
Filtering out Outliers in Learning to Rank
Federico Marcuzzi

federico.marcuzzi@unive.it
Università Ca’ Foscari Venezia

Venice, Italy

Claudio Lucchese
claudio.lucchese@unive.it

Università Ca’ Foscari Venezia
Venice, Italy

Salvatore Orlando
orlando@unive.it

Università Ca’ Foscari Venezia
Venice, Italy

ABSTRACT

Outlier data points are known to affect negatively the learning pro-
cess of regression or classification models, yet their impact in the
learning-to-rank scenario has not been thoroughly investigated so
far. In this work we propose SOUR, a learning-to-rank method that
detects and removes outliers before building an effective ranking
model. We limit our analysis to gradient boosting decision trees,
where SOUR searches for outlier instances that are incorrectly
ranked in several iterations of the learning process. Extensive ex-
periments show that removing a limited number of outlier data
instances before re-training a new model provides statistically sig-
nificant improvements, and that SOUR outperforms state-of-the-art
de-noising and outlier detection methods.

CCS CONCEPTS

• Information systems→ Learning to rank; Retrieval effec-
tiveness.

KEYWORDS

information retrieval, learning to rank, machine learning
ACM Reference Format:

Federico Marcuzzi, Claudio Lucchese, and Salvatore Orlando. 2022. Filtering
out Outliers in Learning to Rank. In Proceedings of the 2022 ACM SIGIR
International Conference on the Theory of Information Retrieval (ICTIR ’22),
July 11–12, 2022, Madrid, Spain. ACM, New York, NY, USA, 9 pages. https:
//doi.org/10.1145/3539813.3545127

1 INTRODUCTION

Most Learning-to-Rank (LtR) learning algorithms assume that train-
ing sets do not contain noise and outliers [7]. However, this belief is
not always true, because we are in a context where human-labeled
datasets are used. Moreover, the features of query-document vec-
tors may not be sufficient to discriminate relevant documents from
non-relevant ones [3]. For example, in a pair-wise context, which
still covers a large part of the state of the art LtR, the presence
of outliers or erroneously labeled documents leads to a quadratic
growth in the number of incorrect pairs. Consequently, it becomes
necessary to consider the possible presence of outlier instances at
training time. Unlike classification or regression, little has been
done for LtR in this regard. Even less attention has been given to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICTIR ’22, July 11–12, 2022, Madrid, Spain
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9412-3/22/07. . . $15.00
https://doi.org/10.1145/3539813.3545127

GBDT-based learning algorithms, which are nowadays the state of
the art in LtR in terms of both effectiveness and efficacy.

In this work we propose a novel method for handling outliers in
a LtR scenario. Our contributions are as follows. First we propose
a definition of outlier instance in the LtR task that exploits the
iterative nature of gradient boosted decision trees. The algorithm
pays particular attention to outliers present in the training set that
the model finds particularly difficult to rank correctly during subse-
quent gradient boosting rounds. Then, we show how the removal
of these outliers leads to a statistically significant performance in-
crease in terms of NDCG [12] on three publicly available datasets.
In addition, we provide an extensive experimental analysis, we
investigate the behaviour of the proposed algorithm on different
kinds of queries and the impact of the outlier removal on the raw
predictions of the forest. Furthermore, we support the goodness of
our algorithm by comparing against several variants also inspired
by related but less closer works.

The rest of the paper is structured as follow: Section 2 discusses
the related work. In Section 3 we present Surrender on Outliers and
Rank (SOUR), the main contribution of this work. Section 4 provides
an extensive evaluation of SOUR against state-of-the-art competi-
tors. In Section 5 we analysis in details the effects of SOUR on the
learned models and in different scenarios. Finally, in Section 6 we
conclude the work.

2 RELATEDWORK

One of the most common strategies for managing outliers is sample
selection [15, 18]. Outliers are found and treated differently than le-
gitimate samples (removed [13], learned separately [11], reweighed
[7], etc.). In [15] the authors propose a sample selection algorithm
called Isolation Forest. As the name suggests, the algorithm trains
the decision tree forest with a subset of the training set, and then
uses the resulting model to predict whether the remaining instances
are outlier or not. Instances that have, on average, a short path from
root to leaves within the forest are considered outliers. An inter-
esting early work is Robust C4.5 [13], a variant of C4.5 algorithm
[20], robust to outliers. The algorithm iterates, by training at each
phase a decision tree, and then using the resulting model to remove
from the training set the instances that are misclassified. In the next
phase, the pruned dataset is used to train the next decision tree, etc.
The algorithm iterates until no classification errors occur in the
training set. This technique, even if applied to a classification task,
has some similarity to our method, but is much more aggressive
and applies to classification only.

In [23] the authors argue that strategies based on selective sam-
pling are sensitive to changes in noise distribution. Furthermore,
the difficulty in identifying outlier instances may lead to the elimi-
nation of a number of legitimate instances. Another way to deal
with noisy labels inside the dataset is robust learning. Most of these

214

https://orcid.org/0000-0002-8141-8294
https://orcid.org/0000-0002-2545-0425
https://orcid.org/0000-0002-4155-9797
https://doi.org/10.1145/3539813.3545127
https://doi.org/10.1145/3539813.3545127
https://doi.org/10.1145/3539813.3545127

ICTIR ’22, July 11–12, 2022, Madrid, Spain Federico Marcuzzi, Claudio Lucchese, & Salvatore Orlando

Algorithm 1 SOUR Algorithm.

1: function SOUR(D, 𝐴, 𝑠, 𝑒, 𝑡 ,M)
2: 𝐹 ← 𝐴(D,M, 𝑒) ⊲ Train a decision forest

3: 𝑘 ←M.cutoff ⊲ Get metric cutoff
4: for 𝑖 ∈ {𝑠, 𝑠 + 1, 𝑠 + 2, . . . , 𝑒} do ⊲ Find outliers after 𝑖 trees
5: 𝐹𝑖 = GetTreesUpTo(𝐹, 𝑖)
6: O−

𝑖
← {not relevant documents with rank (by 𝐹𝑖) ≤ 𝑘

7: above a relevant document with rank > 𝑘}
8: O+

𝑖
← {relevant documents with rank (by 𝐹𝑖) > 𝑘

9: below a not relevant document with rank ≤ 𝑘}

10: O+ ← ⋂
𝑖∈[𝑠,...,𝑒] O+𝑖 ⊲ Compute consistent outliers

11: O− ← ⋂
𝑖∈[𝑠,...,𝑒] O−𝑖

12: O∗ ← O+ ∪ O−
13: O ← Pick(O+,O−,O∗, 𝑡) ⊲ Select outliers

14: 𝐹 ← 𝐴(D \ O,M) ⊲ Train on the clean dataset

15: return 𝐹

strategies attempt to define a robust loss function in the presence
of noise in the training set [8, 10, 21, 23, 24]. An attempt in the
LtR context was made in [3], a pair-wise meta-learning approach
that takes a linear model as input and generates an outlier-robust
model. The input model hypothesis is refined through a non-linear
sigmoid function. The sigmoid meta ranker performs a non-convex
optimization that converges to a local optimum close to the original
hypothesis. The algorithm exploits the non-linearity of the sigmoid
function in order to suppresses the effect of outliers. In other words
it softens the large negative loss generated by incorrectly ordered
pairs. A more recent attempt of noise-robust training in LtR is
PeerRank [23], which uses the PeerLoss [16] loss function. The
idea is to add synthetic noise instances by drawing at random data
points from the training set and pairing them with random labels.
PeerLoss [16] maximizes the given loss function on the original
training instances and maximizes it on the synthetic noisy ones, so
as to punish models that rank correctly such noise instances. Peer-
Rank focuses on neural networks, and we provide a more effective
implementation based on LambdaMART [22].

3 SOUR LEARNING-TO-RANK ALGORITHM

In this section we present our LtR algorithm which exploits outliers
removal at training time. The rationale is that, rather than training
on the full dataset, it is more beneficial to remove outlier instances
before the training process. Hence the name Surrender on Outliers
and Rank (SOUR). The proposed algorithm, illustrated in Alg. 1,
targets gradient boosted decision trees and encompasses three steps:
i) base model training, ii) outlier detection and removal, and iii)
final model training.

During the first step (line 2), a base decision forest 𝐹 is trained
up to 𝑒 trees on the full datasetD by using any given LtR algorithm
𝐴 and a quality metricM. Ideally, 𝐹 is the best model we can learn
by using 𝐴. Note, SOUR focus on quality metrics that use a cutoff,

4 2 0 3 0 1 0

1 2 3 4 5 6 7

top-k negative
outlier

positive
outlier

...

4 2 1 0 0

1 2 3 4 5 6 7

top-k

...

2 2

misranked

4 3 1 0 0

1 2 3 4 5 6 7 ...

0 0

y

n

rank
position

document relevance

Figure 1: Outlier vs. misranked documents. Top: the docu-

ment at rank 3 occupies a position in the top-𝑘 (𝑘 = 4) that
might be filled by the relevant document at rank 6 and vice

versa. Bottom: even if the ranking is not correct, the top-𝑘

are either full with relevant documents or contain all the

possible relevant documents.

such as NDCG, ERR [6], Precision, etc., but it can easily handle
other metric trough hyper-parameter tuning.

The second and core step of the algorithm (lines 4–13) consists in
using the learnt model 𝐹 to identify ourliers in the training dataset.
To discuss our technique, we need to distinguish between outlier
and misranked instances. For the sake of simplicity and efficiency,
we identify outlier instances solely on the basis of the documents’
rank, derived from the scores that 𝐹 assigns them. We recall that
the most commonly used quality metrics, including NDCG, use a
cutoff threshold 𝑘 , thus limiting their evaluation to the contribution
of the top-𝑘 ranked documents.

Intuitively, we name positive outliers those relevant documents
that are “pushed out” of the top-𝑘 scored documents and negative
outliers those not relevant documents that are “pushed in” the top-𝑘
ranks. We give below a formal definition which is exemplified in
Fig. 1.

Definition 3.1 (Positive Outlier). Given a ranked list of labeled
documents 𝐷 and a threshold 𝑘 , a document 𝑑 ∈ 𝐷 is said to be
a Positive Outlier if a) it is relevant, i.e., it has a relevance label
greater than 0, b) it is ranked below rank 𝑘 and c) there is at least
one document with label equal to 0 within rank 𝑘 .

Definition 3.2 (Negative Outlier). Given a ranked list of labeled
documents 𝐷 and a threshold 𝑘 , a document 𝑑 ∈ 𝐷 is said to be a
Negative Outlier if a) it is not relevant, i.e., with label equal to 0,
b) it is ranked within rank 𝑘 and c) there is at least one document
below rank 𝑘 with label greater than 0.

We call misranked documents all other ranking errors do not
comply with neither of the above two definitions. Fig. 1 shows ex-
amples of outlier documents (top) versus misranked ones (bottom).
Note that no (negative) outliers exist when the top-𝑘 positions only
include relevant documents, and no (positive) outliers exist when
all the relevant documents fall in the top-𝑘 positions.

215

Filtering out Outliers in Learning to Rank ICTIR ’22, July 11–12, 2022, Madrid, Spain

As we are focusing on a forest model 𝐹 , we also consider the
intermediate rankings generated after 𝑖 stages/trees of 𝐹 . We think
that an outlier document may affect all the steps of the training
process and, therefore, looking only at the final model 𝐹 might be
a sub-optimal strategy. Let 𝐹𝑖 be the sub-forest including only the
first 𝑖 trees of 𝐹 , we look all the positive/negative outliers detected
at multiple stages of the model 𝐹 and we search for documents
that are consistently considered outliers across those intermediate
stages, as defined below.

Definition 3.3 (Consistent Positive/Negative Outliers). Given a
ranked list of labeled documents 𝐷 , a ranking forest 𝐹 , two in-
teger constants 𝑠 and 𝑒 , and let 𝐹𝑖 be the sub-forest including only
the first 𝑖 trees of 𝐹 . We define as Consistent Positive/Negative Out-
liers those documents that result to be positive/negative outliers in
ranking generated by the sub-forest 𝐹𝑖 , for every 𝑖 ∈ [𝑠, 𝑒].

We argue that the model finds more difficult to properly rank
these documents and that this difficulty is due to the outlier nature
of those instances, rather than to the limitations of the learning
algorithm.

Equipped with the above definitions, we can discuss the core step
of SOUR (lines 4–13). SOUR has three tuning hyper-parameters:
the first and last tree of interest 𝑠 and 𝑒 , and the outlier type to
be exploited 𝑡 ∈ {pos, neg, all} which can be positive, negative
or their union. For each forest cut 𝑖 ∈ [𝑠, 𝑒], we first extract the
sub-forest 𝐹𝑖 that includes the first 𝑖 trees of 𝐹 . The sub-forest 𝐹𝑖 is
used to score and rank every document in the training dataset D,
and for each ranked list inD we compute the positive and negative
outliers according to Definitions 3.1, 3.2, respectively denoted with
O+
𝑖
and O−

𝑖
. Then, we compute the set of consistent outliers by

intersecting all the positive or negative outliers found so far, i.e.,
O+ =

⋂
𝑖 O+𝑖 and O− =

⋂
𝑖 O−𝑖 . We also consider the set O∗ =

O+ ∪ O−. Depending on 𝑡 ∈ {neg, pos, all}, one of O+,O−,O∗ is
chosen to be the outlier set identified by SOUR.

During the last step (line 14), a new model is trained after re-
moving the outliers O from the input dataset D, and the resulting
forest is eventually returned.

The SOUR algorithm incurs the additional cost of running 𝐴 a
second time, which is typically not an issue given the efficiency
of tree-learning algorithms. We observe that the cost of outlier
detection during the second step is negligible w.r.t. the cost of
running 𝐴. In the experimental section we also show that the size
of O is rather small and, therefore, running𝐴 on the cleaned dataset
is still as expensive as with the original dataset. Yet, the resulting
model brings interesting performance improvements.

4 SOUR EXPERIMENTAL EVALUATION

4.1 Datasets

We conduct experiments on three publicly available datasets: Ya-
hoo! Learning to Rank Challenge Set 1[4], MSLR Web30K
Fold 1[19] and Istella-X[17], summarized in Tab. 1. We highlight
that they have very different average query lengths. The limited
number of documents clearly makes Yahoo! unsuitable for our
analysis, but we include it anyway for the sake of completeness.
All datasets include graded relevance labels with a different frac-
tion of non relevant documents: Yahoo! having 26% out of 709,877,

Table 1: Datasets properties.

Istella-X MSLR-30K Yahoo!

#features 220 136 519
#queries 10,000 31,531 29,921
avg. query length 2,679.14 119.60 23.72
#documents 26,791,447 3,771,125 709,877

relevance label distribution
0 26,475,076 1,940,952 185,192
1 26,604 1,225,770 254,110
2 5,108 504,958 202,700
3 9,619 69,010 54,473
4 5,040 90,435 13,402

%non relevant documents 99.8% 51% 26%

Table 2: SOUR hyper-parameter tuning on Istella-X. NDCG
is computed on the validation set.

𝑡 = neg 𝑡 = pos 𝑡 = all
𝑠 𝑒 #trees NDCG@10 #trees NDCG@10 #trees NDCG@10

0 1000 940 0.7702 523 0.7686 724 0.7696

100 1000 693 0.7669 893 0.7698 766 0.7677
200 1000 870 0.7717 451 0.7659 587 0.7679
300 1000 566 0.7688 997 0.7684 687 0.7684
400 1000 537 0.7685 579 0.7679 824 0.7684
500 1000 971 0.7699 626 0.7689 718 0.7670
600 1000 635 0.7694 566 0.7667 949 0.7684
700 1000 568 0.7684 690 0.7672 671 0.7682
800 1000 624 0.7680 939 0.7728 679 0.7684
900 1000 982 0.7717 783 0.7683 960 0.7685

0 100 762 0.7679 998 0.7653 936 0.7651
0 200 837 0.7715 692 0.7676 775 0.7641
0 300 724 0.7692 998 0.7685 797 0.7683
0 400 912 0.7686 709 0.7643 692 0.7688
0 500 833 0.7701 437 0.7614 690 0.7668
0 600 438 0.7674 689 0.7696 517 0.7628
0 700 627 0.7693 824 0.7686 507 0.7660
0 800 607 0.7670 563 0.7694 884 0.7660
0 900 996 0.7707 1000 0.7701 973 0.7698

MSLR-30K with 51% out of 3,771,125 and Istella-X with 99.8% out
of 26,791,447. We retain the provided train, validation, test splits.

4.2 Models

As baselines, we use 𝜆-LGBMand 𝜆-MART to refer to the 𝜆-MART [22]
variants implemented by the LightGBM [14] software respectively
with and without gradient normalization. SOUR is implemented1 on
top of 𝜆-LGBM. Hyper-parameters tuning follows previous works
[2, 17].

4.3 SOUR hyper-parameter tuning

In this subsection, we discuss in detail results only for the Istella-X
dataset. The same behaviour was observed for the other datasets.
1Source code available at https://anonymous.4open.science/r/Filtering-out-Outliers-
in-Learning-to-Rank-E89A/.

216

https://anonymous.4open.science/r/Filtering-out-Outliers-in-Learning-to-Rank-E89A/
https://anonymous.4open.science/r/Filtering-out-Outliers-in-Learning-to-Rank-E89A/

ICTIR ’22, July 11–12, 2022, Madrid, Spain Federico Marcuzzi, Claudio Lucchese, & Salvatore Orlando

Tab. 2 reports NDCG@10 scores of SOUR on the Istella-X valida-
tion set when varying 𝑠 (start) and 𝑒 (end) parameters and removing
one of the three different sets of outliers, namely O−, O+, or O∗,
according to parameter 𝑡 ∈ {neg, pos, all}. For our analysis, where
we vary the SOUR’s parameters 𝑠 , 𝑒 and 𝑡 , we exploit a forest 𝐹 of
1000 trees. Once selected the document instances to drop, we train
the final forest with early stopping on the validation set for the
number of trees. The size of the final model is reported in the table.

We report results on the twomost interesting scenarios we found.
In the first case, we search for documents that were considered
outliers by all the last trees of the forest (𝑒 = 1000), while in the
second case we consider outlier documents in the initial trees (𝑠 = 0).
We include the case 𝑠 = 0, 𝑒 = 1000 that removes documents that
resulted to be outlier in every stage of the forest.

Overall, results are quite close, but we can observe that the
all strategy performs consistently worse than the others and that
on average the best results are achieved when 𝑒 = 1000. The latter
result is inline with expectations. The initial trees are still on an
unstable path along the gradient descent and, therefore, the outlier
documents might be very different from those of the final model.
Conversely, when setting 𝑒 = 1000 and varying 𝑠 we may ignore
errors in the initial trees and focus on outlier documents in the final
trees of the ranking algorithm.

In Fig. 2 we show the number of documents actually removed
on varying the hyper-parameters of SOUR. The number of outliers
is generally very small and varies from ∼2,000 to a maximum of
∼12,000. Keeping 𝑒 = 1000 and varying 𝑠 allows to remove a larger
number of documents. As discussed above, this is due to the great
instability of the initial trees which is likely to reduce the inter-
section computed to determine the consistent outliers. Therefore,
not only the quantity, but also the quality of the consistent outliers
computed when 𝑠 is not small is expected to be larger. According
to Tab. 2, the best results were achieved with 𝑡 = pos, 𝑠 = 800 and
𝑒 = 1000, which corresponds to the removal of about 2,400 docu-
ments in a dataset with more than 26 million instances. We show
that the removal of this limited number of documents is sufficient
to achieve statistically significant improvements.

Hereinafter, we limit the analysis to 𝑒 = 1000 and choose the
other parameters on the basis of the validation set performance.

To conclude the analysis of the 𝑡 hyper-parameter, in Fig. 3 we
show the behaviour on the Istella-X validation set of the best
settings of SOUR which are highlighted in boldface in Tab. 2. In this
comparisonwe include the baseline 𝜆-LGBMmodel. SOUR performs
significantly better than the baseline with any configuration of 𝑡 .
In fact, all the three variants have a steeper NDCG curve achieving
earlier an interesting accuracy. The plot, which includes the 100
early stopping iterations, shows how the proposed SOUR is able
to continue increasing its accuracy when additional trees are used
w.r.t. 𝜆-LGBM. Later we report final performance on the test set.

4.4 Does model-based outlier detection perform

better than data-based outlier detection?

There are two common methods for detecting outliers, which we
refer to as data-based and model-based. The former consists in
finding instances that do not fit with the data distribution at hand,
whereas the latter strategy is to spot instances that are hard to be

0 200 400 600 800 1000

2000

4000

6000

8000

10000

12000

#
co

ns
is

te
nt

ou
tl

ie
rs

Istella-X: s = 0
t = pos

t = all

t = pos

0 200 400 600 800 1000

Istella-X: e = 1000
t = neg

t = all

t = pos

Figure 2: Number of consistent outlier documents removed

by SOUR when varying 𝑠, 𝑒 and 𝑡 . Diamonds are the best 𝑠

values in correspondence to the highest NDCGs in Tab. 5 for

each 𝑡 .

200 300 400 500 600 700 800 900 1000

#trees

0.750

0.755

0.760

0.765

0.770

N
D

C
G

@
1
0

SOUR best parameters on Istella-X validation set

λ-LGBM

SOUR t = neg, s = 200, e = 1000

SOUR t = pos, s = 800, e = 1000

SOUR t = all, s = 0, e = 1000

Figure 3: Performance of SOUR when varying 𝑡 on Istella-X
validation set.

correctly classified by a given model. SOUR falls into the second
category. In Fig. 4 we evaluate Isolation Forest [15] as a method
to detect outliers. We implemented a variant named Iso-𝜆-LGBM
where an isolation forest is used to remove outliers from the dataset
before training the final 𝜆-LGBM model. As for SOUR, on the basis
of parameter 𝑡 , we filter out only positive outlier, only negative ones,
or both kinds of documents. For the isolation forest, we adopted
the parameters suggested by the authors [15].

Fig. 4 shows the performance of Iso-𝜆-LGBM on varying 𝑡 against
the proposed SOUR and the 𝜆-LGBM baseline. Performance is mea-
sure in terms of NDCG@10 on the validation set of Istella-X.
First we note that 𝑡 = all is the best setting for Iso-𝜆-LGBM, with
interesting improvements over 𝜆-LGBM. However, the proposed
SOUR performs better than Iso-𝜆-LGBM, thus allowing to conclude
that the proposed model-based approach is more effective than a
data-based strategy based on isolation forests.

217

Filtering out Outliers in Learning to Rank ICTIR ’22, July 11–12, 2022, Madrid, Spain

200 300 400 500 600 700 800 900 1000

#trees

0.750

0.755

0.760

0.765

0.770

N
D

C
G

@
1
0

Iso-λ-LGBM on Istella-X validation set

λ-LGBM

SOUR t = pos, s = 800, e = 1000

Iso-λ-LGBM t = neg

Iso-λ-LGBM t = pos

Iso-λ-LGBM t = all

Figure 4: Performance of Iso-𝜆-LGBM when varying 𝑡 on

Istella-X validation set.

200 300 400 500 600 700 800 900 1000

#trees

0.750

0.755

0.760

0.765

0.770

N
D

C
G

@
1
0

Peer-λ-LGBM on Istella-X validation set

λ-LGBM

SOUR t = pos, s = 800, e = 1000

Peer-λ-LGBM

Figure 5: Performance of Peer-𝜆-LGBM on Istella-X valida-

tion set.

4.5 Does outlier removal perform better than

data augmentation?

PeerRank [23] is a robust training algorithm that uses a data aug-
mentation mechanism. The rationale is to inject the training dataset
with synthetic outlier instances so that the trained algorithm can
learn to rank them poorly. We thus provide Peer-𝜆-LGBM, our
implementation of PeerRank on top of 𝜆-LGBM.

Fig. 5 shows that the Peer-𝜆-LGBM outperforms 𝜆-LGBM and its
behaviour is very similar to that of SOUR. Indeed, SOUR is still able
to provide some additional improvement, and in the next section
we provide comprehensive results on the three datasets adopted.

4.6 SOUR performance evaluation

Tab. 3 reports the performance in terms of NDCG@5 andNDCG@10
of SOUR and its competitors. Performance is measured on the
datasets’ test sets. First, we highlight that the proposed SOUR out-
performs other algorithms on every dataset and for both metrics.

The the smallest improvement is for the Yahoo! dataset, while inter-
esting gains are instead visible for both Istella-X and MSLR-30K.
The improvement, even if not large, is statistically significant in
most cases. It is well known how apparently small improvements
in NDCG are indeed very relevant [5]. This confirms that the pro-
posed SOUR algorithm is effective, and that further investigation is
worthwhile.

There is not a best choice between negative and positive outliers
to remove and for the starting tree 𝑠 and, therefore, we tune both
𝑡 and 𝑠 on a validation set. On average, looking at the last few
hundred trees is the best option for SOUR. We highlight the small
number of documents removed by SOUR, e.g., only 1% of the non
relevant documents is dropped from the MSLR-30K dataset. In fact,
the number of removed documents is much smaller than Iso-𝜆-
LGBM. Even in this case, Yahoo! is an exception. In this regard,
we highlight the peculiar nature of the Yahoo! dataset, which has
more positive than negative documents, and it has a very limited
number of documents per query and, therefore, removing a fee of
such small set of documents may not provide large benefits.

Finally, we include in our analysis a variant, namely last-SOUR,
where the ourliers are selected by only looking at the ranking com-
puted by thewhole 𝜆-LGBM forest (𝑠 = 𝑒 =last tree). Its performance
confirms that SOUR performs well when it looks at consistent out-
liers across different trees of the forest. In this regard, the proposed
outlier detection mechanism is novel as it exploits the iterative
nature of gradient boosting decision trees.

Regarding competitors, we highlight that Peer-𝜆-LGBM is al-
ways more accurate than Iso-𝜆-LGBM. We leave as future work
the investigation of the possibility of embedding the PeerRank cost
function into SOUR. As a side note, we highlight the impact of
gradient normalization in 𝜆-LGBM that is often neglected.

5 SOUR IN-DEPTH ANALYSIS

In this section we analyze with further details the behaviour of
SOUR. We first try to understand what provides the performance
improvement of our approach, then we justify experimentally our
choices by contrasting against alternative variants. The analysis
adopts the experimental setting described above but it is limited on
the mid-sized MSLR-30K dataset.

5.1 On which queries SOUR performs best?

In Tab. 4 we provide a breakdown of the effectiveness of SOUR and
its competitors over two different set of queries. The set𝑄𝑜 includes
those queries with at least one consistent outlier document, while
𝑄𝑐 contains the remaining “clean” queries not having any outlier.
For all algorithms we use the best configuration reported in Tab. 3,
except for Iso-𝜆-LGBM for which we use the best model trained
with 𝑡 = neg that has 725 trees. Note that 𝑡 = neg for all methods.
We compute the consistent outliers on the basis of the 𝜆-LGBM
model built during the first step of SOUR and we vary 𝑠 and keep
fixed 𝑒 = 1000. The goal is to measure how the different algorithms
improve or worsen the score of 𝜆-LGBM on the two different kinds
of queries. Intuitively we expect an improvement on the queries
with outliers 𝑄𝑜 and negligible changes on the remaining queries
𝑄𝑐 .

218

ICTIR ’22, July 11–12, 2022, Madrid, Spain Federico Marcuzzi, Claudio Lucchese, & Salvatore Orlando

Table 3: Comparison of the proposed SOUR against the state of the art. Statistically significant differences w.r.t. SOUR according

to Fisher’s randomization test [9] (with a one-sided 𝑝-value) are marked with
∗
(𝑝 = 0.05) and ∗∗ (𝑝 = 0.01).

model #trees NDCG@5 #trees NDCG@10 model #trees 𝑠 𝑡 |O | NDCG@5 #trees 𝑠 𝑡 |O | NDCG@10

dataset: Istella-X
𝜆-MART 206 0.6711** 223 0.7272** Iso-𝜆-LGBM 533 all 0.78% 0.7311* 745 all 0.02% 0.7739**
𝜆-LGBM 535 0.7282** 585 0.7723** last-SOUR 670 535 neg 0.03% 0.7338 811 585 neg 0.08% 0.7769
Peer-𝜆-LGBM 883 0.7332 841 0.7749** SOUR 617 0 pos 0.01% 0.7362 939 800 pos 0.01% 0.7804

dataset:MSLR-30K
𝜆-MART 998 0.4997** 979 0.5216** Iso-𝜆-LGBM 771 all 6.81% 0.5045** 725 all 5.92% 0.5244**
𝜆-LGBM 802 0.5048** 775 0.5246** last-SOUR 822 802 pos 42.87% 0.5042* 859 775 neg 1.55% 0.5284**
Peer-𝜆-LGBM 1000 0.5053* 991 0.5248** SOUR 876 700 neg 1.01% 0.5081 928 700 neg 1.01% 0.5304

dataset: Yahoo!
𝜆-MART 975 0.7495** 829 0.7904** Iso-𝜆-LGBM 989 neg 6.08% 0.7488** 648 all 24.95% 0.7903**
𝜆-LGBM 840 0.7524* 701 0.7946* last-SOUR 997 840 neg 0.76% 0.7528 862 701 neg 2.73% 0.7935**
Peer-𝜆-LGBM 987 0.7536 662 0.7950 SOUR 999 400 pos 23.26% 0.7544 941 300 pos 18.20% 0.7956

The first row of Tab. 4 reports the results on the full test set
𝑄𝑜 ∪𝑄𝑐 , which correspond with the best results in Tab. 3. When
we vary 𝑠 to consider different sets of outliers, we observe an in-
teresting behaviour. All algorithms perform better than 𝜆-LGBM
on the set 𝑄𝑜 . Intuitively, each model deals correctly with outliers
documents and queries containing them are ranked with larger
accuracy. On the other hand, the accuracy over 𝑄𝑐 slightly drops
for Iso-𝜆-LGBM and Peer-𝜆-LGBM. This means that the strategies
of these algorithm actually hinder the performance in case of ab-
sence of outliers. Indeed, SOUR is the only algorithm that always
improves over both 𝑄𝑜 and 𝑄𝑐 .

The last couple of rows include the spacial case where outliers are
computed by considering 𝜆-LGBM at the best validation iteration,
i.e., 𝑠 = 𝑒 = 775. Even in this simplified setting, SOUR is the only
able to improve on both kind of queries.

We may conclude that SOUR provides a larger improvement on
queries with outliers, and it is the only that doesn’t lose the ability
to rank queries that do not contains outliers, but rather ranks them
better than the other models.

5.2 What is the impact of removing outliers on

the trained forest?

To understand the source of the performance improvement pro-
vided by SOUR, we further investigate the score assigned to outlier
documents and contrast it with positive and negative ones both
in 𝜆-LGBM and in SOUR. We use the best parameters of the two
algorithms. Tab. 5 reports the average score of the 30 leaves of the
forest that are reached by the largest number of negative outliers
O− (recall that 𝑡 = neg is the best strategy for MSLR-30K). Simi-
larly for the positive documents in the top-𝑘 (𝑃𝑘) and the negative
documents (𝑁). We can observe that in 𝜆-LGBM the negative out-
lier documents receive a score that is closer to that of the positive
documents rather than the negative ones (see the last table’s row:
avg. 1 − 50). In SOUR, the score of negative outlier documents
slightly increases, but the gap between positive documents in 𝑃𝑘
and negative documents in 𝑁 is now much larger. This means that
SOUR does not improve its ability to detect outliers (which is ex-
pected, as SOUR did not see them at training time), but SOUR has

Table 4: Performance breakdown over 𝑄𝑜 and 𝑄𝑐 in terms of

NDCG@10 on the MSLR-30K test set.

𝑠 query type |𝑄∗ | 𝜆-LGBM SOUR Iso-𝜆-LGBM Peer-𝜆-LGBM

𝑄𝑜 ∪𝑄𝑐 6306 0.5246 0.5304 0.5244 0.5248

0 𝑄𝑜 3265 0.4555 0.4623 0.4558 0.4574
𝑄𝑐 3041 0.5988 0.6036 0.5982 0.5970

100 𝑄𝑜 4306 0.4647 0.4717 0.4658 0.4669
𝑄𝑐 2000 0.6537 0.6569 0.6508 0.6493

200 𝑄𝑜 4504 0.4683 0.4752 0.4697 0.4706
𝑄𝑐 1802 0.6655 0.6685 0.6614 0.6601

300 𝑄𝑜 4618 0.4710 0.4779 0.4726 0.4734
𝑄𝑐 1688 0.6712 0.6740 0.6664 0.6651

400 𝑄𝑜 4690 0.4725 0.4794 0.4741 0.4749
𝑄𝑐 1616 0.6758 0.6786 0.6706 0.6694

500 𝑄𝑜 4742 0.4740 0.4809 0.4755 0.4764
𝑄𝑐 1564 0.6780 0.6806 0.6728 0.6712

600 𝑄𝑜 4799 0.4756 0.4822 0.4768 0.4779
𝑄𝑐 1507 0.6809 0.6841 0.6761 0.6740

700 𝑄𝑜 4851 0.4764 0.4830 0.4777 0.4787
𝑄𝑐 1455 0.6855 0.6885 0.6805 0.6783

800 𝑄𝑜 4906 0.4780 0.4846 0.4792 0.4803
𝑄𝑐 1400 0.6882 0.6912 0.6832 0.6805

900 𝑄𝑜 4957 0.4794 0.4859 0.4806 0.4816
𝑄𝑐 1349 0.6908 0.6940 0.6858 0.6831

best
𝑄𝑜 5051 0.4809 0.4877 0.4822 0.4833
𝑄𝑐 1255 0.7008 0.7026 0.6945 0.6917

a better capability of distinguishing between positive and negative
documents.

219

Filtering out Outliers in Learning to Rank ICTIR ’22, July 11–12, 2022, Madrid, Spain

100 300 500 700 900

#trees

1K

3K

5K

7K

9K

11K

13K

15K

#
ou

tl
ie

r
do

cu
m

en
ts

O+ per iteration on Istella-X
not an outlier for Fi
outlier for Fi

100 300 500 700 900

#trees

10K

30K

50K

70K

90K

110K

130K

O− per iteration on MSLR-30K

100 300 500 700 900

#trees

10K

35K

60K

85K

110K

135K

160K

185K

O+ per iteration on Yahoo!

75.6%

12.6%

2.3%

0.2%

0.1%

87.7%

33.7%

8.4%

1.2%

0.2%

100.0%

100.0%

98.1%

37.8%

2.9% #
outlier

frequency
after

i
trees

Figure 6: Outliers per iterations found by 𝜆-LGBM on each training set with NDCG@10. Limited to documents that result to be

outliers at least once, documents are sorted by their outlier classification frequency.

Table 5: Exit leaves average score on MSLR-30K test set at

different trees of the 𝜆-LGBM and SOUR forests.

𝜆-LGBM SOUR
tree 𝑃𝑘 O− 𝑁 𝑃𝑘 O− 𝑁

1 0.038 0.031 -0.022 0.044 0.036 -0.022
10 0.170 0.111 -0.174 0.177 0.144 -0.183
20 0.269 0.176 -0.293 0.283 0.208 -0.366
30 0.284 0.182 -0.413 0.371 0.277 -0.470
40 0.353 0.274 -0.532 0.392 0.315 -0.622
50 0.425 0.197 -0.645 0.437 0.260 -0.663

avg. 1–50 0.257 0.161 -0.358 0.280 0.207 -0.395

5.3 Do Consistent Outliers perform better than

frequent outliers?

In this section we show the results obtained by a 𝑝-SOUR, a variant
of SOUR. The original SOUR algorithm removes from the dataset
all documents that are consistently outliers in an interval [𝑠, 𝑒] of
the training iterations. Instead, 𝑝-SOUR removes documents that
are outliers with frequency larger than 𝑝%, i.e., at more than 𝑝%
trees during training. Therefore 𝑝-SOUR is a less restrictive variant
of SOUR as it does not requires documents to be outliers in all the
sub-forests 𝐹𝑖 between iteration 𝑠 and iteration 𝑒 .

By comparing 𝑝-SOUR and SOUR we want to answer the ques-
tion of whether it is effective to consider documents that are outliers
in all trees from the 𝑠-th to the 𝑒-th, or it is sufficient to detect fre-
quent outliers.

Fig. 6 shows for each training iteration which document is con-
sidered an outlier on the basis of the 𝜆-LGBMmodel. The hourglass-
shaped plots show that the number of outlier documents is typically
reduced iteration after iteration, except from a bunch of documents
that are almost always and, consistently, considered outliers. Fixing
the 𝑝 parameter of 𝑝-SOUR corresponds to tuning how many of
the documents in the bottom of the plots should be removed from
the training.

In Tab. 6 we summarize the performance of 𝑝-SOUR in terms
of NDCG@10 on the test set of MSLR-30K. When increasing 𝑝 the

Table 6: Performance achieved by 𝑝-SOUR with 𝑡 = neg, on

MSLR-30K test set by varying 𝑝. The highest value in bold.

#trees NDCG@10 𝑝 #trees NDCG@10 𝑝

676 0.5169 10% 799 0.5274 91%
869 0.5208 20% 836 0.5268 92%
994 0.5226 30% 817 0.5269 93%
865 0.5219 40% 926 0.5278 94%
754 0.5233 50% 839 0.5268 95%
896 0.5258 60% 859 0.5274 96%
964 0.5271 70% 885 0.5276 97%
750 0.5260 80% 976 0.5289 98%
924 0.5279 90% 932 0.5275 99%

our model SOUR 𝑡 = neg, 𝑠 = 700
928 0.5304

performance of 𝑝-SOUR also increases up to 𝑝 = 90%. With small
values of 𝑝 , the strategy removes many negative documents, includ-
ing those documents that are marked as outliers for a few iterations.
The latter are not outliers but rather good negative examples to
keep in the dataset. Removing them is deleterious for the model.
Beyond 𝑝 = 90%, results are stable with the best performance when
𝑝 = 98%.

Finally, we can see that the highest NDCG value obtained by
𝑝-SOUR in the test set (in bold) is lower than the best performance
of SOUR. Thus, although 𝑝-SOUR is capable of removing instances
that are not useful for training, the SOUR strategy is able to produce
more effective models. This highlights that removing documents
consistently found as outliers is better than removing frequent
outlier documents.

5.4 Does removing outliers perform better than

exploiting outliers?

So far we observed that consistent outliers are hard to be ranked
correctly and therefore we decided to remove them from the train-
ing. The following question arises: could we resort to curriculum
learning [1] to properly exploit those hard instances? According

220

ICTIR ’22, July 11–12, 2022, Madrid, Spain Federico Marcuzzi, Claudio Lucchese, & Salvatore Orlando

200 300 400 500 600 700 800 900

#trees

0.500

0.505

0.510

0.515

0.520

0.525

0.530

N
D

C
G

@
1
0

curr -SOUR on MSLR-30K test set

λ-LGBM

SOUR t = neg, s = 700, e = 1000

curr -SOUR t = neg

Figure 7: Performance of curr-SOUR on MSLR-30K test set.

to curriculum learning, a delayed injection, in the training set, of
difficult documents allows a more accurate training of the model.
In our case, we experiment a delayed injection of outliers.

To answer this question we subdivide the outliers found in differ-
ent forest stages, i.e., from 0 to 1000, in 5 sets: outliers that appear
only in the intervals [0, 50], [0, 200], [0, 500], [0, 800] and [0, 900].
We inject each set, in the training set, when the number of boosting
iterations is greater than the right end of the interval. We call this
strategy curr-SOUR.

However, in Fig. 7 the results show how this idea does not fit
well in this scenario and that the model effectiveness is far from
SOUR and close to 𝜆-LGBM only on the last iterations. This seems
that we can not treat these outliers as instances of different diffi-
culty, but they must be removed entirely from the beginning of the
training phase.

5.5 Is SOUR robust to the amount of outliers?

In this section we analyze the behavior of SOUR and 𝜆-LGBM on
datasets with different amount of outliers. The analysis focuses
on testing SOUR capability to detect outliers during the training
phase and how the removal strategy effects the prediction phase,
in particular compared to a baseline 𝜆-LGBM model trained on the
whole synthetic dataset.

We use MSLR-30K training and validation set and with probabil-
ity 𝑛 = {0.05, 0.075, 0.1} we flip a document with relevance label 0
to 4. Let D𝑛

train and D𝑛
valid be respectively the synthetic training

set and synthetic validation set, we perform training onD𝑛
train and

early stopping on D𝑛
valid. Model evaluation is done on the original

test set and the results are summarized in Fig. 8. Since we introduce
outliers with label greater than 0, we train SOUR with 𝑡 = pos. In
order to study the behavior of SOUR on different search intervals
[𝑠, 𝑒], we set 𝑒 = 1000 and vary the value of 𝑠 .

It can be clearly seen that as the noise rate increases, the gap
between the models trained with SOUR and 𝜆-LGBM increases.
This phenomenon is present since the first boosting interactions.
All models trained with SOUR have superior performance with
respect to the baseline, in particular SOUR with 𝑡 = pos, 𝑠 = 0 and
𝑒 = 1000. In this setting, SOUR removes documents that are always

0.482

0.484

0.486

0.488

0.490

0.492

0.494

0.496

0.498

N
D

C
G

@
1
0

Synthetic MSLR-30K noise rate n = 5%

λ-LGBM

SOUR t = pos, s = 0

SOUR t = pos, s = 100

SOUR t = pos, s = 200

SOUR t = pos, s = 300

SOUR t = pos, s = 400

SOUR t = pos, s = 500

SOUR t = pos, s = 600

SOUR t = pos, s = 700

SOUR t = pos, s = 800

SOUR t = pos, s = 900

0.464

0.466

0.468

0.470

0.472

0.474

0.476

0.478

0.480

N
D

C
G

@
1
0

Synthetic MSLR-30K noise rate n = 7.5%

100 200 300 400 500 600 700 800

#trees

0.438

0.440

0.442

0.444

0.446

0.448

0.450

0.452

0.454

N
D

C
G

@
1
0

Synthetic MSLR-30K noise rate n = 10%

Figure 8: SOUR and 𝜆-LGBM effectiveness on MSLR-30K test

set, by varying noise rate 𝑛 = {0.05, 0.075, 0.1}.

detected as outliers. This suggests that most synthetic outliers are
always considered outliers from the very first iterations and that
using smaller [𝑠, 𝑒] intervals leads to the removal of good positive
examples that are being pushed down to the list, for a sufficient
number of iterations, due to synthetic outliers. For the sake of truth,
SOUR in not able to detect and remove all the synthetic outliers. In
fact, as the noise rate increase, both SOUR and 𝜆-LGBM lose part
of their effectiveness.

6 CONCLUSION

We developed a new sample selection strategy for outliers detection
based on persistent errors in multiple iterations of the learning

221

Filtering out Outliers in Learning to Rank ICTIR ’22, July 11–12, 2022, Madrid, Spain

algorithm. We have shown how the removal of these outliers can
generate better performing models in terms of NDCG. Through
extensive experiments we have shown that the proposed strategy
has a statistically significant increase in performance compared to
the state of the art.

A number of extension of SOUR are clearly possible. One could
use the model scores, in addition to the ranks, and the instances’
features to detect outliers. Additionally, it would be possible to make
the outlier filtering a dynamic process conducted while building,
tree after tree, a ranking model. We leave these analysis to future
work. Finally, this result opens the way toward employing this new
method to other models such as Artificial Neural Networks.

REFERENCES

[1] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. 2009.
Curriculum learning. In Proceedings of the 26th Annual International Conference
on Machine Learning, ICML 2009, Montreal, Quebec, Canada, June 14-18, 2009
(ACM International Conference Proceeding Series, Vol. 382), Andrea Pohoreckyj
Danyluk, Léon Bottou, and Michael L. Littman (Eds.). ACM, 41–48. https:
//doi.org/10.1145/1553374.1553380

[2] Sebastian Bruch. 2021. An Alternative Cross Entropy Loss for Learning-to-Rank.
In WWW ’21: The Web Conference 2021, Virtual Event / Ljubljana, Slovenia, April
19-23, 2021, Jure Leskovec, Marko Grobelnik, Marc Najork, Jie Tang, and Leila
Zia (Eds.). ACM / IW3C2, 118–126. https://doi.org/10.1145/3442381.3449794

[3] Vitor R Carvalho, Jonathan L Elsas, William W Cohen, and Jaime G Carbonell.
2008. A meta-learning approach for robust rank learning. In SIGIR 2008 workshop
on learning to rank for information retrieval, Vol. 1.

[4] Olivier Chapelle and Yi Chang. 2011. Yahoo! Learning to Rank Challenge
Overview. In Proceedings of the Yahoo! Learning to Rank Challenge, held at ICML
2010, Haifa, Israel, June 25, 2010 (JMLR Proceedings, Vol. 14), Olivier Chapelle,
Yi Chang, and Tie-Yan Liu (Eds.). JMLR.org, 1–24. http://proceedings.mlr.press/
v14/chapelle11a.html

[5] Olivier Chapelle, Thorsten Joachims, Filip Radlinski, and Yisong Yue. 2012. Large-
scale validation and analysis of interleaved search evaluation. ACM Transactions
on Information Systems (TOIS) 30, 1 (2012), 6.

[6] Olivier Chapelle, Donald Metlzer, Ya Zhang, and Pierre Grinspan. 2009. Expected
reciprocal rank for graded relevance. In Proceedings of the 18th ACMConference on
Information and KnowledgeManagement, CIKM 2009, Hong Kong, China, November
2-6, 2009, David Wai-Lok Cheung, Il-Yeol Song, Wesley W. Chu, Xiaohua Hu, and
Jimmy Lin (Eds.). ACM, 621–630. https://doi.org/10.1145/1645953.1646033

[7] Wenkui Ding, Xiubo Geng, and Xudong Zhang. 2015. Learning to Rank from
Noisy Data. ACM Trans. Intell. Syst. Technol. 7, 1 (2015), 1:1–1:21. https://doi.org/
10.1145/2576230

[8] Lei Feng, Senlin Shu, Zhuoyi Lin, Fengmao Lv, Li Li, and Bo An. 2020. Can
Cross Entropy Loss Be Robust to Label Noise?. In Proceedings of the Twenty-Ninth
International Joint Conference on Artificial Intelligence, IJCAI 2020, Christian
Bessiere (Ed.). ijcai.org, 2206–2212. https://doi.org/10.24963/ijcai.2020/305

[9] R.A. Fisher. 1935. The design of experiments. 1935. Oliver and Boyd, Edinburgh.
[10] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Explaining and

Harnessing Adversarial Examples. In 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, Yoshua Bengio and Yann LeCun (Eds.). http://arxiv.org/abs/1412.6572

[11] Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao Xu, Weihua Hu, Ivor W.
Tsang, and Masashi Sugiyama. 2018. Co-teaching: Robust training of deep neu-
ral networks with extremely noisy labels. In Advances in Neural Information
Processing Systems 31: Annual Conference on Neural Information Processing Sys-
tems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, Samy Bengio,

Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and
Roman Garnett (Eds.). 8536–8546. https://proceedings.neurips.cc/paper/2018/
hash/a19744e268754fb0148b017647355b7b-Abstract.html

[12] Kalervo Järvelin and Jaana Kekäläinen. 2000. IR evaluation methods for retriev-
ing highly relevant documents. In SIGIR 2000: Proceedings of the 23rd Annual
International ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval, July 24-28, 2000, Athens, Greece, Emmanuel J. Yannakoudakis,
Nicholas J. Belkin, Peter Ingwersen, and Mun-Kew Leong (Eds.). ACM, 41–48.
https://doi.org/10.1145/345508.345545

[13] George H. John. 1995. Robust Decision Trees: Removing Outliers from Databases.
In Proceedings of the First International Conference on Knowledge Discovery and
Data Mining (KDD-95), Montreal, Canada, August 20-21, 1995, Usama M. Fayyad
and Ramasamy Uthurusamy (Eds.). AAAI Press, 174–179. http://www.aaai.org/
Library/KDD/1995/kdd95-044.php

[14] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma,
Qiwei Ye, and Tie-Yan Liu. 2017. LightGBM: A Highly Efficient Gradient Boost-
ing Decision Tree. In Advances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Processing Systems 2017, December
4-9, 2017, Long Beach, CA, USA, Isabelle Guyon, Ulrike von Luxburg, Samy
Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett (Eds.). 3146–3154. https://proceedings.neurips.cc/paper/2017/hash/
6449f44a102fde848669bdd9eb6b76fa-Abstract.html

[15] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. 2008. Isolation Forest. In
Proceedings of the 8th IEEE International Conference on Data Mining (ICDM 2008),
December 15-19, 2008, Pisa, Italy. IEEE Computer Society, 413–422. https://doi.
org/10.1109/ICDM.2008.17

[16] Yang Liu and Hongyi Guo. 2020. Peer Loss Functions: Learning from Noisy Labels
without Knowing Noise Rates. In Proceedings of the 37th International Conference
on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event (Proceedings of
Machine Learning Research, Vol. 119). PMLR, 6226–6236. http://proceedings.mlr.
press/v119/liu20e.html

[17] Claudio Lucchese, Franco Maria Nardini, Raffaele Perego, Salvatore Orlando, and
Salvatore Trani. 2018. Selective Gradient Boosting for Effective Learning to Rank.
In The 41st International ACM SIGIR Conference on Research & Development in
Information Retrieval, SIGIR 2018, Ann Arbor, MI, USA, July 08-12, 2018, Kevyn
Collins-Thompson, Qiaozhu Mei, Brian D. Davison, Yiqun Liu, and Emine Yilmaz
(Eds.). ACM, 155–164. https://doi.org/10.1145/3209978.3210048

[18] Duc Tam Nguyen, Chaithanya Kumar Mummadi, Thi-Phuong-Nhung Ngo, Thi
Hoai Phuong Nguyen, Laura Beggel, and Thomas Brox. 2020. SELF: Learning
to Filter Noisy Labels with Self-Ensembling. In 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net. https://openreview.net/forum?id=HkgsPhNYPS

[19] Tao Qin and Tie-Yan Liu. 2013. Introducing LETOR 4.0 Datasets. CoRR
abs/1306.2597 (2013). http://arxiv.org/abs/1306.2597

[20] J. Ross Quinlan. 1993. C4.5: Programs for Machine Learning. Morgan Kaufmann.
[21] Scott E. Reed, Honglak Lee, Dragomir Anguelov, Christian Szegedy, Dumitru

Erhan, and Andrew Rabinovich. 2015. Training Deep Neural Networks on Noisy
Labels with Bootstrapping. In 3rd International Conference on Learning Represen-
tations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Workshop Track Proceedings,
Yoshua Bengio and Yann LeCun (Eds.). http://arxiv.org/abs/1412.6596

[22] Qiang Wu, Christopher J. C. Burges, Krysta M. Svore, and Jianfeng Gao. 2010.
Adapting boosting for information retrieval measures. Inf. Retr. 13, 3 (2010),
254–270. https://doi.org/10.1007/s10791-009-9112-1

[23] Xin Wu, Qing Liu, Jiarui Qin, and Yong Yu. 2022. PeerRank: Robust Learning
to Rank With Peer Loss Over Noisy Labels. IEEE Access 10 (2022), 6830–6841.
https://doi.org/10.1109/ACCESS.2022.3142096

[24] Zhilu Zhang and Mert R. Sabuncu. 2018. Generalized Cross Entropy Loss for
Training Deep Neural Networks with Noisy Labels. In Advances in Neural Infor-
mation Processing Systems 31: Annual Conference on Neural Information Processing
Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, Samy Bengio,
Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and
Roman Garnett (Eds.). 8792–8802. https://proceedings.neurips.cc/paper/2018/
hash/f2925f97bc13ad2852a7a551802feea0-Abstract.html

222

https://doi.org/10.1145/1553374.1553380
https://doi.org/10.1145/1553374.1553380
https://doi.org/10.1145/3442381.3449794
http://proceedings.mlr.press/v14/chapelle11a.html
http://proceedings.mlr.press/v14/chapelle11a.html
https://doi.org/10.1145/1645953.1646033
https://doi.org/10.1145/2576230
https://doi.org/10.1145/2576230
https://doi.org/10.24963/ijcai.2020/305
http://arxiv.org/abs/1412.6572
https://proceedings.neurips.cc/paper/2018/hash/a19744e268754fb0148b017647355b7b-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/a19744e268754fb0148b017647355b7b-Abstract.html
https://doi.org/10.1145/345508.345545
http://www.aaai.org/Library/KDD/1995/kdd95-044.php
http://www.aaai.org/Library/KDD/1995/kdd95-044.php
https://proceedings.neurips.cc/paper/2017/hash/6449f44a102fde848669bdd9eb6b76fa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/6449f44a102fde848669bdd9eb6b76fa-Abstract.html
https://doi.org/10.1109/ICDM.2008.17
https://doi.org/10.1109/ICDM.2008.17
http://proceedings.mlr.press/v119/liu20e.html
http://proceedings.mlr.press/v119/liu20e.html
https://doi.org/10.1145/3209978.3210048
https://openreview.net/forum?id=HkgsPhNYPS
http://arxiv.org/abs/1306.2597
http://arxiv.org/abs/1412.6596
https://doi.org/10.1007/s10791-009-9112-1
https://doi.org/10.1109/ACCESS.2022.3142096
https://proceedings.neurips.cc/paper/2018/hash/f2925f97bc13ad2852a7a551802feea0-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/f2925f97bc13ad2852a7a551802feea0-Abstract.html

	Abstract
	1 Introduction
	2 Related Work
	3 SOUR Learning-to-Rank Algorithm
	4 SOUR experimental evaluation
	4.1 Datasets
	4.2 Models
	4.3 SOUR hyper-parameter tuning
	4.4 Does model-based outlier detection perform better than data-based outlier detection?
	4.5 Does outlier removal perform better than data augmentation?
	4.6 SOUR performance evaluation

	5 SOUR in-depth analysis
	5.1 On which queries SOUR performs best?
	5.2 What is the impact of removing outliers on the trained forest?
	5.3 Do Consistent Outliers perform better than frequent outliers?
	5.4 Does removing outliers perform better than exploiting outliers?
	5.5 Is SOUR robust to the amount of outliers?

	6 Conclusion
	References

