 

Min (r t ) 0.0141 −0.0183 −0.0495 −0.0835 −0.0299 −0.0809 

Max (r t ) 0.1499 0.1623 0.1293 0.1156 0.0553 0.1684 
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Table 11 

Minimum and maximum differences between 

semiannual returns of strategies with or without 

options 
L (0) 
L (6) 

and between returns of strategies 

with options and Equity 
Equity 

L (0 . 5 , 6 , 4) 
. 


L (0) 
L (6) 


Equity 

L (6) 

Min 
 −0.052 −0.0737 

(Jan–Jun 2013) (Jan–Jun 2021) 

Max 
 0.05 0.1182 

(Jan–June 2019) (Jul–Dec 2015) 

d

w

cheme, updated every six months. We start with a problem whose 

nitial root decision is at t = 0 : 1 . 1 . 2011 and move forward with

 month steps until the last problem, in which t = 0 : 1 . 1 . 2021

nd T : 30 . 6 . 2021 . Every problem instance requires a preliminary

cenario tree generation, following the procedure in Section 4.2 , 

he identification of the replicating scenario, the valuation ex- 

ost of the replicating strategy at the realized prices for the as- 

ets plus cash. At the 6-month horizon, the portfolio value rep- 

esents the initial endowment for the following semester. All op- 

ions have come to natural expiration, either ITM generating a cash 

ow or OTM with no associated cash flows; thus, no options po- 

itions are carried over from one problem to the next. Over the 

0.5 years, 21 test problems are solved and the resulting strategies 

acktested. The problem instance repeatedly solved is, in our con- 

ention, L (λ = 0 . 5 , h = { 0 , 6 } , i = 4) . We consider a portfolio man-

ger with relevant equity exposure that maximizes the objective 

1) with λ = 0 . 5 . By solving the two cases h = 6 and h = 0 , we

ollect optimal portfolios potentially including freely available long 

all and put contracts, h = 6 , or based only on the 4 asset classes

Equity, Bond, MM, VIX), but without options, h = 0 . Those portfo- 

ios are benchmarked against an equity-bond 60 − 40 fix-mix port- 

olio, a 1 /N strategy, and two strategies with full investment in eq- 

ity or bond. We refer to Fig. 4 to capture the different market 

hases during this extended period. 

We present in Table 10 the statistics computed on semiannual 

ut-of-sample returns over the Jan 2011–June 2021, where r t rep- 

esents return over a semester with t ∈ [1 , 21] . 

By focusing specifically on the effects due to options’ exposures, 

e can summarize the main evidences resulting from Table 10 : 
18 
• The strategy including options, h = 6 , replicates the S&P mar- 

ket behavior (Equity), with a comparable average semiannual 

return over the testperiod, but with consistently lower volatil- 

ity thus generating on average a higher risk-adjusted return 

(Sharpe ratio). 

• The minimum ex-post return – Min (r t ) – shows that during the 

10 years, unlike any other and in particular the one without 

options, the strategy with options is the only one never leading 

to a loss in value, thus reflecting a good downside protection. 

• Under the given policy constraints, both optimal portfolios 

with or without options in different subperiods (see below) al- 

most achieved the S&P (Equity) maximum semiannual return 

recorded between January 2011 and 2021. 

In Table 11 we report in particular the minimum and maximum 

ifferences between semiannual returns of the strategies with and 

ithout options, denoted by 
L (0) 
L (6) 

, and against the S&P 
Equity 
L (6) 

. 
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Fig. 17. Top: Optimal wealth evolutions for different strategies over the semesters 

in the out-of-sample period (Jan 2011–Jun 2021). We denote the wealth trajecto- 

ries L (0 . 5 , C 6 
j,ATM 

, I 4 ) with Opt50E10V. L (0 . 5 , C 0 
j,ATM 

, I 4 ) with NoOpt50E10V, with 

Fix-Mix( 60 − 40 equity-bond), 1 /N, and Bond and S&P500 for the Equity. Bottom: 

Optimal option positions for each semester in the out-of-sample period (Jan 2011–

Jun 2021). L (0 . 5 , C 6 
j,ATM 

, I 4 ) with long ATM Put and Call with maturity t j = 1 , 3 , 6 . 
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Fig. 18. Monthly replicating portfolio composition in the out-of-sample period (Jan 

2011–Jun 2021 in the x -axis span from 0 to month 126 with monthly steps). 

L (0 . 5 , C 6 
j,ATM 

, I 4 ) with 10% upper bound on VIX and 50% lower bound on equity. 
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The maximum positive difference bottom right in the second 

ow of Table 11 refers to the second semester of 2015 when the 

&P registered a loss and the option portfolio was protected by 3- 

nd 6- month put options. Bottom left the positive difference was 

nstead motivated by the investment in call options during a posi- 

ive market evolution. The minimum top right was due to a rally- 

ng equity market during the first semester of 2021 that was not 

ully captured by the strategy with options. Looking at the first col- 

mn, a maximum difference occurred during the first semester of 

019 thanks to an investment in call options of different maturity. 

uring the first semester of 2013 the negative difference between 

x-post returns was primarily due to joint put and call positions 

uring a period of low volatility. 

The evolution over time of the out-of-sample returns from dif- 

erent strategies can be inferred from Fig. 17 , where the overall 

ealth dynamics over the 10 and half years are presented together 

ith the associated specific option exposures of the optimal strat- 

gy (labelled Opt50E10V). These latter are extracted from Fig. 18 

o provide graphical evidence of the specific role played by the op- 

ions to achieve the above positive performance. 

The patterns within each semester can be immediately identi- 

ed to show that option contracts with different maturities have 
19 
een exploited leading to the returns reported in Table 10 . Over- 

ll, in 9 out of 21 semesters the strategy with options outperforms 

he S&P, while in 11 out of 21 semesters it outperforms the strat- 

gy without options. The options strategies displayed in the bot- 

om figure also help further explaining the evidence in Table 11 . 

By focusing on the last year and half of the pandemic period 

anuary 2020–June 2021, the bottom plot in Fig. 17 shows that an 

nvestment in 3- and 6-month put options protect the portfolio 

rom falling during a negative market phase while in 2021 long 3- 

nd 6-month call options are part of the optimal strategy during a 

ullish market. 

We present as final evidence the evolution of optimal portfolios’ 

omposition over the 2011–2021 period along the selected repli- 

ating scenarios in Fig. 18 , with evidence of the prevailing equity 

nd options (zoomed in the above Fig. 17 ) exposure with overall 

elatively well diversified portfolio strategies. 

In summary, the 2011–2021 out-of-sample results confirm un- 

er the proposed backtesting scheme, the evidences collected in 

ection 5.4.1 for selected subperiods, and show that: 

• Options are consistently included and traded in optimal portfo- 

lios with positive ex-post results across different market phases. 

• The strategies generated by optimal replicating portfolios in- 

cluding options have consistently provided a positive outcome 

ex-post, and a significant out-of-sample excess return relative 

to the 1/N and fix-mix strategies. 

• Put options of different maturities have overall provided good 

hedging results during bearish stock market periods, as in the 

second semesters of 2015, and 2018. 

• Call option positions have been mainly included in the optimal 

portfolio and traded during rallying market phases, see the first 

semester of 2016, and in 2021. 

• In periods characterized by consistent market uncertainty and 

high VIX, the simultaneous presence of put and call options 

have also led to positive ex-post outcome. See, for example, se- 

lected months in the second semesters of 2011 and 2021. 

. Conclusion 

This article main contribution refers to a comprehensive mod- 

ling extension of multistage portfolio management to include eq- 

ity options and options’ portfolios. In the proposed model, un- 

er pretty general assumptions and with limited restrictions, op- 

imal investment portfolios and optimal derivatives exposures are 
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etermined for an asset universe that includes equity options with 

everal maturities. Besides, the model easily accommodates option 

trategies such as protective puts, covered calls, straddles or strips, 

traps, and alternative risk-reward profiles. Furthermore, we an- 

lyzed in this context the implications of including, through the 

IX, equity volatility as an asset class. In this contribution, we 

est, to our knowledge for the first time, the impact on optimal 

ynamic portfolios of equity or multi-asset portfolio managers in- 

luding options, in selected market phases and then out-of-sample 

ver the 2011–2021 period. Their evolution under alternative risk- 

eward trade-offs and different volatility regimes has been anal- 

sed in depth through an extended computational study based 

n a stochastic linear programming framework. Section 5 pre- 

ented results first when specific option portfolios were included 

n the asset universe and then treating options as stand-alone in- 

truments included in the investment universe. Finally an out-of- 

ample backtesting set of results has been presented. 

We can summarize the main findings of this research: 

• Option portfolio and option contracts were shown to be sys- 

tematically exploited by dynamic optimal portfolios to con- 

trol downside risk and improve the upside: such evidence has 

been tested across different test periods assuming a decision 

space characterized by equity; equity and VIX; equity, bond and 

money market and finally all these plus the VIX. 

• In presence of a risk-averse investor with λ = 1 and indepen- 

dently of the test period the tail risk control improves in- 

sample under any of the introduced market assumptions. Both 

tail and volatility risk control are effective also when λ = 0 . 5 

and optimal strategies do rely on available option contracts over 

the investment periods. On the other side when λ = 0 the opti- 

mal portfolio dispersion increases but yet thanks to derivatives’ 

and portfolio dynamic rebalancing terminal in-sample returns 

and risk-adjusted performances are positive in any period. 

• Volatility traders and risky investors are interested in deriva- 

tive contracts such as equity options and the VIX: we have 

presented evidence that indeed a positive volatility exposure 

through the VIX, depending on the agent risk aversion, may 

be optimal together with equity and equity options positions. 

These latter will help improving the downside almost under 

any model specification. We hope in this respect to provide 

a potentially interesting research perspective on the stream of 

volatility-driven dynamic portfolio approaches ( Dempster et al., 

2007; Hill, 2012; Liu et al., 2019 ). 

• In almost every test problems we have seen that optimal op- 

tions positions were optimal in specific stages over the invest- 

ment horizons and sometimes brought to expiry (and cash- 

settled): further, as any decision is taken under residual uncer- 

tainty, call and put contract exposures can jointly be optimal, 

either within straddle or strip or strap strategies or, more gen- 

erally when considering free calls and puts, sometimes relying 

on different maturities. 

• The out-of-sample evidences are positive both from a specific 

analysis of three selected subperiods and from a more extended 

analysis over 21 semesters, starting in January 2011. The opti- 

mal portfolios with options overperform the other set of invest- 

ment strategies. The collected results in this context do depend 

on the adopted data-driven scenario generation method. Here, 

under generic assumptions on market incompleteness and as- 

sets statistical properties, we have implemented an asset pric- 

ing and scenario tree construction approach. This methodologi- 

cal step is relevant for any asset management or asset-liability 

management model including contingent claims. 

The choice on the number of stages and decision points along 

he horizon made in the computational section of the paper is not 

inding, neither the scenario tree structure. Other descriptions of 
20 
he multi-stage decision process increasing or reducing the num- 

er of stages and different scenario tree structures accommodate 

asily. 
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