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Abstract In this paper, we propose a new class of non-Gaussian random fields
named two-piece random fields. The proposed class allows to generate random
fields that have flexible marginal distributions, possibly skewed and/or heavy-
tailed and, as a consequence, has a wide range of applications. We study the
second-order properties of this class and provide analytical expressions for the
bivariate distribution and the associated correlation functions. We exemplify
our general construction by studying two examples: two-piece Gaussian and
two-piece Tukey-h random fields.
An interesting feature of the proposed class is that it offers a specific type of
dependence that can be useful when modeling data displaying spatial outliers,
a property that has been somewhat ignored from modeling viewpoint in the
literature for spatial point referenced data.
Since the likelihood function involves analytically intractable integrals, we
adopt the weighted pairwise likelihood as a method of estimation. The ef-
fectiveness of our methodology is illustrated with simulation experiments as
well as with the analysis of a georeferenced dataset of mean temperatures in
Middle East.
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1 Introduction

Today, statistical analyses with one or more variables indexed in space and/or
time are useful in different areas, such as environmental sciences and engineer-
ing fields (Banerjee et al., 2004; Cressie and Wikle, 2011). Gaussian random
fields (RFs) play a central role in providing a building block model for these
kinds of data. Although the use of Gaussian RF models simplifies spatial anal-
ysis, the normality assumption might be overly restrictive in obtaining an
accurate representation of the data structure. For instance, in many geosta-
tistical applications, such as oceanography, the environment and the study
of natural resources, the assumption of Gaussianity is unrealistic because the
observed data can be highly skewed and/or can display heavy tails. On the
other hand, although the marginal Gaussian distribution can be realistic, the
type of dependence induced by the multivariate Gaussian distribution can be
too restrictive in some circumstances.

In recent years, different approaches have been proposed in order to analyse
non-Gaussian spatial data. A general approach is the class of transformed
Gaussian RF(s) obtained by a nonlinear transformation of one or independent
copies of a Gaussian RF. This is a convenient approach since this kind of
construction guarantees that the correlation of the non-Gaussian RF depends
on the correlation of the underlying Gaussian RF that can be modeled using
flexible correlation models such as the Matern (Stein, 1999) of the Generalized
Wendland model (Bevilacqua et al., 2019a). In addition, depending on the type
of transformation, the geometric properties of the non-Gaussian RF can be
inherited from the underlying Gaussian RF. Some examples of this class can
be found in DeOliveira (2006) for log-Gaussian marginal distribution, Zhang
and El-Shaarawi (2010), for skew-Gaussian marginal distribution, Xua and
Genton (2017) for Tukey g−h marginal distribution, Bevilacqua et al. (2021)
for skew-t marginal distribution, just to mention a few. A general method that
allows to construct RFs with arbitrary marginal distribution and falls into the
class of transformed Gaussian RF(s) is the Gaussian Copula (Kazianka and
Pilz, 2010; Masarotto and Varin, 2012; Gräler, 2014).

Another general approach that has been widely used for non-Gaussian
spatial data is the spatial generalized linear mixed models as proposed in
Diggle et al. (1998). Under this framework, non-Gaussian models for spatial
data can be specified using a link function and a latent Gaussian RF through
a conditionally independent assumption. However these kind of models have
some drawbacks. For instance, the resulting non-Gaussian RFs have a “forced”
nugget effect that implies no mean square continuity (Gelfand and Schliep,
2016). This makes spatial generalized linear mixed models unsuitable when
analysing spatial data exhibiting continuous realization behaviour.

In this paper, we propose a novel general class of RFs defined on the real
line with flexible two-piece marginal distributions (Fernández and Steel, 1998;
Arellano-Valle et al., 2005; Rubio and Steel, 2020). Two-piece distribution is a
general mechanism that allows to obtain skewed distributions by transforming
a symmetric distribution (Jones, 2015). In the univariate case, there is exten-
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sive literature on two-piece distributions (Fechner, 1897; Fernández and Steel,
1998; Mudholkar and Hutson, 2000; Wallis, 2014). Our idea relies on gener-
alizing the stochastic representation of the two-piece random variable given
in Arellano-Valle et al. (2005) to obtain RFs with marginal distributions of
this type. We exemplify our general construction by studying two examples:
two-piece Gaussian RFs that allow to obtain (a)symmetric marginal distribu-
tions and two-piece Tukey-h RFs (Xua and Genton, 2017) that allow to obtain
marginal distributions with both (a)symmetric and heavy tails. The proposed
examples are obtained by transforming two independent Gaussian RFs, i.e.
they fall into the class of transformed Gaussian RFs.

Besides the flexible marginal distribution behavior of the proposed class,
an additional interesting feature is that it offers a specific type of dependence
that can be useful when modeling data displaying spatial outliers. A spatial
outlier is a spatially referenced variable whose non-spatial attribute values is
significantly different from those of other spatially referenced variables in its
spatial neighborhood. As outlined in Chen et al. (2008), in contrast to tradi-
tional outliers, spatial outliers do not necessarily deviate from the remainder
of the whole data set. In this regard they are also called “local outliers” since
they are derived from spatial local comparisons. Different algorithms have been
proposed for the detection of spatial outliers, in particular in the area of spa-
tial data mining (Haslett et al., 1991; Haining, 1993; Shekhar et al., 2001; Lu
et al., 2003; Kou et al., 2007; Chen et al., 2008; Ernst and Haesbroeck, 2017;
Singh and Lalitha, 2018). However, from modeling point of view this kind of
feature has been somewhat ignored in the literature at least for spatial point
referenced data and there are no spatial RF models able to capture spatial
outliers to the best of our knowledge.

To better explain the presence of spatial outliers in a spatial point ref-
erenced dataset, let us consider a realization of three zero-mean and unit-
variance RFs with Gaussian marginal distribution, at s1, . . . , sn, n = 3000
location sites uniformly distributed in the unit square. In particular we con-
sider:

(a) a Gaussian RF with an exponential correlation, i.e. ρ(r) = e−3r/0.5;
(b) a Gaussian RF with an exponential correlation with a nugget effect, i.e.

ρ(r) = e−3r/0.50.7 + 0.310(r);
(c) a two-piece Gaussian RF (see Section 3) when the parameter of asymmetry

is set to zero and the underlying correlation is ρ(r) = e−3r/0.5.

Here r is the euclidean distance and 1x(y) = 1 if x = y and 0 otherwise is the
indicator function. The boxplots of the three datasets in Figure 1 (first row)
shows that the three realizations ‘look’ Gaussian, as expected.
A useful graphic tool to visualize the presence of spatial outlier is the h−scatterplot.
An h-scatterplot plots all possible pairs of data values z(si), . . . , z(sn) whose
locations have distances belonging to a certain interval i.e. considers the plot
of the pairs {(z(si), z(sj)) : a − ε ≤ ||si − sj || ≤ a + ε} with a > 0, ε ≥ 0.
Alternatively, an h-scatterplot based on neighborhoods can be considered. In
this case the pairs involved in the plot are {(z(si), z(sj)) : si ∈ Nm(sj)} where



4 Moreno Bevilacqua et al.

Nm(sl) is the m nearest neighbor set of z(sl). We use the second type of plot
through the paper.

In Figure 1 (second row), the h-scatterplot of case c) shows a clear different
type of dependence with the respect to the case a) and b). In particular the
presence of spatial outliers can be appreciated since for a fixed neighborhood
order m = 5, 15, 30, 60, the majority of the pairs are concordant i.e. positive
(negative) values of one value tend to be associated with positive (negative)
values of the other value. However, some pairs display a discordant dependence
resulting in a specific X-shape of the h-scatterplots (this is more apparent for
small neighborhood that is m = 5, 15). As outlined by a Referee, some copula
models as the t copula (Joe, 2014) or the copula proposed in Cote and Genest
(2019) exhibit the same type of dependence. However, as shown in Genton and
Zhang (2012) these kind of models are not identifiable with just one realization
of the RF which is the typical case for spatial data.

To confirm the presence of spatial outliers suggested by the h-scatterplots,
we apply one of the algorithm proposed in Chen et al. (2008) that allows
to detect spatial outliers. In particular, we use the median algorithm which
is a variant of the algorithm proposed originally in Shekhar et al. (2001).
This algorithm, for each point referenced data z(si), considers the median
Medk(si) of Nk(si). Then, after standardizing the residuals z(si)−Medk(si), the
value z(si) is detected as spatial outlier if the absolute value of the associated
standardized residual is bigger than q1−α/2 where qx is the quantile of order
x a standard Gaussian distribution. In Figure 1 (third row), we highlight the
detected spatial outliers with a small black circle (we set α = 0.001 and k = 15
in the algorithm). For the cases a) and b) the algorithm detects only 5 and 2
spatial outliers points respectively. However for the case c), i.e the proposed
two-piece Gaussian RF, the algorithm detects 71 spatial outliers.

This simple illustrative example shows that the proposed two-piece Gaus-
sian RF, which is a special case of a more general class studied in Section 2, is
able to generate datasets with spatial outliers with respect to a Gaussian RF
irrespective of the nugget effect. As a consequence, it can be a suitable model
when analysing point referenced spatial data displaying a certain number of
spatial outliers.

Regarding the estimation of these kind of models, it must be said that the
likelihood function involves analytically intractable integrals and likelihood-
based estimation methods are unfeasible. For this reason we consider the
method of composite likelihood (Lindsay, 1988; Varin et al., 2011) that has
been successfully applied in the recent years when estimating complex mod-
els. Composite likelihood is a a general class of objective functions based on the
likelihood of marginal or conditional events. This kind of estimation method
can be helpful when it is difficult to evaluate or to specify the full likelihood.
In particular the weighted pairwise likelihood (wpl) method has been widely
used for the estimation of complex non-Gaussian RFs because in many circum-
stances the multivariate distribution is unknown and/or difficult to compute
but the bivariate density is known and relatively simple to evaluate. Some
examples are the Bernoulli RF in Heagerty and Lele (1998) or the general
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Fig. 1 First row: boxplots of the simulated datasets. Second row: four h-scatterplots of the
simulated datasets. Third row: color map of the simulated datasets with detected spatial
outliers. The graphics are associated with a Gaussian RF (first column), a Gaussian RF
with a nugget effect (second column), a two-piece Gaussian RF (third column).

class of spatial generalized mixed models (Varin and Vidoni, 2005) of the t RF
proposed in Bevilacqua et al. (2021) just to name a few. Other examples can
be found in Feng et al. (2014) and Alegria et al. (2017).

Exploiting the bivariate distributions of the proposed two-piece Gaussian
and two-piece Tukey-h RFs, we explore in a simulation study the use of the wpl
method for the joint estimation of the skewness, tail and correlation depen-
dence parameters. Additionally, we compare the performance of the optimal
linear predictor of the two-piece Gaussian RF with the optimal predictor of
the (misspecified) Gaussian RF.



6 Moreno Bevilacqua et al.

Finally we apply the proposed methodology by analysing a real georef-
erenced dataset of mean temperatures in Middle East where the proposed
two-piece Gaussian and two-piece Tukey-h RF models are compared with the
standard Gaussian and Tukey-h RF models. The methods proposed in this
paper are implemented in the R (R Core Team, 2020) package GeoModels

(Bevilacqua et al., 2019b) and R code for reproducing the work is available as
an online supplement.

The remainder of the paper is organized as follows. In Section 2, we in-
troduce the general class of RFs with two-piece marginal distributions, and
we study the associated second-order properties and bivariate distributions.
In Section 3, we present the first example of the proposed class, i.e. the two-
piece Gaussian RF. In Section 4, we study the second example of the proposed
class, i.e. the two-piece Tukey-h RF. In Section 5, we present two simulation
studies that investigates the performance of the wpl method when estimat-
ing the proposed two-piece RFs and compares the performance of the optimal
linear predictor of the two-piece Gaussian RF with the optimal predictor of
the (misspecified) Gaussian RF. In Section 6, we analyse a real dataset of
mean temperatures in Middle East. Finally, in Section 7, we present some
conclusions.

2 A class of random fields with two-piece marginal distributions

For the rest of the paper, given a weakly stationary RF Q = {Q(s), s ∈ A}
we denote by ρQ(h) = Corr(Q(si), Q(sj)) its correlation function, where h =
si − sj is the lag separation vector.

For any set of distinct points (s1, . . . , sn)T , n ∈ N , we denote by Qij =
(Q(si), Q(sj))

T , i 6= j, the bivariate random vector and byQ = (Q(s1), . . . , Q(sn))T

the multivariate random vector. Moreover, we denote with fQ and FQ the
marginal probability density function (pdf) and cumulative distribution func-
tion (cdf) of Q(s), respectively, with fQij , the pdf of Qij . Finally with f|Qij |
we denote the density of (|Q(si)|, |Q(sj)|)T .

Let G = {G(s), s ∈ A}, be a zero-mean and unit variance Gaussian RF
with correlation ρG(h) and with some abuse of notation, we set ρ(h) := ρG(h).
Since, in what follows, the proposed non-Gaussian RFs are obtained through
the transformation of (independent copies of) G, henceforth, we call G and
ρ(h) the underlying Gaussian RF and underlying correlation model, respec-
tively.

Our proposal considers a general class of RFs with an (a)symmetric marginal
distribution of the two-piece type (Arellano-Valle et al., 2005). The basic idea
behind these kind of marginal (a)symmetric models is to form a distribution
by joining two half symmetric distributions with different scale parameters.

Let H = {H(s), s ∈ A} be a stationary RF, and consider the function

g(η) := a(η)
a(η)+b(η) , where a(η) and b(η) are known and positive asymmetry

functions, and η is the asymmetry parameter defined on some subset of IR.
The first step of our construction considers a discrete RF Kη = {Kη(s), s ∈ A}
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Kη(sj)
a(η) −b(η)

Kη(si)
a(η) p(h) g(η)− p(h) g(η)
−b(η) g(η)− p(h) 1− 2g(η) + p(h) 1− g(η)

g(η) 1− g(η) 1

Table 1 Bivariate distribution of Kη;ij = (Kη(si),Kη(sj))
T .

defined as:

Kη(s) :=

{
a(η), if H(s) < qg(η)
−b(η), if H(s) ≥ qg(η)

(1)

where qx is the quantile of order x of the marginal distribution of H.
Then, by construction, Pr(Kη(s) = a(η)) = g(η) = 1 − Pr(Kη(s) =

−b(η)). In principle, H can be any type of stationary RF; however, in what
follows, we assume that H ≡ G, the underlying Gaussian RF with correlation
model ρ(h).

Under this setting, IE(Kη(s)) = a(η) − b(η), V ar(Kη(s)) = a(η)b(η) and,
from the bivariate distribution of Kη;ij in Table 1, we have:

IE(Kη(si)Kη(sj)) = (a(η)+b(η))2p(h)−2a(η)b(η)g(η)+b2(η)(1−2g(η)), (2)

where

p(h) := Pr(Kη(si) = a(η),Kη(sj) = a(η)) = Φ2

(
qg(η), qg(η); ρ(h)

)
. (3)

Here Φ2(·; ·, x) is the cdf of a bivariate standard Gaussian distribution with
correlation x. Note that 0.25 ≤ p(h) ≤ 0.5 and it is approximatively equals to
0.25 (0.5) for very low correlations (high correlations).

The second step of our construction considers X = {X(s), s ∈ A}, a real-
valued stationary zero-mean RF independent of Kη with symmetric marginal
distributions.

The final step is a generalization of the stochastic representation given
in Arellano-Valle et al. (2005), that is our proposal considers a class of RFs
Pη = {Pη(s), s ∈ A} defined using the two RFs defined at the first and second
step:

Pη(s) := |X(s)|Kη(s). (4)

This construction defines a RF with a marginal distribution belonging to a
general class of marginal (a)symmetric distributions of the two-piece type that
includes the models proposed in Fernández and Steel (1998) and Mudholkar
and Hutson (2000) as special cases.

The choice of the marginally symmetric RF X in (4) leads to different RFs
with an (a)symmetric marginal distributions and possibly heavy tails. The
marginal pdf of Pη is given by:

fPη (p) =
1

a(η) + b(η)

[
f|X(s)|

(
p

a(η)

)
I[0,∞)(p) + f|X(s)|

(
−

p

b(η)

)
I(−∞,0)(p)

]
(5)
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or equivalently

fPη (p) =
2

a(η) + b(η)

[
fX(s)

(
p

a(η)

)
I[0,∞)(p) + fX(s)

(
p

b(η)

)
I(−∞,0)(p)

]
(6)

where IA(x) denotes the indicator function of the set A. Note that the special
symmetric case is obtained when a(η) = b(η).

The marginal mean and variance of the general two-piece class of RFs are
respectively given by:

IE(Pη(s)) = (a(η)− b(η))IE(|X(s)|), (7)

V ar(Pη(s)) = (a2(η)+b2(η)−a(η)b(η))IE(|X(s)|2)−(a(η)−b(η))2(IE(|X(s)|))2,
(8)

For n sites, (s1, . . . , sn)T , the joint distribution of the random vector
P = (Pη(s1), . . . , Pη(sk))T depends on the joint distribution of the random
vector K = (Kη(s1), . . . ,Kη(sk))T that can be derived from the multivariate
Gaussian cdf Φn(·;Rn), with Rn = [ρ(si−sj)]ni,j=1. While the probability can
be estimated by fast and accurate quadrature for small n (Genz and Bretz,
2009), when n is large it requires Monte Carlo sampling (see Azzimonti and
Ginsbourger, 2018, for instance). This fact makes a likelihood approach im-
practical from computational viewpoint when estimating the parameters of
Pη.

For this reason, we address the estimation problem using wpl (see Section
4). This method of estimation requires the knowledge of the bivariate pdf that
in our case is given by:

fPη;ij (pi, pj) =
p(h)

a2(η)
f|Xij |

(
pi

a(η)
,
pj

a(η)

)
I[0,∞)×[0,∞)(pi, pj)

+
g(η)− p(h)

a(η)b(η)
f|Xij |

(
pi

a(η)
,−

pj

b(η)

)
I[0,∞)×(−∞,0)(pi, pj)

+
g(η)− p(h)

a(η)b(η)
f|Xij |

(
−

pi

b(η)
,
pj

a(η)

)
I(−∞,0)×[0,∞)(pi, pj)

+
(1 + p(h)− 2g(η))

b2(η)
f|Xij |

(
−

pi

b(η)
,−

pj

b(η)

)
I(−∞,0)×(−∞,0)(pi, pj). (9)

The computation of fPη;ij (pi, pj) depends on p(h) that requires the compu-
tation of bivariate Gaussian probabilities. They can be easily calculated using
the most important statistical softwares including R, MATLAB and Python.
In particular, the R package GeoModels use the R package pbivnorm (Genz
and Kenkel, 2015) that implements the methods proposed in Gentz (1992).

Finally, the correlation function of Pη can be easily obtained as:

ρPη (h) =
IE(|X(si)||X(sj)|)IE(Kη(si)Kη(sj))− IE(|X(s)|)2IE(Kη(s))2

V ar(Pη(s))
,

(10)
where IE(Kη(si)Kη(sj)) is given in (2).

From (7), (8) and (10) it is apparent that the knowledge of the mean, vari-
ance and correlation function of Pη depends on the knowledge of IE(|X(s)|a)
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for a = 1, 2 and IE(|X(si)||X(sj)|). Additionally, the bivariate pdf of Pη de-
pends on the distribution of the bivariate random vector |Xij | = (|X(si)|, |X(sj)|)T .
In Sections 3 and 4, we study two examples where these quantities can be ex-
plicitly calculated.

Different choices of a(η) and b(η) can be considered. In our examples in
Section 3 and 4, we consider a(η) = 1− η and b(η) = 1 + η, where η ∈ (−1, 1)
is the skewness parameter and η = 0 correspond to the symmetric case. This
is motivated by a more stable behaviour with respect to other choices of the
symmetry functions (Arellano-Valle et al., 2005).

Note that a simplified version of the general class in Equation (4) can be
obtained assuming Kη(si) ⊥ Kη(sj) for i 6= j, as suggested in Arellano-Valle
et al. (2005). Under this assumption, Pη is still a RF with two-piece marginal
distributions; however, in this case, it can be shown that the resulting correla-
tion function exhibits a discontinuity at the origin, and as a consequence, the
RF is not mean square continuous (Stein, 1999). This leads to a RF with a
‘forced’ nugget effect that is not suitable for spatial data exhibiting continuous
realization behaviour.

In our construction, if X is obtained as a transformation of a Gaussian RF
with underlying correlation function ρ(h) as in Section 3 and 4, then a nugget
effect can be easily introduced by choosing a correlation function discontinuous
at the origin i.e. by replacing ρ(h) with ρ∗(h) = ρ(h)(1 − τ2) + τ210(||h||),
where 0 ≤ τ2 < 1. In addition, using the correlation function of Pη, it can
be shown that the RF is mean square continuous but is not mean square
differentiable. As a consequence, the RF does not inherit the mean square
differentiability of the parent RF. This can be a drawback when using two-
piece RFs for modelling spatial data exhibiting smoothed behaviour.

Finally, a more flexible model than Pη can be obtained by defining a new
RF Z = {Z(s), s ∈ A} through a location and scale transformation:

Z(s) = µ(s) + σPη(s) (11)

where µ(s) is the location dependent mean and σ > 0 is a scale parameter.
A typical parametric specification for the mean is given by µ(s) = X(s)Tβ

where X(s) ∈ IRk is a vector of covariates and β ∈ IRk but other types
of parametric or nonparametric functions can be considered. Additional non-
stationarity can be added into the formulation of (11) by allowing the scale
parameter σ to depend on the location s. All the properties studied in this
Section can be easily extended from Pη to Z including the bivariate density
which is given by :

fZij (zi, zj) =
1

σ2
fPη;ij

(
zi − µ(si)

σ
,
zj − µ(sj)

σ

)
. (12)

3 Two-piece Gaussian random fields

In this Section we focus in an important example of the class proposed in
Equation (4). In particular we study a RF with two-piece Gaussian marginal
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distribution (Wallis, 2014) obtained when X in (4) is a standard Gaussian RF
G with underlying correlation ρ(h) that is:

Pη(s) = |G(s)|Kη(s). (13)

We highlight that G and Kη share the same underlying correlation ρ(h). In
principle, the underlying correlation structure of G need not coincide with
that of Kη. However, if we would use a different correlation function, sepa-
rate inference on its parameters would be needed complicating the estimation
procedure.

Using (6), the marginal pdf is given by:

fPη(s) = φ

(
p

1− η

)
I[0,∞)(p) + φ

(
p

1 + η

)
I(−∞,0)(p)

where φ(·) is the pdf of the standard Gaussian distribution. In this case,
IE(|G(s)|) =

√
2/π and IE(|G(s)|2) = 1 and, from Zhang and El-Shaarawi

(2010), we have:

IE(|G(si)||G(sj)|) =
2

π

[
(1− ρ2(h))1/2 + ρ(h) arcsin(ρ(h))

]
. (14)

Then, using (7) and (8), we have IE(Pη(s)) = −2η
√

2/π, V ar(Pη(s)) = 1 +
3η2− 8η2/π and combining (10) and (14), the correlation function of the two-
piece Gaussian RF Pη is given by:

ρPη (h) =
2
[
(1− ρ2(h))1/2 + ρ(h) arcsin(ρ(h))

]
(3η2 + 2η + 4p(h)− 1)− 8η2

3η2π − 8η2 + π
.

(15)
Finally, the bivariate pdf of Pη;ij can be easily obtained using (9) with

the pdf of the bivariate random vector (|G(si)|, |G(sj)|)T given by (Murthy,
2015):

f|Gij |(gi, gj) =
2

π(1− ρ2(h))1/2

e− (g2i+g
2
j−2ρ(h)gigj)

2(1−ρ2(h)) + e
−

(g2i+g
2
j+2ρ(h)gigj)

2(1−ρ2(h))

 I(0,∞)×(0,∞)(gi, gj)

(16)

It can be easily seen from (15) that ρ(h) = 0 if and only if ρPη (h) = 0.
Since ρ(h) = 0 also implies that the pdf of Pη;ij can be written as the product
of two two-piece Gaussian pdfs, we have that the pairwise zero correlation of
Pη implies pairwise independence of Pη as in the Gaussian case.

As outlined in the Introduction, if η = 0, we have an interesting example
where the marginal distribution is Gaussian, but the bivariate is not and the
the case η 6= 0 allows to obtain an asymmetric marginal distribution. In both
cases, a particular type of bivariate dependence is obtained. To visualize this,
we consider the associated contour plots and compare them with the contour
plots of a skew-Gaussian RF (Zhang and El-Shaarawi, 2010), which is a natural
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competitor since both marginal models allow to model skewness. Its stochastic
representation is given by:

Sβ(s) = β|G1(s)|+ σG2(s) (17)

where G1 and G2 are independent copies of G sharing a common underly-
ing correlation function ρ(h), β ∈ IR is an asymmetry parameter, σ > 0
is a scale parameter. Marginally, Sβ(s) follows a skew-Gaussian distribution
SN(0, ω2, α) (Azzalini and Capitanio, 2014) with ω2 = (β2 + σ2)/σ2 and
α = β/σ and its pdf is given by:

fSβ (y) =
2

ω
φ
( y
ω

)
Φ
(
α
y

ω

)
.

In addition, IE(Sβ(s)) = (β/σ)(2/π)1/2, var(Sβ(s)) = 1+(β/σ)2(1−2/π) and
the correlation function is given by:

ρSβ (h, β, σ) =
2β2

πσ2 + β2(π − 2)

(
(1− ρ2(h))1/2 + ρ(h) arcsin(ρ(h))− 1

)
+

σ2ρ(h)

σ2 + β2(1− 2/π)
.

(18)

In the comparison, we choose the parameters in such a way that the asso-
ciated marginal pdfs are approximatively equal. Specifically, for the two-piece
Gaussian RF Pη, we set η = 0, 0.2, 0.6 and for the skew-Gaussian RF Sβ we
set β = 0,−0.8,−1.2, σ = 1.

The upper part of Figure 2 depicts the contour plots of the bivariate density
of the two-piece Gaussian RF and the bottom part displays the contour plots
of the bivariate density of the skew-Gaussian RF (Alegria et al., 2017) when
the underlying correlation is ρ(h) = 0.8, under the specified setting. In the
symmetric case (η = 0 and β = 0, respectively), it is apparent that the contour
plot of the two-piece Gaussian RF displays a clear X-shape. On the contrary,
in the skew-Gaussian case the contour-plot is elliptical since the Gaussian RF
is a special case of the skew-Gaussian RF when β = 0. Clearly, even in the non-
symmetric case (η = 0.2, 0.6 and β = −0.8,−1.2 respectively), the dependence
is of the same type for the two-piece Gaussian and skew-Gaussian RFs. Figure
3 displays the same comparison but with correlation ρ(h) = 0.1. In this case,
the X-shape of the contour plots tends to disappear as expected since we are
approaching the zero correlation, which implies independence, as previously
highlighted.

Finally, Figure 4 (first column) depicts a realization of P0.2 and of S−0.8
(setting σ = 1) on a irregular grid in [0, 1]2. As an underlying correlation
model, we consider a special case of the generalized Wendland model (Bevilac-
qua et al., 2019a)

ρα,δ(h) := (1− ||h||/α)
δ
+ (19)

setting α = 0.4 and δ = 4. In both cases we detect the spatial outliers, as in
the Introduction, using the algorithm proposed in Chen et al. (2008). They are
highlighted with a small black circle. In this example the algorithm detects 57
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Fig. 2 Contour plot of the bivariate pdf of the two-piece Gaussian RF Pη (upper) when
η = 0, 0.2, 0.6 (from left to right). Contour plot of the bivariate pdf of the skew-Gaussian
RF Sβ (bottom) when β = 0,−0.8,−1.2 (from left to right). The underlying correlation in
both cases is ρ(h) = 0.8.

spatial outliers and 3 spatial outliers for the two-piece Gaussian RF and skew-
Gaussian RF respectively. In addition, Figure 4 (second and third column)
shows the associated (asymmetric) histograms and the h−scatterplots based
on neighborhoods that display, as expected, the X-shape in particular for
m = 5, 15.

4 Two-piece Tukey-h random fields

More flexible two-piece RFs can be obtained by considering in (4) a RF X
with symmetric marginal distribution with heavier tails than those induced by
a Gaussian distribution. Two notable examples are the Tukey-h RFs proposed
in Xua and Genton (2017) and the t RFs proposed in Bevilacqua et al. (2021).
In this Section we focus on the Tukey-h RF.

Let Th = {Th(s), s ∈ A} a zero-mean RF with Tukey-h marginal distribu-
tion defined through a monotonic transformation of the underlying standard
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Fig. 3 The same of Figure 2 with ρ(h) = 0.1.

Gaussian RF G as:

Th(s) =: τh(G(s)) = G(s)e
h(G(s))2

2 . (20)

This kind of RF has marginal symmetric distributions and is a special case of
the Tukey g − h RF proposed in Xua and Genton (2017). In particular, the
parameter h ∈ (0, 1/2) governs the tail behaviour of the RF, with a larger
value of h indicating a heavier tail. The Tukey-h univariate pdf is given by:

fTh(s)(t) =
τ−1h (t)

t(1 +W (ht2))
φ(τ−1h (t); 0, 1), (21)

where τ−1h (t) = sign(t)
(
W (ht2)

h

)1/2
and W (·) is the Lambert-W function

(Goerg, 2015).
Setting X ≡ Th in (4), we obtain an RF with a two-piece Tukey-h marginal

distribution:
Pη,h(s) = |Th(s)|Kη(s). (22)

Using (6), the marginal pdf of Pη,h is given by:

fPη,h(s) = fTh(s)(p/(1− η))I[0,∞)(p) + fTh(s)(p/(1 + η))I(−∞,0)(p),
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Fig. 4 First row: (from left to right) a realization of a two-piece Gaussian RF P0.2, associ-
ated histogram and associated h-scatterplots. Second row: (from left to right) a realization of
a skew-Gaussian RF S−0.8, associated histogram and associated h-scatterplots. The under-
lying correlation model is ρ(h) = (1− ||h||/0.4)4+. Small black circles in a) and d) represent
spatial outliers.

and in this case it can be easily shown that IE(|Th(s)|) =
√
2√

π(1−h) and E(|Th(s)|2) =

(1− 2h)−3/2.
Then using (7) and (8), we have IE(Pη,h(s)) = −2η

√
2/π/(1 − h) and

V ar(Pη,h(s)) = (1 + 3η2)/(1− 2h)1.5 − 8η2/(π(1− h)2).
The bivariate pdf of Pη,h can be obtained using (9), where the pdf of the

vector (|Th(si)|, |Th(sj)|)T is given by

f|Th,ij |(ti, tj) = fTij (ti, tj) + fTij (−ti,−tj) + fTij (−ti, tj) + fTij (ti,−tj) (23)

where fTij (·, ·) is the bivariate pdf Tukey-h distribution given by Goerg (2015):

fTij (ti, tj) =
τ−1h (ti)τ

−1
h (tj)

titj(1 +W (ht2i ))(1 +W (ht2j ))
φ2(τ−1(ti), τ

−1(tj),0, R2). (24)

Here, R2 = [ρ(si − sj)]2i,j=1, the bivariate correlation matrix associated with
the underlying correlation function ρ(h).

Figure 5 depicts the contour plot of the bivariate pdf of Pη,h;ij when h = 0.1
and η = 0, 0.2, 0.6 (from left to right) and ρ(h) = 0.8, 0.1 (the top and bottom,
respectively). Note that in the symmetric case η = 0 the marginal pdf is
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Tukey-h as in in Equation (21) but the bivariate pdf is not the bivariate pdf in
Equation (24). Also in this example, it is apparent the X-shape of the contour
plots when the correlation is strong, ρ(h) = 0.8.
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Fig. 5 Contour plot of the bivariate pdf of Pη,h;ij that is the bivariate distribution of the
two-piece Tukey-h RF when η = 0, 0.2, 0.6 (from left to right) and the underlying correlation
is ρ(h) = 0.8 (first row) and ρ(h) = 0.1 (second row). Overall, the tail parameter is h = 0.1.

The following lemma gives the (1, 1)−th product moment of the half Tukey-
h distribution, which is useful for giving an analytic expression for ρPν,η (h).
It depends on a function c : [0, 1]→ [1,∞) defined as

c(x) :=

√
xarcsin(

√
x) +

√
1− x

(1− x)3/2
, 0 ≤ x ≤ 1

which is a specific instance of the Gauss hypergeometric function (see the proof
in the Appendix)

Lemma 1 Let Th, h ∈ [0, 1/2) be a weakly stationary Tukey-h RF with an
underlying correlation ρ(h). Then:

IE(|Th(si)||Th(sj)|) =
2(1− ρ2(h))3/2

πg2(h, h)
c

(
ρ2(h)

g2(h, h)

)
. (25)
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where g(h, h) = 1− (1− ρ2(h))h

We are now ready to give the correlation function of Pη,h.

Theorem 1 Let Pη,h, h ∈ [0, 1/2) be a stationary RF with two-piece Tukey-h
marginals. Then:

ρPη,h(h) =

2(1−ρ2(h))3/2
πg2(h,h) c

(
ρ2(h)
g2(h,h)

)
(3η2 + 2η + 4π11 − 1)− 8η2

π(1−h)2

(1+3η2)
(1−2h)3/2 −

8η2

π(1−h)2
(26)

Proof Combining Equation (10) and Equation (25), we obtain (26).
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Fig. 6 From left to right: a realization of a two-piece Tukey-h P−0.2,0.1, associated
histogram and associated h-scatterplots. The underlying correlation model is ρ(h) =
(1− ||h||/0.4)4+. Small black circles in a) represent spatial outliers.

In Figure 6 we show a realization on a irregular grid in [0, 1]2 of a two-
piece Tukey-h RF with h = 0.1 and η = −0.2, with underlying correlation
model given in (19) with α = 0.4 and δ = 4. Also in this case we highlight the
detected spatial outliers, using the algorithm proposed in Chen et al. (2008),
with a small black circle. In addition, in Figure 6, we show the associated
histogram and h-scatterplots based on neighborhoods.

Finally, Figure 7 depicts the correlation functions (dotted line) of the two-
piece Gaussian Pη and two-piece Tukey-h Pη,h with η = 0.2 and h = 0.1 RFs
in Equations (15) and (26) compared with the underlying Gaussian correla-
tion function ρ0.3,4(h) (continuous line). It can be appreciated that when the
underlying correlation is approximatively zero, then ρP0.2(h) and ρP0.2,0.1(h)
are approximately zero. Actually, if the underlying correlation model ρ(h) is
compactly supported, then it can be shown that the resulting two-piece type
correlations inherits this feature.
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Fig. 7 From left to right: Correlation functions (dotted line) of the two-piece Gaussian
P0.2, two-piece Tukey-h P0.2,0.1 RFs in Equations (15), (26) compared with the underlying
Gaussian correlation function ρ(h) = (1− ||h||/0.4)4+ (continuous line).

5 Numerical results

5.1 Weighted pairwise likelihood estimation

Let z = (z1, . . . , zn)T be a realization of a RF Z = {Z(s), s ∈ A ⊂ IR2}
defined as

Z(s) = µ(s) + σY (s) (27)

observed at distinct spatial locations s1, . . . , sn, with si ∈ A, where Y =
Pη, Pη,h can be the two-piece Gaussian or the two-piece Tukey-h RFs defined
in Section 3 and 4.

Let θ = (µ, σ2, η,αT ), be the vector of unknown parameters where α is
the vector parameter associated with the underlying parametric correlation
model ρα(h), σ2 > 0 is the scale parameter, and η ∈ (−1, 1) is the skewness
parameter. In addition µ is the vector parameter associated with the spatial
mean µ(s), and here, for simplicity, we assume a spatial constant mean µ(s) =
µ. In the case of two-piece Tukey-h RF we have an additional tail parameter,
h ∈ (0, 1/2).

Composite likelihood is a a general class of objective functions based on
the likelihood of marginal or conditional events (Lindsay, 1988; Varin et al.,
2011). This kind of estimation method can be helpful when it is difficult to
evaluate or to specify the full likelihood. In particular the wpl method has
been widely used for the estimation of complex non-Gaussian RFs because
in some circumstances the multivariate distribution is unknown and/or diffi-
cult to compute but the bivariate density is known and relatively simply to
evaluate.
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Specifically, the method of wpl combines the bivariate distributions of all
possible distinct pairs of observations. The wpl function is given by

pl(θ) :=

n∑
i=1

n∑
j=1

log(fZij (zi, zj ;θ))cij ,

where fZij (zi, zj ;θ) is the bivariate density obtained by coupling the gen-
eral bivariate density in Equation (9) with Equations (16) and (23) for the
two-piece Gaussian or the two-piece Tukey-h RFs respectively and cij is a
nonnegative suitable weight.

In general, a loss of statistical efficiency is expected from wpl estimation
with respect to the maximum likelihood estimation and the role of the weights
cij is to minimize this loss. The choice of symmetric cut-off weights, namely,

cij =

{
1 ‖si − sj‖ ≤ ds
0 otherwise

, (28)

for a positive value of ds, can be motivated by its simplicity and by observing
that the dependence between observations that are distant is weak. It has
been shown that this kind of weights allows to improve both the statistical
and computational efficiency of the method (Bevilacqua and Gaetan, 2015;
Joe and Lee, 2009). The maximum wpl estimator is given by

θ̂ := argmaxθ pl(θ)

and, arguing as in Bevilacqua et al. (2012) and Bevilacqua and Gaetan (2015),
under some mixing conditions, it can be shown that under increasing domain
asymptotics, θ̂ is consistent and asymptotically Gaussian with the asymptotic
covariance matrix given by G−1n (θ) the inverse of the Godambe information
Gn(θ) := Hn(θ)Jn(θ)−1Hn(θ), where Hn(θ) := IE[−∇2 pl(θ)] and Jn(θ) :=
Var[∇pl(θ)]. Standard error estimation can be obtained considering the square

root diagonal elements of G−1n (θ̂). Moreover, model selection can be performed
by considering an information criterion, defined as

PLIC := −2 pl(θ̂) + 2tr(Hn(θ̂)G−1n (θ̂)) (29)

which is the composite likelihood version of the Akaike information criterion
(Varin and Vidoni, 2005). The computation of standard errors and information

criterion requires evaluation of the matrices Hn(θ̂) and Jn(θ̂). However, the

evaluation of Jn(θ̂) is computationally unfeasible for large datasets and in this
case subsampling techniques can be used to estimate Jn(θ) as in Bevilacqua
et al. (2012) and Heagerty and Lele (1998). A straightforward and more robust
alternative is parametric bootstrap estimation of G−1n (θ) (Bai et al., 2014;
Efron, 1982). We adopt the second strategy in our paper.

To analyse the performance of the wpl method, we perform a small sim-
ulation study. As a simulation setting, we consider points si ∈ A = [0, 1]2,
i = 1, . . . , N . Specifically, we simulate 1, 000 realizations of the proposed two
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models observed at N = 500 spatial location sites uniformly distributed in
the unit square. Note that one simulation of the two-piece Gaussian or the
two-piece Tukey-h RFs both requires two independent simulations of the un-
derlying Gaussian RF that are performed using Cholesky decomposition.

We consider σ2 = 1, a constant mean µ = 0, and we set h = 0.15 for
Tukey-h. Overall, we set the skewness parameter η = 0, 0.5 that correspond
to the symmetric and asymmetric case respectively. As underlying isotropic
parametric correlation model, we consider the model in Equation (19) with
α = 0.2 and δ = 4, where δ is assumed to be known and fixed. Additionally,
in the wpl estimation, we consider a cut-off weight function with ds = 0.1.

Table 2 shows the bias and MSE of the wpl estimates. As a general com-
ment, the estimates are overall unbiased, and for each model, there are no
significant differences between the symmetric case (η = 0) and the asymmet-
ric case (η = 0.5) in terms of MSE. Additionally, the MSE of the parameters is
not affected by the kind of model except for the σ2 parameter. As an illustra-
tive example, Figures 8 and 9 show the boxplots of the wpl estimates for the
estimation of the two-piece Gaussian (with η = 0.5) and two-piece Tukey-h
(with η = 0) RF parameters, respectively.

two-piece Gaussian two-piece Tukey-h
η = 0 η = 0.5 η = 0 η = 0.5

Bias MSE Bias MSE Bias MSE Bias MSE
µ̂ 0.0110 0.0025 0.0083 0.0016 0.0082 0.0019 0.0053 0.0016
α̂ −0.0037 0.0006 −0.0035 0.0006 0.0013 0.0007 0.0022 0.0008
σ̂2 −0.0089 0.0099 −0.0094 0.0099 0.0065 0.0220 0.0089 0.0225
η̂ 0.0078 0.0015 0.0066 0.0011 0.0063 0.0018 0.0060 0.0015

ĥ - - - - −0.0062 0.0017 −0.0064 0.0017

Table 2 Bias and MSE when estimating with wpl two-piece Gaussian and two-piece Tukey-
h RFs, that is, µ+ σPη(s) and µ+ σPη,h(s) respectively, with µ = 0, σ2 = 1, h = 0.15 for
different values of the skewness parameter η = 0, 0.5, with underlying generalized Wendland
correlation function ρα,4(h) = (1− ||h||/α)4+ with α = 0.2.

In addition we perform a small simulation study to analyze the performance
of the PLIC information criterion (29). We use the previous simulation setting
and we generate 100 two-piece Gaussian RFs with η = −0.5, 0, 0.5 and estimate
with wpl the Gaussian and two-piece Gaussian RFs. Then, for each RF, we
compute the PLIC information criteria using parametric bootstrap, that is

we compute PLIC = −2 pl(θ̂) + 2tr(Hn(θ̂)Ĝ−1n (θ̂)) where Ĝ−1n (θ̂) is computed

through parametric bootstrap. To be specific, let θ̂ be a parameter estimate for
the two-piece Gaussian o Gaussian RF. For m = 1, . . . ,M , with M = 100, we
simulate data zm with parameter θ = θ̂, and then we fit the model using zm to
obtain estimate θ̂m. The parametric bootstrap estimate of the matrix G−1n (θ̂),

that is Ĝ−1n (θ̂), is then obtained as the empirical variance-covariance matrix

of Θ̂TM where Θ̂M = (θ̂1,. . . ,θ̂M ). When η = −0.5, 0.5 the criteria performs
very well and selects 99 times over 100 the correct (two-piece Gaussian) model.
When η = 0 the criteria performs slightly worse and selects 90 times over 100
the correct (two-piece Gaussian) model. This is not surprising since in this
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Fig. 8 Boxplots of wpl estimates for µ = 0, α = 0.2, σ2 = 1 and η = 0.5 (from left to right)
when estimating a two-piece Gaussian RF.
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Fig. 9 Boxplots of wpl estimates for µ = 0, α = 0.2, σ2 = 1, η = 0 and h = 0.15 (from left
to right) when estimating a two-piece Tukey-h RF.

case, both RFs share the same marginal Gaussian distribution. Finally, we
replicated this numerical experiment by simulating from a Gaussian RF and
also in this case the information criteria performs very efficiently, selecting 100
times over 100 the correct (Gaussian) model.

5.2 Optimal linear prediction performance

The optimal predictor for the two-piece RF, with respect to the mean squared
error criterion, is nonlinear and difficult to evaluate explicitly since it requires
the knowledge of the finite dimensional distribution. A practical and less ef-
ficient solution can be obtained using the optimal linear predictor. In this
Section, we study the performance of the optimal linear predictor of the two-
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piece Gaussian RF, Z(s) = µ(s) + σPη(s) and of the optimal predictor of the
Gaussian RF, Z(s) = µ(s) + σX(s).

Specifically, we compare the prediction performance of the optimal (linear)
predictor at an unknown location s0 using the vector data z given by:

Ẑ(s0) = µ(s0) + cTΣ−1(z − µ), (30)

where, for the two-piece Gaussian case, µ(s0), the vector mean µ, the covari-
ance matrix Σ and the covariance vector c can be computed using the expres-
sion given in Section 3. In particular the covariance matrix, can be computed
using the correlation function given in Equation (15).

To compare the prediction performance we adopt a resampling approach
and we explore how well the optimal linear predictor works under the two-
piece Gaussian RF, compared with the optimal prediction of the (misspecified)
Gaussian RF, using root mean squared error (RMSE) and mean absolute error
(MAE) as measures of prediction performance. In particular, we consider the
following steps:

1. Set j = 1. Repeat until j ≤ 100.
2. Simulate the j-th spatial dataset zj = (zj(s1), . . . , zj(s500))T from the pro-

posed two-piece Gaussian RF by considering 500 location sites uniformly
distributed on the unit square.

3. Set k = 1. Repeat until k ≤ 100.
4. Randomly split the j-th dataset zj by using 85% of the data (425 observa-

tions) for estimation and 15% as the validation dataset (75 observations).
We call them zEj and zVj respectively.

5. Estimate with wpl the two-piece Gaussian RF and with maximum likeli-
hood the Gaussian RF using data zEj .

6. Compute the optimal (linear) predictor for the Gaussian and two-piece
Gaussian RFs at the coordinates associated with the validation dataset,
given the estimates obtained at the previous step.

7. Compute, for both models, RMSEk =

[
1
75

75∑
i=1

(
zVj (si)− ẐVj (si)

)2] 1
2

and

MAEk = 1
75

75∑
i=1

|zVj (si) − ẐVj (si)| where ẐVj (si) is the optimal (linear)

predictor computed at the previous step.

8. k = k+1. Compute RMSEj =
100∑
k=1

RMSEk/100 and MAEj =
100∑
k=1

MAEk/100

for the two-piece Gaussian and Gaussian models.

9. j = j + 1. Compute RMSE =
100∑
j=1

RMSEj/100 and MAE =
100∑
j=1

MAEj/100

for the two-piece Gaussian and Gaussian models.

This numerical experiment has been performed by simulating (at step 2)
from a two-piece Gaussian RF setting µ = 0, σ2 = 1 and η = −0.5, 0, 0.5 with
an underlying correlation model given in (19) with α = 0.2 and δ = 4. For the
wpl estimation of the two-piece Gaussian models, we set ds = 0.1. Table 3, left
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part, summarizes the results of our experiment, showing the RMSE and MAE
for two-piece Gaussian RF and Gaussian RF when η = 0, 0.5, 0.5. The optimal
linear predictor for the two-Piece Gaussian RF is the best in all scenarios
using both RMSE and MAE as measure of prediction performance, including
the case η = 0 (recall that in this case the Gaussian and two-piece Gaussian
RFs share the same marginal Gaussian distribution). We finally replicate the
numerical experiment simulating from a Gaussian RF at step 2. As expected,
in this case, the optimal Gaussian predictor clearly outperforms the two-piece
optimal linear predictor in terms of RMSE and MAE (see right part of Table 3).
These numerical experiments suggests that if the true model is a Gaussian RF,
then predicting with the proposed two-piece Gaussian RF is not recommended.

Two-piece Gaussian
Gaussian

η = −0.5 η = 0 η = 0.5
RMSETP 0.9595 0.9029 0.9553 0.763
RMSEG 0.9689 0.9189 0.9654 0.719
MAETP 0.7413 0.6827 0.7485 0.601
MAEG 0.7543 0.6946 0.7575 0.564

Table 3 Empirical mean of RMSE and MAE associated with the optimal linear predictor of
the two-piece Gaussian RF (TP) and with the optimal predictor based on the Gaussian RF
(G) when η = −0.5, 0,−0.5, under the two-piece Gaussian RF (left part) and the Gaussian
RF (right part).
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6 Real data Application

We consider a subset of a global data set of merged mean daily temperature
measurements from the Global Surface Summary of Day data (GSOD) with
European Climate Assessment &Dataset (ECA&D) data in July 2011. The
dataset is described in detail in Kilibarda et al. (2014) and is available in the
R package meteo. The subset we consider consists of the mean temperature
observed on July 4 at the 461 location sites, z(si), i = 1, . . . , 461, in the region
with longitude [33, 80] and latitude [23, 40] i.e. a partial region of Middle East
including countries like Saudi Arabia, Iran, Irak and Siria.

Figure 10 (a) shows the observed region and a colored map of the spatial
observed points. As in Section 1, using the algorithm proposed in Chen et al.
(2008), we highlight the detected spatial outliers with a small black circle. In
addition, Figure 10 (b) shows four h-scatterplots using m = 10, 20, 30, 40 as
neighborhood order. Following the same arguments of Section 1, both graphics
suggest the presence of some spatial outliers.

Additionally, Figure 10 (c) shows the boxplot of the mean temperature
data. It highlights that asymmetry and possibly heavy tails are features that
should be considered from a modelling viewpoint. Finally, the empirical semi-
variogram in Figure 10 (d) suggests that a nugget effect should be also included
in the analysis. These preliminary graphical analysis suggest that a RF with
flexible marginal distribution and that take into account the presence of spatial
outliers is potentially an appropriate model for our data. The proposed two-
piece Gaussian and two-piece Tukey-h RFs possess these two specific features.
In our analysis we consider seven RFs of the following type:

Z(s) = µ+ σR(s), s ∈ IR2 (31)

where R = G,P0, Pη, Sη, Th, P0,h, Pη,h that is we consider a location and scale
transformation of respectively:

1) a Gaussian RF.
2) a two-piece Gaussian RF fixing η = 0 that is with Gaussian marginal

distributions.
3) a two-piece Gaussian RF with η ∈ (−1, 1) that is with (a)symmetric

marginal distributions.
4) a Skew-Gaussian RF.
5) a Tukey-h RF.
6) a two-piece Tukey-h RF fixing η = 0 that is with Tukey-h marginal distri-

butions.
7) a two-piece Tukey-h RF with η ∈ (−1, 1) that is with (a)symmetric marginal

distributions.

For each of the seven RFs considered, we assume an underlying isotropic
correlation function of the exponential type that includes a nugget effect i.e.
ρ(h) = e−||h||/α(1− τ2) + τ210(||h||), where 0 ≤ τ2 < 1.

We estimate the seven RFs with wpl using the weight function (28) with
ds = 280. The results are summarized in Table 4, where we also report the stan-
dard error estimation and the information criterion PLIC computed through



24 Moreno Bevilacqua et al.

Fig. 10 a) spatial locations of the data. b) h-scatterplot, c) histogram of the data. d)
Empirical semivariogram estimation.
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parametric bootstrap as explained in Section 5. Note that the mean and the
spatial scale dependence estimates are quite similar, as expected. Addition-
ally, the estimation of the skewness parameter (η) and heavy tail parameter
(h) shows that the deviation from the marginal Gaussian distribution is sig-
nificant (recall that η ∈ (−1, 1) for the two-piece models and h ∈ (0, 0.5)).

More importantly the PLIC information criterion selects the two-piece type
models. In particular, an interesting comparison is between model 1 y 2 and 5
y 6. In the first comparison both models have marginal Gaussian distribution
and the same number of parameters. In the second case, both models have
marginal Tukey-h distribution and the same number of parameters. However,
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the CLIC information criterion selects model 2 and 6 respectively. i.e. the sym-
metric two-piece type models. A global comparison show that the best selected
model is model 6.
Finally, Figure 11 depicts the graphical comparison between the empirical and
estimated semivariograms of the residuals for models 1, 2 and 6 i.e. for the
Gaussian, two-piece Gaussian (η = 0) and two-piece Tukey-h (η = 0) RFs
(from left to right). The residuals have been computed as R̂(si) = (Z(si) −
µ̂)/σ̂, i = 1, 2, ..461 where µ̂ and σ̂ are wpl estimates. Estimated semivari-
ograms for the two-piece models are computed using the correlation functions
in Equations (15) and (26)

We want to further evaluate the predictive performances of the seven RFs
using RMSE and MAE. As in Section 5.1, we use the following resampling
approach: we randomly choose 85% of the spatial locations and we use re-
maining 15% as data for the predictions. We estimate the seven RFs using
the wpl method and we use the estimates to compute the optimal linear pre-
dictions. Using the predicted values, we then compute the RMSE and MAE.
Specifically, for each j − th left-out sample (zLj (s1), . . . , . . . , zLj (sK)), we com-
pute

RMSEj =

[
1

K

K∑
i=1

(
zLj (si)− ẐLj (si)

)2] 1
2

and

MAEj =
1

K

K∑
i=1

|zLj (si)− ẐLj (si)|,

where ẐLj (si) is the optimal linear predictor for each of the seven RFs obtained
using the j − th wpl estimates and K = 70. We repeat the approach j =
1, . . . , 200 times and record all RMSEs and MAEs. Finally, we compute the
overall mean for each of the seven RFs, which is RMSE =

∑200
j=1 RMSEj/200

and MAE =
∑200
j=1 MAEj/200. The results are summarized in Table 4. The

two-piece models clearly outperforms Gaussian and skew-Gaussian RFs. In
particular the model with the best prediction performance is the asymmetric
two-piece Tukey-h (model 7).

7 Concluding remarks

We introduced a new class of random fields with two-piece marginal distri-
butions for regression and dependence analysis when addressing spatial point
referenced data exhibiting skewness and possibly heavy tails. In particular, we
focused on two examples: two-piece Gaussian and two-piece Tukey-h random
fields. The proposed two-piece random fields have extremely flexible marginal
distributions and can, therefore, be applied to a wide range of applications.
The main feature of the proposed class is that it has a specific type of de-
pendence that can be useful when modeling data displaying spatial outliers
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Fig. 11 Comparison between the empirical and estimated semivariogram of the residuals
for the Gaussian, two-piece Gaussian RF and two-piece Tukey-h RFs when η = 0. (from left
to right).

η̂ ĥ µ̂ α̂ σ̂2 τ̂2 WPL PLIC RMSE MAE

Gaussian
- - 30.762 472.074 34.470 0.383 −25535.7 52385.9 4.105 2.858

(1.721) (323.94) (6.004) (0.104)

Two-piece Gaussian
0 - 31.503 491.139 35.132 0.834 −25462.7 51069.0 4.091 2.843

- (0.142) (118.703) (3.394) (0.114)

Two-piece Gaussian
0.228 - 32.700 490.581 33.417 0.659 −25276.4 51203.7 4.091 2.845

(0.098) (0.099) (63.970) (4.525) (0.151)

Skew Gaussian
-6.941 - 36.188 305.276 16.662 0.233 −25403.9 52027.9 4.177 2.871
(2.025) (1.980) (145.88) (6.713) (0.181)

Tukey-h
- 0.087 31.168 440.630 26.335 0.293 −25308.5 52019.5 4.097 2.849
- (0.032) (1.644) (192.314) (6.315) (0.092)

Two-piece Tukey-h
0 0.063 31.501 483.131 28.333 0.606 −25319.3 50945.9 4.093 2.846

(0.029) (0.139) (104.215) (4.910) (0.163)

Two-piece Tukey-h
0.140 0.045 31.899 473.237 29.086 0.514 −25230.4 51297.7 4.088 2.837

(0.114 ) (0.029 ) (0.137) (39.383) (5.715) (0.157)

Table 4 Estimates using wpl with associated standard error (in parenthesis), when estimat-
ing the mean temperatures dataset using the models 1, 2, 3, 4, 5, 6, 7 (from top to bottom)
with underlying exponential correlation model with scale parameter α. Last four columns:
maximum of the wpl function (WPL) infomation criterion(PLIC) and empirical mean of
RMSEs and MAEs.

i.e. spatial points with values that are significantly different from those of
other spatial points in its spatial neighbourhood and that do not necessarily
deviate from the remainder of the whole data set (Shekhar et al., 2003). As a
consequence, the use of the proposed models is recommended when modelling
spatial point referenced data displaying these kind of outliers.

From theory of distribution point of view, if the asymmetry parameter is
equal to zero, the proposed models provide new examples of random vectors
with marginal distribution of the Gaussian and Tukey-h type whose bivari-
ate or multivariate distribution are not of the same type (Dutta and Genton,
2014).
A limitation for the proposed class is the lack of computationally feasible den-
sity outside of the bivariate case that prevents an inference approach based
on likelihood methods. However, we showed through some simulation studies
that an inferential approach based on the pairwise likelihood is an effective so-
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lution for estimating the unknown parameters. Another limitation is the lack
of closed form for mean square optimal prediction. However, optimal linear
prediction can be considered satisfactory approximation method of predic-
tion (DeOliveira, 2006; Bevilacqua et al., 2020). In Section 5, we have shown
through a simulation study that when using optimal linear prediction for the
proposed two-piece models, a better prediction performance is obtained with
respect to the optimal (misspecified) Gaussian predictor. Finally, the pro-
posed methodology can be easily extended to other continuos spaces such as
the space-time framework (Gneiting, 2002; Stein, 2005) or the spherical space
(Gneiting, 2013; Porcu et al., 2016) by choosing a suitable underlying corre-
lation function and in can be also extended to discrete spaces by using, for
instance, an underling Gaussian Markov random field (Rue and Held, 2005)
with a specified precision matrix.
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Appendix

7.1 Proof of Lemma 1

Proof We make use of some special functions in this proof. In particular
the parabolic cylinder function Dn(x), the confluent hypergeometric function

1F1(a; b;x) and the Gaussian hypergeometric function 2F1(a; b; c;x) (see Grad-
shteyn and Ryzhik (2007) for the definitions of these functions). By definition,
we have:

IE(|Th(si)||Th(sj)|) = IE(|G(si)e
h(G(si))

2

2 ||G(sj)e
h(G(sj))

2

2 |)

=

∫
R2
+

|gie
hg2i
2 ||gje

hg2j
2 |f|Gij |(gi, gj)dgidgj

=
1

π(1− ρ2(h))1/2

∫
R2
+

gigje
− 1

2(1−ρ2(h))

[
g2i+g

2
j−2ρ(h)gigj

]
e
hg2i
2

+
hg2j
2 dgidgj

+
1

π(1− ρ2(h))1/2

∫
R2
+

gigje
− 1

2(1−ρ2(h))

[
g2i+g

2
j+2ρ(h)gigj

]
e
hg2i
2

+
hg2j
2 dgidgj

= A1 +A2. (32)
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Taking the first integral of (32) and using (3.462.1) of Gradshteyn and Ryzhik
(2007), we obtain

A1 =
1

π(1− ρ2(h))1/2

∫
R+

gje
−

[1−(1−ρ2(h))h]g2j

2(1−ρ2(h))

∫
R+

gie

[
−

[1−(1−ρ2(h))h]g2i
2(1−ρ2(h))

+
ρ(h)gigj

(1−ρ2(h))

]
dgi

 dgj
=

1

π(1− ρ2(h))1/2

[
(1− ρ2(h))

1− (1− ρ2(h))h

] ∫
R+

gje
−
[
[1−(1−ρ2(h))h]

2(1−ρ2(h))
− ρ2(h)

4(1−ρ2(h))[1−(1−ρ2(h))h]

]
g2j

×D−2

(
−

ρ(h)gj√
(1− ρ2(h))[1− (1− ρ2(h))h]

)
dgj , (33)

where Dn(x) is the parabolic cylinder function. Now, considering (9.240) of
Gradshteyn and Ryzhik (2007):

D−2

(
−

ρ(h)gj√
(1− ρ2(h))[1− (1− ρ2(h))h]

)
= e
−

ρ2(h)g2j

4(1−ρ2(h))[1−(1−ρ2(h))h]

× 1F1

(
1;

1

2
;

ρ2(h)g2j

2(1− ρ2(h))[1− (1− ρ2(h))h]

)

+

√
2πρ(h)gj

2
√

(1− ρ2(h))[1− (1− ρ2(h))h]
e
−

ρ2(h)g2j

4(1−ρ2(h))[1−(1−ρ2(h))h]

× 1F1

(
3

2
;

3

2
;

ρ2(h)g2j

2(1− ρ2(h))[1− (1− ρ2(h))h]

)
.

(34)

by combining Equations (34) and the integral of (33) and using (7.621.4) of
Gradshteyn and Ryzhik (2007), we obtain

A1 =
(1− ρ2(h))1/2

π[1− (1− ρ2(h))h]

∫
R+

gje
−

[1−(1−ρ2(h))h]g2j

2(1−ρ2(h))
1F1

(
1;

1

2
;

ρ2(h)g2j

2(1− ρ2(h))[1− (1− ρ2(h))h]

)
dgj

+

√
2πρ(h)

2π[1− (1− ρ2(h))h]3/2

∫
R+

g2j e
−

[1−(1−ρ2(h))h]g2j

2(1−ρ2(h))
1F1

(
3

2
;

3

2
;

ρ2(h)g2j

2(1− ρ2(h))[1− (1− ρ2(h))h]

)
dgj

=
(1− ρ2(h))3/2

π[1− (1− ρ2(h))h]2
2F1

(
1, 1;

1

2
;

ρ2(h)

[1− (1− ρ2(h))h]2

)
+

ρ(h)(1− ρ2(h))3/2

2[1− (1− ρ2(h))h]3
2F1

(
3

2
,

3

2
;

3

2
;

ρ2(h)

[1− (1− ρ2(h))h]2

)
. (35)

Similarly, the second integral of (32) is given by

A2 =
(1− ρ2(h))3/2

π[1− (1− ρ2(h))h]2
2F1

(
1, 1;

1

2
;

ρ2(h)

[1− (1− ρ2(h))h]2

)
−

ρ(h)(1− ρ2(h))3/2

2[1− (1− ρ2(h))h]3
2F1

(
3

2
,

3

2
;

3

2
;

ρ2(h)

[1− (1− ρ2(h))h]2

)
. (36)

Combining Equations (35), (36) in (32), we obtain

IE(|Th(si)||Th(sj)|) =
2(1− ρ2(h))3/2

π[1− (1− ρ2(h))h]2
2F1

(
1, 1;

1

2
;

ρ2(h)

[1− (1− ρ2(h))h]2

)
.
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Finally we use the identity:

2F1

(
1, 1;

1

2
;x

)
=

√
xarcsin(

√
x) +

√
1− x

(1− x)3/2
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