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Chance and Competitive Advantage

ABSTRACT

Chance or randomness as a mechanism to induce performance heterogeneity

among originally homogeneous firms has recently been introduced to the resource-

based view of the firm. In this paper, we demonstrate how chance can engender

variation in performance among initially identical firms even in the absence of firm-

level capability differences. Departing from the positional school of strategy, we show

how and when firms in systemic industries benefit from the chance of staking positions

vis-à-vis competitors in complex technology landscapes. Expectedly, the chance of

making choices early and repeatedly increases a firm’s profitability. Also, the value of

repeated chance is higher during the early stages of an industry’s evolution than during

its later phases. Importantly, however, this latter effect is exacerbated by increases in

competition.
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Chance and Competitive Advantage

The question of what explains diversity among firms and resulting intra-

industry performance heterogeneity is central to the field of strategy, and it has received

considerable attention by scholars over the past few decades (Nelson and Winter, 1982;

Rumelt, 1991; Rumelt et al., 1994; Nelson 1991; Carroll, 1997; McGahan and Porter,

1997). Until today, two schools of thought have dominated the debate as to why

organizations differ in their effectiveness, all else being equal. The positioning school,

on one hand, has traditionally attributed the diversity in performance among enterprises

to a firm’s unique market position relative to its rivals (Caves and Porter, 1977). The

resource-based view (RBV) (Penrose, 1959; Wernerfelt, 1984; Barney, 1986, 1991;

Peteraf, 1993), on the other hand, has argued that a firm’s superior relative performance

results from its possession of rare and difficult-to-imitate resources (Barney, 1986). As

part of their inquiries, researchers in both veins have investigated the antecedents to the

emergence of such stable performance differences across firms. Adherents of the

positioning school claim that firm-level heterogeneity arises through a complex

interplay between environmental conditions and managerial choices in a competitive

environment (Porter, 1991), without specifying the latter in much detail, though. On the

contrary, proponents of the RBV, in following the Carnegie tradition (Simon, 1947;

Cyert and March, 1963), have elaborated in more detail on the emergence of inter-firm

differences, emphasizing the process of resource accumulation (Dierickx and Cool,

1989) and organizational learning over time (Nelson and Winter, 1982; Cohen and

Levinthal, 1990; Dosi, Nelson, and Winter, 2000; Zollo and Winter, 2002). Yet,

traditionally scholars in both camps would causally link the origins of performance

differences back to ex-ante asymmetries in market positions, resource bases, or



3

combinations of the two (Schmidt and Keil, 2013), attesting to the established wisdom

that “firm differences … are ultimately driven back to differences in initial conditions”

(Nelson, 1991: 65).

Undeniably, firms are historical entities that are affected by their original

endowments of resources and capabilities, the time of their birth, and their location. As

such, explanations of how firm heterogeneity unfolds conditional on the existence of

such original asymmetries are undoubtedly important. Yet, such investigations only

complement and cannot substitute for inquiries into how original differences may occur

in the first place. As regards the latter question, existing knowledge—while equally

relevant to the theory of strategy—is far scarcer. In fact, the few related insights we

have stem from scholars working in the RBV tradition who recently suggested that

firms—even when starting with identical initial endowments—may end up displaying

stable performance differences due to the cumulative effect of randomness (Nelson,

1991; Barney, 1997). More specifically, Denrell (2004), leveraging some classical

results on random walks (Feller 1971), demonstrates that random resource-

accumulation processes can generate sustained differences in profitability among

initially identical firms with high probability (see also Henderson, Raynor, and Ahmed,

2012). Similarly, Zott (2003), by allowing for stochastic retention and selection in a

model of firms’ capability development, arrives at stable performance differences

among originally equally endowed firms.

While representing an important first step towards understanding randomness as

a determinant of original firm-level differences in performance, and notwithstanding

the importance of this finding as a potential explanation for real-world phenomena, the

prior models intentionally stop short of investigating the effects of luck beyond their

impact on resource accumulation or learning within a focal firm. As such, Denrell’s
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(2004) and Zott’s (2003) work both provide motivation and leave ample space for

researchers to elaborate on their contributions. One of the most obvious elaborations

appears to be an examination of how randomness—hitherto conceived of as a

determinant that indirectly engenders performance differences through inducing

differences in resources—more directly affects competitive interactions and managerial

choices, key tenets of the positional school of strategy.

Accordingly, in this paper we take some first steps towards integrating the

ubiquitous notion of randomness into the positional school of strategy to examine how

exactly chance, competition, and managerial actions jointly induce inter-firm

performance differences, all else being equal. To complement earlier works in the RBV

tradition, we deliberately dismiss firms’ differential abilities to learn, and we account

for differences arising from resource accumulation only insofar as they restrict

managerial choice sets of equally capable decision-makers. Building on the idea that

good fortune at some point in a focal organization’s lifetime may alter other firms’—

notably competitors’—choice sets for the future, we examine to what extent

randomized exclusive access to critical resources over time can account for the

emergence of profit differences among initially homogenous firms. Although the

mechanisms that engender diversity among homogenously capable firms’ decisions that

we discuss in this paper should apply to a wide range of competitive settings, we

originally introduce them by tying them to a specific industry example. To that end, we

model a systemic industry as a series of (partly) modular value chains (Kretschmer and

Reitzig, 2013) that allow for the production of a variety of combinatory products.

Within this model, firms of equal capabilities compete to obtain control over product

components required to manufacture systemic goods (Farrell, Monroe, and Saloner,

1998). More specifically, and being true to the nature of corporate R&D, we model
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firms’ access to product components as a sequential stochastic process (or “patent

race”; Reinganum, 1982) in which an organization will be able to secure unique control

over a product component whenever luck would have it, and not otherwise. At the

beginning of the process, no firm will control any components of the technology

landscape; at the end, all components characterizing the technology landscape will be

owned by either of the firms competing for the best products. Partial modularities

(Baldwin and Clark, 2000) between components determine the ultimate value of the

(multiple) products that can be produced and offered by the firms. These modularities

are generated randomly in the beginning, and are visible to the firms’ managers. We

implement identical decision rules for all agents, assuming that they—when it is their

turn—pick the component that maximizes the value of the best product still accessible

to them, corresponding to a simple “take the best” kind of decision-making heuristic

(Gigerenzer and Goldstein, 1996). Bilateral alliances between players are also possible

and, once entered, cannot be dissolved until the end of a given simulation. The model is

analyzed through computer simulation.

In this setting, we obtain a series of interesting findings. As far as performance

asymmetries are concerned, we show that chance matters, but in differentiated ways.

Expectedly, the chance of making choices in a competitive environment early and

repeatedly increases a firm’s profitability. Also, the value of repeated chance is higher

during the early stages of an industry’s evolution than during its later phases.

Importantly, however, the latter effect is exacerbated by increases in the number of

market participants—a finding that is owed to the specific nature of the type of the path

dependency that randomness engenders in the presence of competitive crowding.
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In what follows, we develop theory, provide industry context, and formalize our

considerations, before presenting and discussion regression results pertaining to data

simulated in accordance with our model.

ON THE ORIGINS OF FIRM-LEVEL HETEROGENEITY IN PERFORMANCE

Why and how firms differ in performance are arguably the two most

fundamental questions in strategy research. Yet, whereas scholarly work over the past

three decades has theoretically and empirically investigated how such differences

unfold among organizations that are heterogeneous from the beginning (Nelson and

Winter, 1982; Rumelt et al., 1994; Wernerfelt, 1984; Dierickx and Cool, 1989; Cohen

and Levinthal, 1990; Henderson and Clark, 1990; Kogut and Zander, 1992; Peteraf,

1993; Teece, Pisano, and Shuen, 1997; Zollo and Winter, 2002), researchers have only

recently started to address the question of what engenders such heterogeneity in the

first place. Most of the related work in this domain can be traced back to two different

theoretical contributions, which both invoke a combination of randomness and

resource/capability development over time to mechanistically explain the origination of

performance differences between firms.

One article is by Denrell (2004), and it presents a simulation model that

explains how sustained competitive advantages can originate among a population of

initially homogenous firms. To that effect, Denrell exposes firms’ processes of (both

linear and more complex) resource allocation to a classic random walk, leading to

stable inter-firm frequency patterns of above-industry-average profitability at the firm

level for selected organizations. Consistent with earlier works (Feller, 1971), path

dependencies engendered by an initial randomization process create the sustained

asymmetric deviations of the firms from the sample profitability mean.
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The second article by Zott (2003) shares traits of Denrell’s approach in that

firms are originally homogeneous in their endowments and capabilities, and that initial

randomness engenders a path dependency that will lead to sustained performance

differences. Differently from Denrell (2004), however, Zott’s (2003) model mimics

firms’ dynamic learning over time, and randomness affects firms’ selection and

retention of resource configurations, in turn creating variation in firms’ capabilities and

hence performance.

Both of the aforementioned papers mark important contributions to our

understanding of how firm-level performance differences may originate in an industry.

Not surprisingly, a series of scholars have followed in their tradition, refining the

notions of how initially chance-driven differences in resources and capabilities lead to

sustained competitive advantage.

Coen and Maritan’s (2011) work resembles Zott’s (2003) paper in that they

analyze systematic firm-performance differences stemming from dynamic capabilities

of resource allocation, with stochastics entering their model only indirectly. Their

simulation results demonstrate that when initial capability endowments and search

abilities are set equal across firms, firm-performance differences are levelled out.

Henderson et al. (2012) seek to determine the threshold duration of competitive

advantage exceeding which one can rule out a purely stochastic process as an

explanation for empirically observable superior performance. Their results suggest that

sustained firm-performance differences cannot be fully explained by time-

homogeneous Markov processes and are most likely attributable to initial differences in

firms’ starting positions, among other things. Denrell and Liu (2012) model the

behaviors of heterogeneously skilled agents in unpredictable environments,

demonstrating that high-level performance does not allow the inferring of capability
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levels if the role of luck is significant in achieving extreme success. Finally, Denrell,

Fang, and Zhao (2013) apply that same rationale to the field of strategic management.

Notwithstanding the importance of the contributions of this stream of research

sparked by Denrell (2004) and Zott (2003), it would appear that important avenues to

understanding the origins of firm-level differences in performance have not been

examined. In fact, elaborating on the key insight by the aforementioned prior works—

that is, the fact that randomness in inter-firm treatment may break initial homogeneity

among organizations and lead to sustained differences between them via path

dependencies—we suggest that the role of randomness has so far been single-sidedly

understudied by scholars following the Carnegie tradition (March and Simon, 1958;

Nelson and Winter, 1982).

Randomness, so we propose, may equally significantly and directly affect other

determinants of firms’ performance that are deemed central to the positional school of

strategy (Porter, 1980; 1991)—notably firms’ competitive environments and the

managerial choices firms face as a consequence—all else being equal. The impact of

randomness on such positional determinants, so we argue, will be particularly pertinent

to competitive settings in which interactions between organizations are frequent and

varied, and in which firms’ positions on the competitive landscape can vary greatly. A

case in point are systemic industries.

SYSTEMIC INDUSTRIES—MODULAR VALUE CHAINS AND STOCHASTIC R&D

Recently, researchers have shown an increased interest in understanding the

interplay between firms’ performance and the patterns of their R&D efforts allocation

in systemic industries (Ethiraj and Puranam, 2004; Ethiraj, 2007; Kretschmer and

Reitzig, 2013).
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Typical examples of systemic industries include telecommunications

(Leiponen, 2008), the automotive sector (Takeishi and Fujimoto, 2001), personal

computers (Ethiraj, 2007), and aircraft manufacturing (Brusoni et al., 2001)—to name a

few. Systemic industries can be broadly defined as industries in which firms compete

with products that consist of different complementary modules which make up the final

value proposition. A system good is thus composed of distinct, functionally interrelated

components that cannot be used in isolation by consumers and that need to be

integrated into a final system product in order to be commercialized (Farrell et al.,

1998; Somaya, 2003). While the presence of all constituent components is

indispensable to ensuring the functionality of a systemic product as a whole, several

alternative solutions for each component may exist in parallel. The availability of

heterogeneous options for different product parts coupled with the ability to recombine

them in various ways implies that multiple product configurations can potentially

emerge (Schilling, 2000).

For illustrative purposes, think of a typical smartphone that can be decomposed

into a set of more than 25 distinct hardware and software components including, but not

limited to, memory chips, processors, operating systems, built-in cameras, connectivity

devices, battery, and touchscreen displays. There are multiple possible solutions

available for most of the smartphone components, however. For example, there exist

several display types based on either of the two dominant technologies—LCD (liquid

crystal display) and OLED (organic light emitting diode)—that all differ in image-

reproduction quality, resolution, weight, power consumption, and user responsiveness

(Figure 1). Similarly, the range of available solutions within operating system

component spans from the platforms available to all mobile-device makers under

licensing agreement (Google’s Android OS, Microsoft’s Windows Phone) to the
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proprietary solutions incompatible with third-party manufacturers’ hardware (Apple’s

iOS, Blackberry OS, Samsung’s Bada OS). Consequently, by recombining different

component solutions across all layers of the technological value chain, one can

potentially obtain a multitude of different smartphone specifications with similar but

not equal functionality.

---------------------------------
Insert Figure 1 about here
---------------------------------

To the consumer, the value of a system product, however, depends not only on

the quality of individual components but also on how well they fit together (Clark and

Fujimoto, 1990; Baldwin and Clark, 2000),1 or how partially modular (or partially

complementary) they are. Different degrees of “synergistic specificity” between

component solutions will determine both the technological functionality and the

commercial value of a given product (Baldwin and Clark, 2000; Schilling, 2000;

Schilling and Steensma, 2001).2

The extent to which the underlying structure of interdependencies between

component solutions is visible to market participants depends on the stage of the focal

industry’s evolution. At an early stage of any industry’s life, the uncertainty associated

with the direction of the technology developments renders the technical interrelations

between component solutions extremely volatile. As the industry matures and

approaches its market stage, however, a better understanding of the general

technological combinatory possibilities emerges, and much of the residual uncertainty

pertains to which actor will be first or best in developing particular solutions (Ethiraj

1 Often, but not always, network externalities of the systemic good affect customer value, too (Katz and Shapiro,
1985; Matutes and Regibeau, 1988; Schilling, 2002). For the purpose of this paper, however, we abstract from
such externalities to keep our core model tractable.
2 Note that the nature of synergies between component solutions does not necessarily need to be defined by the
technical feasibility of integrating several components together. The degree of fit between component solutions
may be equally driven by patent considerations of third-party technologies and suppliers’ exclusivity of
competitive solutions.
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and Puranam, 2004; Brusoni, Prencipe, and Pavitt, 2001). This pre-market stage

(Kretschmer and Reitzig, 2013), at least initially, bears many similarities to a sequential

“patent race” (Reinganum, 1982)—in which industry participants concurrently

competitively develop technology for crucial component solutions, but only one is

lucky enough to patent the invention. As the process unfolds, however, the search

patterns for the preferred component solutions may start to diverge across players due

to economies of substitution (Garud and Kumaraswamy, 1995), thereby rendering the

notion of a “race” less apt.

It is this element of luck which creates randomness that is, for the most part,

exogenous to market participants and that ultimately affects the market positions

competing firms can stake out in a given industry. This randomness, so we argue, can

engender a path dependency of managerial choices that in turn will lead to performance

differences between firms. Such path dependency differs from other hitherto studied

patterns of accumulation insofar as it is centrally codetermined by the competitive

interaction between different players in an industry. Thus firm-performance

heterogeneity will originate even absent capability differences between firms, and even

if managers have identical foresight and are equally affected by environmental

uncertainty. In this paper we explore the contingencies associated with the process of

R&D efforts allocation in the pre-market stage of industry evolution and their influence

on firm performance in different technological and competitive environments.

A MODEL OF R&D ALLOCATION AND PATENTING IN COMPETITION

Task environment

To quantitatively assess the effects of chance and choice on firm performance

eventually, we formalize the process of R&D resource allocation by firms in systemic
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industries within a simulation model. Here, we represent the finite set of emerging

combinatorial product possibilities as an n*m matrix structure in which the rows

correspond to product components and the columns to component solutions.

In order to distinguish between different industries in terms of total number n of

components entering the final product compared to the availability of alternatives m,

we discern between “steep” (n > m) and “flat” (n < m) technological landscapes.

“Square” (n = m) shapes serve as reference categories.

In this setup, m^n possible product configurations can be obtained by vertically

combining one of the m alternative component solutions across n components. The

value of each product is determined by the marginal contributions of the individual

component solutions to the final configuration (Ethiraj, 2007), where these marginal

contributions are quantified as pairwise complementarities between solutions of

adjacent components. The underlying structure of the pairwise complementarities is

generated randomly at the beginning of and remains unchanged until the end of each

simulation, where a simulation comprises the population of the entire matrix by

different agents (see further below). Each complementarity value is a random positive

rational number drawn from a uniform distribution on an open ]0;1[ interval. The total

value of a product is thus calculated as a sum of pairwise complementarities between

its component solutions: = ∑ [ ][( ) ], (1)

where [ ][( ) ] is the complementarity between kth and (k+1)th component solutions of

a given product.3

3 By introducing the modulo operator in the equation, we can calculate the complementarity for k = n as being
the complementarity between the last and the first components solution of a given product. Thus,
complementarities “wrap” the last and first component in circular fashion.
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Incomplete configurations (missing a solution in at least one component) do not

constitute products. Figure 2 serves as an illustration.

------------------------------
Insert Figure 2 about here
------------------------------

More specifically, Figure 2 depicts a “steep” technological landscape where

products consist of four components and three different solutions exist for each

component. The four shaded cells indexed 1, 5, 7, and 12 represent one of the 81

(= 3^4) possible product configurations. The value of the product is equal to =
_ + _ + _ + _ , where the subscripts stand for cell index numbers in the

matrix between which the complementarity is calculated.

Firms’ goals and behaviors

There are p firms endowed with equal foresight (p ≥ 2) competing for component

solutions. The patterns of pairwise complementarities as well as the number of

competitors are transparent to all firms, and they can thus calculate the naïve expected

value of all possible products in the matrix at any given point in time. Firms seek to

naïvely maximize their utility by obtaining exclusive control over those component

solutions that constitute the product with the highest value to them at any given point in

time. They can obtain such control through patent protection of an individual

component solution whenever chance favors them in the patent race. For a given

product, firms will “race” for the control of the most valuable component solution

currently available (modeled as the component solution that has the highest partial

complementarity within the best product currently accessible to the focal firm).

To mimic the latter, we assume that firms continuously compete for developing

component solutions, and we model their patenting success true to the stochastic nature

of the R&D process (Reinganum, 1982)—by subjecting it to chance. The patent race
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itself is sequential, and, towards the beginning of a simulation, resembles a standard

race in that all firms compete for the same component solution. Once certain firms have

obtained control over specific component solutions, the race becomes more

differentiated, and not all firms may compete for the same component solutions any

longer. This is because the success of any firm in obtaining control over a component

solution changes the patenting landscape4 and thereby potentially alters the competition

for all other firms in that they need to adjust their goals. Thus, we assume that players

re-evaluate their R&D allocations (treating prior investments as sunk costs) each time

another firm obtains control over a given technology. The sequence of chance events

(patenting successes pertaining to a component solution) ends when all component

solutions are being owned by someone.

Depending on the number of competitors participating in the aforementioned

race, and depending on the complexity of the system product, more often than not it

may be unfeasible for a single firm to control all components required for a given

product. In those instances, after successfully patenting a certain component solution, a

focal firm5 may try to market a product jointly with an alliance partner.

In the mode, alliance formation takes place automatically between two firms

when it is both (i) possible and (ii) mutually beneficial for them to join forces. It is

possible whenever both firms jointly hold enough component solutions to create a

product, but not before (i.e., there is in-built myopia with regard to the alliance-

formation process at an early stage of industry evolution). It is mutually beneficial

4 To simplify matters, we assume that any component solution may only be used only once, notably for the
product with the highest value. This logic is in line with a series of real-world assumptions: (1) on the
production side, a firm may be able to afford to hold the basic patents to a technology, but it may not be feasible
for a firm to maintain “application-related” patent portfolios dedicated to more than one specific use of a given
technology; (2) on the demand side, firms may elect not to reuse certain components across products in order to
avoid cannibalization.
5 Here we use the term “focal firm” to define a firm that wins a patent race for a given component solution.
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when, for both firms, profits shares in the alliance exceed the naïve (expected)

maximum value of what the firms can earn by themselves. To assess whether condition

II is being met, we must define and compare firms’ shares in an alliance with the

independent naïve (expected) solutions available to them.

The share of firm in an alliance between two firms is calculated as the sum of

the pairwise complementarities between the component solutions that firm i contributed

to the jointly created product, formalized as follows:= ∑ [ ][( ) ] , (2)

where Si is the attributed value of the focal firm i in a given alliance product P,

[ ][( ) ] stands for the complementarity between the kth and (k+1)th component

solutions of a given alliance product P, and S is the number of component solutions

owned by the focal firm i in a given alliance product P.

Calculations are symmetrical for alliance partner j, so that the attributed shares

of both partners always add up to the total value of the alliance product = +, i ≠ j. These relative contributions of alliance partners determine the value-division

percentages:

= (3)

= (4)

Here, is the percentage share of the focal firm i in a given alliance product P,

denotes the percentage share of the partner firm j in a given alliance product P, and

+ = 1, i ≠ j. Notably, alliances are irreversible and splits are frozen at the moment of

the alliance formation. Thence, alliance partners share revenues from any subsequently

created products, including further component solutions they may obtain control over in
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the future or that they may have obtained in the past, and they share profits according to

the initially fixed split.

To assess the (expected) maximum value of an integrated product available to a

given firm, the focal organization estimates its (time-variant) chance of obtaining

control over the entirety of component solutions constituting the most valuable and still

accessible product at time t as follows:(v ) = ∙ ∙ (5)6

Here, (v ) denotes the expected value of the best available individual product for

player , is the value of the best available individual product for player , is the

total number of the remaining available component solutions, is the number of

missing component solutions for the available individual product with value , and

is the number of firms.

Consequently, in order for condition II for alliance formation to be met,

inequalities (6) and (7) must simultaneously hold true:(v ) = ∙ ∙ max < (6)

v = ∙ ∙ max < (7)

The time-value of chance in systemic industries

Within the setup described above, the paper’s central question of how

randomness affects competition, and thence managerial actions and firm performance,

becomes structurally equivalent to investigating the time-value of chance. More

6 Note that this calculation conservatively biases the value of an alliance relative to the expected value of an
integrated product owned by one firm only. At the initial stage, firms’ preferences for the most valuable
component solution coincide and the probability of patenting a particular component solution indeed equals 1/p
for each firm. As the patenting process unfolds, firms’ preferences for component solutions start to diverge and
the number of competitors aiming at the particular component solution decreases.
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specifically, we wonder how initially homogeneous firms benefit more or less from

being lucky in a sequential patent race depending on when nature favors them, and for

how long—all else being equal. While it appears trivial that firms should do ever better

the more frequently they win a leg, determining this time-value of chance appears to be

more difficult, and the extant literature to be scant.

One stream of research that studies the sequence of lucky events stems from the

field of judgment and decision-making. Scholars in this domain have corroborated that

sequences of lucky events trigger different reactions within individuals—ranging from

the gambler’s fallacy to the hot hand phenomenon (Tversky and Kahneman, 1974;

Hahn and Warren, 2009)—focusing on a distinctly different question than the one we

are concerned with, however. Another body of literature in the domain of cognitive

psychology investigates the effects of delays and interruptions in planned activities

(Marsh, Hicks, and Bryan, 1999; McDaniel et al., 2004). It is tangential to our paper,

however, in that it analyzes the consequences of possible inhibitions through a prism of

memory—a characteristic that is alien to our agents here. Finally, a line of work in the

management field has contrasted the value of planning with the value of spontaneous

opportunity recognition and exploitation (Gruber, 2007); however, scholars in that vein

again involve sets of assumptions on firms’ learning and capabilities that do not apply

to our setting.

Thus, pending any strong priors from the existing literature, we resort to our

own critical thinking in predicting how the time-value of chance unfolds. To that end,

we argue that the effect of luck on performance in systemic industries bears a stage-

specific character, and that patenting crucial technology during an early stage of an

industry’s evolution will be more valuable than patenting tangential technology at later
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stages (Teece et al., 1997). This effect, so we argue, is exacerbated by the path

dependency that firms create through their own actions. We thus posit:

Proposition 1: Firms benefit from the chance to make early positional choices

in systemic industries, all else being equal.

The value of a firm’s chance to make decisions early is a necessary condition

for obtaining an overall superior position in the industry landscape—however, an

insufficient one. The largest obstacle to obtaining control over a superior product, so it

would appear, is the firm’s risk of being interrupted in executing its “plan” to control

crucial elements of its value proposition. Such competitor interference, so we would

argue, sets firms back, and more so the more often it occurs, as rivals may cross the

firms’ plan of action and invalidate their earlier positional choices. Consequently, firms

should perform better, all else being equal, the longer the period during which they can

uninterruptedly make sequential positional choices that build on one another. We

therefore predict:

Proposition 2: Firms benefit from the chance to make repeated positional

choices in systemic industries without competitor interference.

DATA AND VARIABLES

We simulated the process of firms’ R&D effort allocation in systemic industries

deploying the above agent-based model. To that end, we define p firms, n components,

and m component solutions prior to generating the randomized patenting landscape. For

each possible combination of parameters p, n, and m we ran a series of 100 simulations

(= matrix populations), where landscapes varied in their underlying complementarity
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structure, leaving us with total 15,000 independent simulations.7 To assess the effects

of chance—the non-manipulable parameter in our simulation—we thence re-estimate

the coefficients of (repeated) luck on the data we created. Our unit of observation is the

firm, and with the number of observations for each simulation being equal to the

number of firms p, we eventually obtained 67,500 observations8 for our analysis.

Dependent variable

We use a cardinal dependent variable called firm-level performance. It captures

the aggregate value of all products owned by a firm individually or, in the case of

alliance formation, the sum of shares held by a firm in jointly owned products.9 The

variable is computed at the end of each simulation, and it takes a value of zero if a firm

neither held a product of its own nor participated in an alliance. Finally, we normalize

firm performance by dividing it by the number of components n, in order to facilitate

performance comparisons across different technological landscapes.

Independent variables

First choice denotes the point in time when a firm succeeds in the sequential patent

race for the first time and obtains control over a component solution in the technology

landscape. We proxy for entry time by counting the number of component solutions

that have been patented by competitors prior to the focal firm’s first patenting success.

7 The parameters for the number of components n (matrix rows) and the number of solutions m (matrix
columns) take integer values in a closed [3;7] interval, the number of players p takes integer values in a closed
[2;7] interval, thus resulting in a total 5*5*6 = 150 possible parameter combinations. For each parameter
combination we run 100 simulations, which eventually gives us 15,000 simulations.
8 The number of observations for a single fixed combination of parameters (n, m) is calculated as a sum of finite
arithmetic progression of which the terms correspond to possible numbers of firms p in a simulation: =∗( )

= 27. Given that there are 25 possible combinations of (n, m) and for each parameter set (n, m, p)

simulations are repeated 100 times, yielding 25*27*100 = 67,500 observations.
9 On the path to patenting the value-maximizing combination, a firm might unintentionally create byproducts of
inferior value. If at a later stage a new, better product configuration requiring already deployed component
solutions becomes possible, the inferior products are dissolved and their component solutions are reassigned to
the products that yield the higher value.
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The corner solution of firms never entering the technology landscape are set to n*m

(the total number of component solutions in a given technological landscape).

Un-interfered choice captures the time span during which a focal firm can

execute its initially envisaged R&D agenda without having to reconsider its plans due

to interim patenting successes by competitors. Un-interfered choice is measured as the

maximum number of component solutions that a given firm obtains control over

consecutively. In the case of alliance formation, we treat the focal firm’s choices and

that of its partners as one with regard to the computation of the variable.

Control variables

To exclude alternative explanations and to facilitate meaningful comparisons

across simulations with different parameter sets, we include several control variables at

the level of both industry and firm.

At the industry level, we first include landscape size (measured as the total

number of component solutions n*m within a given landscape simulation) as a separate

explanatory variable. In doing so, we tease out the effects of firms benefiting from

larger choice sets and increased chances to obtain control over sufficient numbers of

components to produce independently.

Second, we control for the fact that firms may exhibit different behavior

depending on the shape of the technological landscape. On one hand, increasing the

number of components n constrains the feasibility of an integrated product for a firm

and forces it to anticipate alliance formation under unfavorable conditions in order to

secure non-zero outcomes. On the other hand, as the number of possible alternative

component solutions m increases, a firm gains more flexibility in creating better

integrated products, as it can leverage existing component-specific assets (Farrell et al.,

1998) and reap the economies of substitution by re-deploying its past investments
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(Garud and Kumaraswamy, 1995). As a result, vice versa, firms’ performance in

technological landscapes with fewer component solutions m relative to the number of

components n will be systematically lower, all else being equal. To that end, and

consistently with the model description above, we introduce two binary variables—

“flat” (1 if m > n, 0 otherwise) and “steep” (1 if n > m, 0 otherwise), with “square”

being the reference category. Varying m and n will also allow us to investigate whether

chance equally engenders intra-industry performance heterogeneity across different

types of landscapes, or not.10

Finally, the presence of multiple firms with similar goals and vision will

naturally reduce the probability of a single firm to pioneer a crucial technological

solution and exacerbate the risks of disruptions in a focal firm’s envisaged patenting

plan. We seek to strip off related variance in our dependent variable by controlling for

competition strength, which is approximated by the number of competitors, p.

We also control for a variety of alliance and firm-level effects.

First, we include a binary variable called alliance formation that captures

whether a firm entered an alliance in a given simulation (1, 0 otherwise). The variable

is set to zero also for those firms that created no products in a given simulation.

Second, cumulative luck might increase corporate profit due to increased

alliance opportunities, even if the conditions of staking positions early and seamlessly

in the technology landscape are not fulfilled. We therefore include the total number of

chance events variable, which is measured as the total number of component solutions

held by a given firm by the end of a simulation.

Third, the presence of interruptions distorts a firm’s initial intentions, but the

extent to which these discontinuities in executing an envisaged agenda become

10 See “Robustness checks” for further details. In that section, we discuss the convergence of running our
estimations on different types of (steep, flat, and square) landscapes.
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irreversible also depends on the duration of the interruption: the longer the period a

firm does not succeed in winning a patent race, the more likely it will have to switch to

a different (and inferior) target product eventually. Consequently, we include the

longest period of disruption variable, which counts the maximum number of times

competitors succeeded in patenting between two nonconsecutive successful positional

choices of the focal firm.

Finally, we include variables that capture the duration of chance at different

points of the landscape population. The number of short / medium / long lucky strikes at

the early stage counts the number of chance sequences accruing to a focal firm, which

allows us to capture half (three quarters, all) of the component solutions constituting a

product during the first half of a simulation.11 The intuition behind the variable is that

getting a long sequence or alternating series of short leads towards the beginning may

grant a firm access to the crucial value-maximizing components and preclude other

firms from occupying them. Moreover, even being inactive on subsequent moves might

not be as harmful because one gets a stronger bargaining position for an alliance. The

number of short / medium / long lucky strikes at later stages is calculated analogically

with the aforementioned set of variables, but it refers to stages in time when half the

technology in the landscape is already controlled by one firm or another. The basic

rationale is that a late series of “lucky” draws may potentially be beneficial as one gets

a chance to accumulate enough components for an individual product, or to establish a

bargaining position for an alliance. However, the choice set will be limited, and the

quality of the available remaining products may be inferior. Figure 3 illustrates the

computation of some of the key variables. Table 1 summarizes the description of the

variables.

11 The absolute number of component solutions will differ conditional on the number of components n. Results
are rounded off when needed.
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--------------------------------------------
Insert Table 1 and Figure 3 about here
--------------------------------------------

RESULTS

Table 2 contains descriptive statistics that allow checks on the internal

consistency of the simulation outcomes, as well as on the usefulness of the data for the

tests of Propositions 1 and 2. Minimum and maximum values of manipulable

parameters correspond to expectation. Equally reassuringly, stochastically determined

variables show substantial variation, and correlations between parameters exceed

values of 0.5 only in systematically expected instances. Finally, preliminary indications

of a relationship as predicted in Proposition 2 emerge (corr[firm performance, un-

interfered choice] = 0.61, p < 0.01).

-----------------------------------------------------
Insert Tables 2 and 3 and Figure 4 about here
-----------------------------------------------------

More interestingly, Figure 4 illustrates one of the key tenets of this paper;

namely that significant inter-firm performance differences materialize as a result of the

way we formalized the population of the technology landscape. More specifically,

Figure 4 contrasts ranked performance differences (measured as average aggregate firm

payoffs across simulations, normalized by the number of components) between

individual organizations.

Table 3 eventually provides results from the multivariate analysis of our data

that seeks to corroborate our propositions. Models 3.1 through 3.9 provide upward-

tested OLS specifications in which we explain firm performance through an increasing

set of explanatory variables, including their interactions. Given that we draw on

simulated data that bear no path dependency across simulations, and since we do not
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model agent’s learning within a simulation, we treat all observations as independent

pooled firm-level cross-sections.

Models 3.1 and 3.3 provide baseline parameterizations that include a subset of

our control variables, and against which we compare the explanatory power of the

subsequent models, particularly models 3.3 through 3.7. Model 3.4 originally

introduces the first choice variable, confirming our first Proposition that performance

suffers the later a firm is able to make its first positional choice. Notably, the effect

remains robust across all subsequent specifications.

Model 3.5 provides empirical evidence for Proposition 2. The longer the un-

interfered sequence of decision-making a firm enjoys, the higher the profit it attains—

an effect that remains robust across specifications albeit decreasing in size depending

on the inclusion of further controls (see Model 3.7). Model 3.6 provides a quasi mirror

image of Model 3.5 in that it shows that a firm’s performance suffers the longer that

chance favors its competitors in a stretch.

Finally, models 3.8 and 3.9, originally intended to rule out further alternative

explanations for our proposed relationships, reveal interesting insights in their own

right. Namely, as Model 3.8 suggests, a lucky strike, all else being equal, benefits a firm

more during the initial phases of the technology landscape population than during the

later stages.12 Pairwise comparisons of coefficients for lucky strikes of identical

duration during the early and the late stages of the process show significant differences.

This effect, so it would appear, is exacerbated by the number of competitors

participating in the sequential patent race (Model 3.9). With the benefit of hindsight, we

thus additionally posit:

12 Note that the variable un-interfered choice no longer features in models 3.8 and 3.9, as its inclusion would
lead to an over-specification given the additional explanatory variables.
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Proposition 3a: The effect described in Proposition 2 is more pronounced

during early than during the late stages of the evolution of an industry.

Proposition 3b: The effect described in Proposition 3.a is exacerbated by

the number of competitors in an industry.

Robustness checks—selection issues, boundary conditions, and mechanistic

identification

We carried out a series of robustness checks (a) to exclude that our findings

would be spuriously driven by selecting a particular sample of simulated data, (b) to

delimit the parameter space under which our core results would uphold, and—most

importantly—(c) to ascertain that the effects of chance we report would indeed be

driven by the competing firms’ positional choices—in line with our theoretical claim.

To address the first issue, and given the nature of our (simulated) data, we

repeatedly estimated models 3.1 through 3.9 on randomly chosen subsamples of

varying size in a bootstrapping-like manner. Findings were robust with respect to both

coefficient estimates and levels of individual coefficient significance.

With regard to the second point mentioned above, we ran models 3.1 through

3.9 on different subsets of flat, steep, and square technological landscapes. Expectedly,

un-interfered choice is more visibly related to firm performance in industries

characterized by small-component-number products (i.e., flat landscapes), all else being

equal. This is because the chance sequences required to obtain a desired product are

shorter, whereas the likelihood of benefiting from such a sequence stays constant. That

said, results do converge across different types of industries.

Finally, in order to provide further evidence for a specific competition-related

mechanism by which chance engenders firm-level performance heterogeneity, we

sought to dismiss an obvious alternative explanation for our findings; namely that the
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product value asymmetries generated by the structure of partial complementarities in

our industry landscapes alone could account for the asymmetries in firm performance

we obtain. To that end, we computed the total value generated by firms within an

industry—the value one would expect to observe if the firms did not compete for

individual component solutions but, instead, randomly selected from the theoretically

best possible products within a given landscape without competitively crowding one

another out.13 Comparing the aggregate firm-level profits that are being generated by

our model with those engendered through such an alternative (naïve) random ex-post

allocation procedure shows that the asymmetries we observe in models 3.1 through 3.9

are indeed characteristic of our theory of firms’ positional choices in competition.

------------------------------------------
Insert Tables 4A and 4B about here
------------------------------------------

To that end, Table 4a reports—for selected industries—the number of

simulations (out of 100) in which the total value of the products generated in each

simulation without competitor interaction is identical to or compatible with the one

generated by our model-based simulations. Similarly, Table 4b reports the number of

cases in which the simulated competitive process inherent in our model generates the

maximum feasible number of products in a given industry when chance is limited to

determining ex-post allocation of product values. From Tables 4a and 4b it is apparent

that the two stochastic processes produce distinctly different results; “incompatible”

cases between the two explanations prevail: in most simulation runs, the probability of

obtaining the same distribution of outcomes by the ex-post allocation or by simulation

is close to zero. Notably, the industry structure may affect the degree of incompatibility

between our modeling results and the alternative ex-post random allocation process. In

13 This alternative stochastic process, while equally generating asymmetries in firm performance, theoretically
differs from the mechanism we propose in that the role of randomness would be limited to a generating a world
of technological opportunities and distributing them among agents.
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particular, as competitive pressure loosens, the number of compatible cases increases.

This reinforces the result of our regression analysis, showing that chance plays an ever

more important role when there are more competitors.

DISCUSSION AND CONCLUSIONS

In this paper, we proposed and demonstrated within the framework of our

assumptions that chance itself can induce performance heterogeneity among initially

homogeneous organizations, even in the absence of capability differences between

them. Such chance to make early decisions and make choices uninterruptedly, so we

proposed and showed, can irreversibly affect firms’ positions in an industry landscape,

thereby engendering significant variation in inter-firm profits. Importantly, this type of

firm-level performance difference engendered by competitive crowding significantly

differs from alternative patterns of performance variation between firms that can be

generated through simpler stochastic random allocation processes. Notably, our model

produces results that would appear to capture empirically observable deadweight losses

due to coordination failures among competing firms better than simpler random

allocation processes could.

We believe our findings could appeal to a wide variety of scholars in our field

as well as adjacent ones. Strategy scholars, traditionally concerned with identifying and

characterizing the sources of heterogeneity in firm performance, may view our results

as complementary to the findings of Denrell (2004) and Zott (2003), who earlier argued

that chance introduces variation in capabilities between firms, and thence variation in

performance. That said, we are also moderately hopeful that our approach and findings

might also be interesting to scholars outside the core strategy domain, notably to

colleagues from the field of evolutionary biology, who are equally preoccupied with the
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emergence of heterogeneity—albeit among organisms, not organizations (Rueffler,

Hermisson, and Wagner, 2012).

Naturally, our work leaves us with at least as many questions as it provided

preliminary answers. Towards the end of the paper, we pick up on those two categories

of questions that appear most important to us, and that present avenues for future work.

The first category of open issues relates to the framework of assumptions we

adopted in this paper. For one, we started from the premise that technology landscapes

of the kind we depict are equally visible and accessible to all competitors in the market,

that they do not change over time, that components are of roughly similar importance,

and that markets can accommodate a variety of different products at a time. In reality,

systemic industries are research-intensive industries in which different component

technologies may be progressing at different rates (Ethiraj, 2007), and specialization

advantages of individual organizations may exist from the beginning. Equally, firms

may differentiate between core and peripheral components (Baldwin and Woodard,

2009), dismissing the simple assumption that all components have the same mean level

of importance. And finally, installed base advantages may limit the viability of bringing

out second and third products in a systemic industry after the initial offering has been

introduced. Relaxing all these assumptions, and including them in a more

comprehensive modeling approach, may appear worthwhile particularly in those

instances in which scholars or practitioners seek to quantify the effect of chance on

positional advantages for a given setting.

Second, and possibly more relevant from a scholarly standpoint, our current

formalization—to keep the model tractable—deliberately stopped short of modeling

agents’ decision-making behavior in more complex ways than their pursuing of

solutions with the highest naïve expected value. Deviations in either direction—by
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either endowing managers with more foresight or letting them resort to simpler rules of

thumb (a.k.a. heuristics)—would add a sense of realism to our formalizations that

should increase the explanatory power of our chosen approach. Ongoing research of

ours in this paper’s vein thus elaborates on agents’ decision-making behavior—

examining both the marginal value of deploying second-level rationality in the presence

of stochastic R&D allocations and the costs of taking decision-making shortcuts in

probabilistic settings.

Finally, while in this paper we deliberately modeled the emergence of

performance asymmetries among firms with equal starting conditions, future extensions

may, of course, additionally account for initial differences in firms’ capabilities in order

to provide a most nuanced view of the role of randomness in the engendering of firm-

performance heterogeneity.
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FIGURE 1

Selected Component Solutions in the Smartphone Industry
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FIGURE 2

Calculation of the product value as a sum of pairwise complementarities between its
constituent component solutions in adjacent layers
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FIGURE 3*

Sequence of chance events for a focal firm

*Chronological order of chance events accrued to firms in a given simulation can be
represented ex-post as an array of length n*m. The elements of an array correspond to the
firms’ indices (1,2,..p) and their positions—to the number of component solutions captured at
any given point in time. The figure illustrates a simulation for parameter combination n = 4,
m = 4, and p = 2. Sixteen component solutions are available (landscape size = 16). The
chance variables for firm 1 as computed as follows: Firm 1’s first choice occurred when no
components were captured by competitors (first choice = 0). Firm 1 was able to make a
maximum of 4 consecutive choices (un-interfered choice = 4), and was losing the patent
race for 4 component solutions in a row (longest period of disruption = 4). Overall, firm 1
was able to capture 8 component solutions (total number of chance events = 8). In a given
simulation we set n = 4; thus, winning a patent race 2 (3, 4) times in a row allows a firm to
capture half (three quarters, all) of the component solutions required for the complete
product. Depending on whether firms’ activity relates to the period before or after the first 8
component solutions are captured, we distinguish between the early and later stages on the
technology landscape population. In the first half of the simulation, firm 1 had 2 series of
short lucky strikes (number of short lucky strikes at the early stage = 2) and 1 long series
towards the end of the simulation (number of long lucky strikes at later stage = 1).
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FIGURE 4*

Differences in ranked aggregate firm payoffs across simulations for setups with
different numbers of competitors

*Differences between bars are statistically significant
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TABLE 1

Description of variables

Variable Definition Expected
sign

Firm-level performance
Cardinal variable. Normalized value accumulated by a firm in a given
simulation

Flat
Binary variable; set to 1 for industry landscapes in which the number of
available solutions to each product component exceeds the total number of
components, 0 otherwise

+

Steep
Binary variable; set to 1 for industry landscapes in which the number of
available solutions to each product component falls behind the number of
components, 0 otherwise

-

Competition strength Count variable denoting the number of firms in a given simulation -

Landscape size
Count variable capturing the total number of available component solutions
in a given simulation

+

Alliance formation
Binary variable denoting the fact of alliance formation by players (baseline:
no alliance formation occurs)

-

First choice
Count variable denoting the total number of component solutions captured by
competitors prior to a firm’s first success

-

Total number of chance
events

Count variable denoting the total number of component solutions a firm
managed to capture by the end of a simulation

+

Longest period of
disruption

Count variable denoting the maximum number of component solutions that
were consecutively captured by a firm’s competitors -

Un-interfered choice
Count variable denoting the maximum number of component solutions that
were captured consecutively by a firm without being interrupted by
competitors

+

Number of short lucky
strikes at the early
(late)stage

Count variable denoting the number of sequences of a length that
consecutively would allow a firm to get ownership of half of a product in the
early (later) stage of the landscape population

+

Number of medium lucky
strikes at the early
(late)stage

Count variable denoting the number of sequences of a length that
consecutively would allow a firm to get ownership of three quarters of a
product in the early (later) stage of the landscape population

+

Number of long lucky
strikes at the early
(late)stage

Count variable denoting the number of sequences of a length that
consecutively would allow a firm to get ownership of all of a product in the
early (later) stage of the landscape population

+



TABLE 2

Descriptive statistics and correlations

Mean S.D. Min Max 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 Firm-level performance 0.54 0.50 0 4.70 1.00

2 Landscape size 25 10.20 9 49 0.24 1.00

3 Alliance formation 0.40 0 1 -0.07 0.06 1.00

4 Competition strength 5.15 1.58 2 7 -0.53 -0.00 0.20 1.00

5 Flat 0.40 0 1 0.24 -0.04 -0.15 -0.00 1.00

6 Steep 0.40 0 1 -0.24 -0.04 0.15 -0.00 -0.67 1.00

7 Total number of chance events 5.76 4.04 0 35 0.75 0.57 -0.04 -0.55 -0.04 -0.00† 1.00

8 First choice 5.88 8.34 0 49 -0.34 -0.10 -0.09 0.25 -0.01† -0.02 -0.35 1.00

9 Un-interfered choice 1.94 1.19 0 15 0.61 0.23 -0.02 -0.51 -0.02 0.02 0.73 -0.33 1.00

10 Longest period of disruption 7.79 4.50 1 43 -0.28 0.46 0.09 0.36 -0.00† -0.02 -0.18 -0.09 -0.21 1.00

11 Number of short lucky strikes at the early stage 0.14 0.39 0 4 0.36 -0.06 -0.15 -0.25 0.18 -0.16 0.23 -0.14 0.26 -0.14 1.00

12 Number of short lucky strikes at later stage 0.17 0.42 0 4 0.29 -0.06 -0.02 -0.23 0.17 -0.15 0.23 -0.09 0.27 -0.20 0.13 1.00

13 Number of medium lucky strikes at the early stage 0.07 0.27 0 3 0.30 -0.12 -0.14 -0.20 0.17 -0.15 0.12 -0.10 0.21 -0.14 0.43 0.09 1.00

14 Number of medium lucky strikes at the late stage 0.08 0.28 0 3 0.25 -0.13 -0.05 -0.18 0.18 -0.15 0.12 -0.07 0.22 -0.19 0.11 0.39 0.15 1.00

15 Number of long lucky strikes at the early stage 0.03 0.18 0 2 0.35 -0.07 -0.10 -0.24 0.12 -0.10 0.20 -0.08 0.41 -0.14 0.02 0.09 0.03 0.12 1.00

16 Number of long lucky strikes at the late stage 0.03 0.17 0 2 0.28 -0.07 -0.04 -0.20 0.11 -0.09 0.18 -0.06 0.37 -0.14 0.10 0.00† 0.11 0.02 0.14 1.00
The reported Pearson correlation coefficients are significant at 1%. Correlation coefficients marked with † are not statistically significant.



TABLE 3

Modeling firm performance (OLS regression estimates)
Model 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9

Landscape size 0.01*** 0.01*** -0.01*** 0.01*** 0.01*** 0.02*** -0.01*** 0.00*** 0.00***
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Alliance formation 0.03*** 0.08*** 0.04*** 0.05*** 0.05*** 0.07*** 0.04*** 0.06*** 0.06***
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Competition strength
-

0.17***
-0.17*** -0.02*** -0.16*** -0.10*** -0.14*** -0.02*** -0.01*** -0.00***

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
Flat 0.19*** 0.20*** 0.18*** 0.18*** 0.20*** 0.20*** 0.15*** 0.16***

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
Steep -0.12*** -0.13*** -0.12*** -0.13*** -0.12*** -0.13*** -0.09*** -0.09***

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
Total number of chance
events

0.11*** 0.09*** 0.07*** 0.07***

(0.00) (0.00) (0.00) (0.00)
First choice -0.01*** -0.02*** -0.02*** -0.02***

(0.00) (0.00) (0.00) (0.00)
Un-interfered choice 0.18*** 0.03***

(0.00) (0.00)
Longest period of
disruption

-0.03*** -0.01*** -0.01*** -0.01***

(0.00) (0.00) (0.00) (0.00)
Number of short lucky
strikes at the early stage

0.11*** 0.12***

(0.00) (0.01)
Number of short lucky
strikes at the late stage

0.04*** 0.13***

(0.00) (0.01)
Number of medium
lucky strikes at the early
stage

0.18*** 0.25***

(0.01) (0.01)
Number of medium
lucky strikes at the late
stage

0.10*** 0.18***

(0.01) (0.01)
Number of long lucky
strikes at the early stage

0.42*** 0.46***

(0.01) (0.02)
Number of long lucky
strikes at the late stage

0.24*** 0.45***

(0.01) (0.02)
Competition x Number
of short lucky strikes at
the early stage

-0.00

(0.00)
Competition x Number
of short lucky strikes at
the late stage

-0.02***

(0.00)
Competition x Number
of medium lucky strikes
at the early stage

-0.02***

(0.00)
Competition x Number
of medium lucky strikes
at the late stage

-0.02***

(0.00)
Competition x Number
of long lucky strikes at
the early stage

-0.02***

(0.01)
Competition x Number
of long lucky strikes at
the late stage

-0.07***

(0.01)
Constant 1.11*** 1.08*** 0.30*** 1.20*** 0.51*** 1.01*** 0.33*** 0.25*** 0.21***

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
Observations 67,500 67,500 67,500 67,500 67,500 65,267 65,267 65,267 65,267
Adjusted R-squared 0.35 0.42 0.69 0.45 0.54 0.47 0.69 0.73 0.74

Standard errors in parentheses; * significant at 10%; ** significant at 5%; *** significant at 1%



TABLE 4A

Comparing aggregate firm-level profits within different types of industries for different
types of chance mechanisms

Landscape
dimensions (n*m)

2 firms 3 firms 4 firms

4 * 3 21 9 1
4 * 4 8 2 2
4 * 5 11 3 1
4 * 6 8 1 0

Cases (out of 100) in which the total value of the products generated in each run of the simulation (using ex-post
random allocation) is identical to the one generated by the simulated competitive process.

TABLE 4B

Comparing the total number of products generated within different types industries for
different types of chance mechanisms

Landscape
dimensions (n*m)

2 firms 3 firms 4 firms

4 * 3 32 17 5
4 * 4 11 4 3
4 * 5 14 4 2
4 * 6 17 1 1

Cases (out of 100) in which the simulated competitive process generates the maximum feasible number of
products.


