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Abstract—Despite its success and popularity, machine learning
is now recognized as vulnerable to evasion attacks, i.e., carefully
crafted perturbations of test inputs designed to force prediction
errors. In this paper we focus on evasion attacks against decision
tree ensembles, which are among the most successful predictive
models for dealing with non-perceptual problems. Even though
they are powerful and interpretable, decision tree ensembles
have received only limited attention by the security and machine
learning communities so far, leading to a sub-optimal state of the
art for adversarial learning techniques. We thus propose TREANT,
a novel decision tree learning algorithm that, on the basis of a
formal threat model, minimizes an evasion-aware loss function at
each step of the tree construction. TREANT is based on two key
technical ingredients: robust splitting and attack invariance, which
jointly guarantee the soundness of the learning process. Exper-
imental results on three publicly available datasets show that
TREANT is able to generate decision tree ensembles that are at
the same time accurate and nearly insensitive to evasion attacks,
outperforming state-of-the-art adversarial learning techniques.

I. INTRODUCTION

Machine Learning (ML) is increasingly used in several
applications and different contexts. When ML is leveraged to
ensure system security, such as in spam filtering and intrusion
detection, everybody acknowledges the need of training ML
models resilient to adversarial manipulations [1], [2]. Yet
the same applies to other critical application scenarios in
which ML is now employed, where adversaries may cause
severe system malfunctioning or faults. For example, consider
an ML model which is used by a bank to grant loans to
inquiring customers: a malicious user may try to fool the
model into illicitly qualifying him for a loan. Unfortunately,
traditional ML algorithms proved vulnerable to a wide range
of attacks, and in particular to evasion attacks, i.e., carefully
crafted perturbations of test inputs designed to force prediction
errors [3], [4], [5], [6].

To date, research on evasion attacks has mostly focused on
linear classifiers [7], [8] and, more recently, on deep neural
networks [9], [10]. Whereas deep learning obtained remark-
able and revolutionary results on many perceptual problems,
such as those related to computer vision and natural language
understanding, decision trees ensembles are nowadays one of
the best methods for dealing with non-perceptual problems,
and are one of the most commonly used techniques in Kaggle
competitions [11]. Decision trees are also interpretable mod-
els [12], yielding predictions which are human-understandable
in terms of syntactic checks over domain features, which is
particularly appealing in the security setting. Unfortunately,

despite their success, decision tree ensembles have received
only limited attention by the security and machine learning
communities so far, leading to a sub-optimal state of the art
for adversarial learning techniques (see Section II-C).

In this paper, we propose TREANT,1 a novel learning
algorithm designed to build decision trees which are resilient
against evasion attacks at test time. Based on a formal threat
model, TREANT optimizes an evasion-aware loss function at
each step of the tree construction [13]. This is particularly
challenging to enforce correctly, considered the greedy nature
of traditional decision tree learning [14]. In particular, TRE-
ANT has to ensure that the local greedy choices performed
upon tree construction are not short-sighted with respect to
the capabilities of the attacker, who has the advantage of
choosing the best attack strategy based on the fully built tree.
TREANT is based on the combination of two key technical
ingredients: a robust splitting strategy for decision tree nodes,
which reliably takes into account at training time the attacker’s
capability of perturbing instances at test time, and an attack
invariance property, which preserves the correctness of the
greedy construction by generating and propagating constraints
along the decision tree, so as to discard splitting choices which
might be vulnerable to attacks.

We finally deploy our learning algorithm within a traditional
random forest framework [15] and show its predictive power
on real-world datasets. Notice that, although there have been
various proposals that tried to improve robustness against
evasion attacks by using ensemble methods [16], [17], [18],
[19], it was shown that ensembles of weak models are not
necessarily strong [20]. We avoid this shortcoming by em-
ploying TREANT to train an ensemble of decision trees which
are individually resilient to evasion attempts.

A. Roadmap

To show how TREANT improves over the state of the art,
we proceed as follows:

1) We first review decision trees and decision tree ensem-
bles, presenting a thorough critique of existing adversar-
ial learning techniques for such models (Section II).

2) We introduce our formal threat model, discussing an
exhaustive white-box attack generation method, which
allows for an accurate evaluation of the performance of

1The name comes from the role playing game “Dungeons & Dragons”,
where it identifies giant tree-like creatures.
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decision trees under attack and proves scalable enough
for our experimental analysis (Section III).

3) We present TREANT, the first tree learning algorithm
which greedily, yet soundly, minimizes an evasion-aware
loss function upon tree construction (Section IV).

4) We experimentally show that TREANT outperforms ex-
isting adversarial learning techniques on three publicly
available datasets (Section V).

Our analysis shows that TREANT is able to build decision
tree ensembles that are at the same time accurate and nearly
insensitive to evasion attacks. Compared to the state of the
art, TREANT exhibits a ROC AUC improvement against the
strongest attacker ranging from ≈ 10% to ≈ 20%.

II. BACKGROUND AND RELATED WORK

A. Supervised Learning

Let X ⊆ Rd be a d-dimensional vector space of real-valued
features. An instance x ∈ X is a d-dimensional feature vector
(x1, x2, . . . , xd) representing an object in the vector space.2

Each instance x ∈ X is assigned a label y ∈ Y by some
unknown function g : X 7→ Y , called the target function.
Starting from a set of hypotheses H, the goal of a supervised
learning algorithm is to find the function ĥ ∈ H that best
approximates the target g. This is practically achieved through
empirical risk minimization [21]; given a sample of correctly
labeled instances D = {(x1, g(x1)), . . . , (xn, g(xn))} known
as the training set, the empirical risk is defined by a loss
function L : H × (X × Y)n 7→ R+ measuring the cost of
erroneous predictions, i.e., the cost of predicting ĥ(xi) instead
of the true label g(xi), for all (xi, g(xi)) ∈ D. Supervised
learning thus amounts to finding:

ĥ = argmin
h∈H

L(h,D).

The loss L is often obtained by aggregating an instance-
level loss ` : Y × Y 7→ R+. Here, we define L as the sum of
the instance-level losses: L(h,D) =

∑
(x,y)∈D `(h(x), y).

B. Decision Trees and Decision Tree Ensembles

A powerful set of hypotheses H is the set of the decision
trees [22]. We focus on binary decision trees, whose internal
nodes perform thresholding over feature values. Such trees
can be inductively defined as follows: a decision tree t is
either a leaf λ(ŷ) for some label ŷ ∈ Y or a non-leaf node
σ(f, v, tl, tr), where f ∈ [1, d] identifies a feature, v ∈ R is
the threshold for the feature f and tl, tr are decision trees. At
test time, an instance x traverses the tree t until it reaches a
leaf λ(ŷ), which returns the prediction ŷ, denoted by t(x) = ŷ.
Specifically, for each traversed tree node σ(f, v, tl, tr), x falls
into the left tree tl if xf ≤ v, and into the right tree tr
otherwise. We just write λ or σ to refer to some leaf or node
of the decision tree when its actual content is irrelevant. The
problem of learning an optimal decision tree is known to be

2For simplicity, we only consider numerical features over R. However, our
framework can be readily generalized to other use cases, e.g., categorical or
ordinal features, which we support in our implementation and experiments.

Algorithm 1 BUILDTREE

1: Input: training data D
2: ŷ ← argminy L(λ(y),D)
3: σ(f, v, λ(ŷl), λ(ŷr)),Dl,Dr ← BESTSPLIT(D)
4: if L(σ(f, v, λ(ŷl), λ(ŷr)),D) < L(λ(ŷ),D) then
5: tl ← BUILDTREE(Dl)
6: tr ← BUILDTREE(Dr)
7: return σ(f, v, tl, tr)
8: else
9: return λ(ŷ)

10: end if

NP-complete [23], [24]; as such, a top-down greedy approach
is usually adopted [14], as shown in Algorithm 1.

The function BUILDTREE takes as input a dataset D and
initially computes the label ŷ which minimizes the loss on D
for a decision tree composed of just a single leaf; for instance,
when the loss is the Sum of Squared Errors (SSE), such label
just amounts to the mean of the labels in D. The function then
checks if it is possible to grow the tree to further reduce the
loss by calling a splitting function BESTSPLIT (Algorithm 2),
which attempts to replace the leaf λ(ŷ) with a new sub-tree
σ(f, v, λ(ŷl), λ(ŷr)). This sub-tree is greedily identified by
choosing f and v from an exhaustive exploration of the search
space consisting of all the possible features and thresholds, and
with the predictions ŷl and ŷr chosen so as to minimize the
global loss on D. If it is possible to reduce the loss on D by
growing the new sub-tree, the tree construction is recursively
performed over the subsets Dl = {(x, y) ∈ D | xf ≤ v} and
Dr = D\Dl, otherwise the original leaf λ(ŷ) is returned. Real-
world implementations of the algorithm typically use multiple
stopping criteria to prevent overfitting, e.g., by bounding the
tree depth, or by requiring a minimum number of instances in
the datasets used in the recursive calls.

Random Forest (RF) and Gradient Boosting Decision Trees
(GBDT) are popular ensemble learning methods for decision
trees [15], [25]. RFs are obtained by independently training a
set of trees T , which are combined into the ensemble predictor
ĥ, e.g., by using majority voting to assign the class label. Each
ti ∈ T is typically built by using bagging and per-node feature
sampling over the training set. In GBDTs, instead, each tree
approximates a gradient descent step along the direction of
loss minimization. Both methods are very effective, where RF
is able to train models with low variance, while GDBTs are
models of high accuracy yet possibly prone to overfit.

C. Related Work

Adversarial learning, which investigates the safe adoption of
ML in adversarial settings [1], is a research field that has been
consistently increasing of importance in the last few years. In
this paper we deal with evasion attacks, a research sub-field of
adversarial learning, where deployed ML models are targeted
by attackers who craft adversarial examples that resemble
normal data instances, but force wrong predictions. Most of the
work in this field regards classifiers, in particular binary ones.



Algorithm 2 BESTSPLIT

1: Input: training data D
. Build a set of candidate tree nodes N via an exhaustive search over f and v

2: N ← {σ(f, v, λ(ŷl), λ(ŷr)) | f ∈ [1, d] ∧ ∃(x, y) ∈ D : xf = v ∧ ŷl, ŷr = argminyl,yr L(σ(f, v, λ(yl), λ(yr)),D)}
. Select the candidate node t̂ ∈ N which minimizes the loss L on the training data D

3: t̂ = argmint∈N L(t,D) = σ(f, v, λ(ŷl), λ(ŷr))
. Split the training data D based on the best candidate node t̂ = σ(f, v, λ(ŷl), λ(ŷr))

4: Dl ← {(x, y) ∈ D | xf ≤ v}
5: Dr ← D \ Dl
6: return t̂,Dl,Dr

The attacker starts from a positive instance that is classified
correctly by the deployed ML model and is interested in
introducing minimal perturbations on the instance to modify
the prediction from positive to negative, thus “evading” the
classifier [26], [3], [27], [28], [29], [30], [31], [10].

To prevent these attacks, different techniques have been
proposed for different models, including support vector ma-
chines [8], [32], deep neural networks [33], [10], [34], and
decision tree ensembles [29], [35]. Unfortunately, the state of
the art for decision tree ensembles is far from satisfactory.

The first adversarial learning technique for decision tree
ensembles is due to Kantchelian et al. and is called adversarial
boosting [29]. It is an empirical data augmentation technique,
borrowing from the adversarial training approach [9], where a
number of evading instances are included among the training
data to make the learned model aware of the attacks and,
thereby, possibly more resilient to them. Specifically, at each
boosting round, the training set is extended by crafting a set
of possible perturbations for each original instance and by
picking the one with the smallest margin, i.e., the largest
misprediction risk, for the model trained that far. Adding
perturbed instances to the training set forces the learning
algorithm to minimize the average error over both the original
instances and the chosen sample of evading ones, but this
does not provide clear performance guarantees under attack.
This is both because evading instances exploited at training
time might not be representative of test-time attacks, and
because optimizing the average case might not defend against
the worst-case attack. Indeed, the experiments in Section V
show that the performance of ensembles trained via adversarial
boosting can be severely downgraded by evasion attacks.

The second adversarial learning technique for decision tree
ensembles was proposed in a very recent work by Chen et
al., who introduced the first tree learning algorithm embed-
ding the attacker directly in the optimization problem solved
upon tree construction [35]. The key idea of their approach,
called robust trees, is to redefine the splitting strategy of the
training examples at a tree node. They first identify the so
called unknown instances of D, which may fall in either in
Dl or in Dr, depending on adversarial perturbations. The
authors thus claim that the optimal tree construction strategy
would need to account for an exponential number of attack
configurations over these unknown instances. To tame such
algorithmic complexity, they propose a sub-optimal heuristic

approach based on four “representative” attack cases. Though
the key idea of this algorithm is certainly interesting and shares
some similarities with our own proposal, it also suffers from
significant shortcomings. First, representative attack cases are
not such anymore when the attacker is aware of the defense
mechanism, and they are not anyway sufficient to subsume the
spectrum of possible attacks: our algorithm takes into account
all the possible attack cases, while being efficient enough for
practical adoption. Moreover, the approach in [35] does not
implement safeguards against the incremental greedy nature
of decision tree learning: there is no guarantee that, once the
best splitting has been identified, the attacker cannot adapt his
strategy to achieve better results on the full tree. Indeed, the
experimental evaluation in Section V shows that it is very easy
to evade the trained models, which turn out to be even more
fragile than those trained through adversarial boosting [29].

III. THREAT MODEL

The possibility to craft adversarial examples was popular-
ized by Szegedy et al. in the image classification domain: their
seminal work showed that it is possible to introduce minimal
perturbations into an image so as to modify the prediction of
its class by a deep neural network [9]. These evasion attacks
questioned the applicability of ML to several security/business
critical domains where malicious users can intentionally fool
an ML model deployed online.

A. Loss Under Attack and Adversarial Learning

At an abstract level, we can see the attacker A as a function
mapping each instance to a set of possible perturbations, which
might be able to evade the ML model. Depending on the
specific application scenario, not every attack is plausible,
e.g., A cannot force some perturbations or behaves surrep-
titiously to avoid detection. For instance, in the typical image
classification scenario, A is usually assumed to introduce
just slight modifications that are perceptually undetectable to
humans. This simple similarity constraint between the original
instance x and its perturbed variant z is well captured by a
distance [10], i.e., we might have A(x) = {z | ‖z−x‖∞ ≤ ε}.

Similarly, assuming that the attacker can run independent
attacks on every instance of a given dataset D, we can define
A(D) as the set of the datasets D′ which can be obtained by
replacing each (x, y) ∈ D with any (z, y) such that z ∈ A(x).



The easiness of crafting successful evasion attacks defines
the robustness of a given ML model at test time. The goal of
learning a robust model is therefore to minimize the harm an
attacker may cause via perturbations. This learning goal was
formalized as a min-max problem by Madry et al. [13]:

ĥ = argmin
h∈H

max
D′∈A(D)

L(h,D′)︸ ︷︷ ︸
LA(h,D)

. (1)

The inner maximization problem models the attacker A
replacing all the given instances with an adversarial example
aimed at maximizing the loss. We call loss under attack, noted
LA(h,D), the solution to the inner maximization problem. The
outer minimization resorts to the empirical risk minimization
principle, aiming to find the hypothesis that minimizes the loss
under attack on the training set.

B. Attacker Model

Distance-based constraints for defining the attacker’s capa-
bilities are very flexible for perceptual problems and proved
amenable for heuristic algorithms for solving the inner maxi-
mization problem of Equation 1 [13]. However, they cannot be
easily generalized to other realistic application scenarios, e.g.,
where perturbations are not symmetric, where the attacker may
not be able to alter some of the features, or where categorical
attributes are present. To overcome such limitations, we model
the attacker A as a pair (R,K), where R is a set of rewriting
rules, defining how instances can be corrupted, and K ∈ R+

is a budget, limiting the amount of alteration the attacker can
apply to individual instances. Each rule r ∈ R has the form:

[a, b]
f−→k [δl, δu],

where [a, b] and [δl, δu] are intervals on R∪{−∞,+∞}, with
the former defining the precondition for the application of the
rule and the latter defining the magnitude of the perturbation
enabled by the rule; f ∈ [1, d] is the index of the feature to
corrupt; and k ∈ R+ is the cost of the rule. The semantics of
the rewriting rule can be explained as follows: if an instance
x satisfies the condition xf ∈ [a, b], then the attacker can
corrupt the instance x by adding any v ∈ [δl, δu] to xf and
spending k from the available budget. The attacker can corrupt
each instance by using as many rewriting rules as desired in
whatever order, up to budget exhaustion.

According to this attacker model, we define A(x), the set
of the attacks against an instance x, as follows.

Definition 1 (Attacks). Given an instance x and an attacker
A = (R,K), we let A(x) be the set of the attacks that can
be obtained from x, i.e., the set of the instances z such that
there exists a sequence of rewriting rules r1, . . . , rn ∈ R and
a sequence of instances x0, . . . ,xn where:

1) x0 = x and xn = z;
2) for all i ∈ [1, n], the instance xi−1 can be corrupted

into the instance xi by using the rewriting rule ri;
3) the sum of the costs of r1, . . . , rn is not greater than K.

Notice that x ∈ A(x) for any attacker A by picking an empty
sequence of rewriting rules.

We highlight that this rule-based attacker model includes
novel attack capabilities like asymmetric perturbations, easily
generalizes to categorical variables, and still covers or approxi-
mates standard distanced-based models. For instance, L0-norm
attacker models where the attacker can corrupt at will a limited
number of features can be easily represented [29]. The use of
a budget is convenient to fine-tune the power of the attacker
and enables the adoption of standard evaluation techniques for
ML models under attack, like security evaluation curves [2].

C. Attack Generation

Computing the loss under attack LA is useful to evaluate
the resilience of ML models to evasion attacks at test time;
yet this might be intractable, since it assumes the ability to
identify the most effective attack for all the test instances. This
issue is thus typically dealt with by using a heuristic attack
generation algorithm, e.g., the fast gradient sign method [10]
or any of its variants, to craft adversarial examples which
empirically work well. However, our focus on decision trees
and the adoption of a rule-based attacker model enables an
exhaustive attack generation strategy for the test set which,
though computationally expensive, proves scalable enough for
our experimental analysis and allows the actual identification
of the most effective attacks. This enables the most accurate
security assessment in terms of the actual value of LA.

We consider a white-box attacker model, where the attacker
has a complete knowledge of the trained decision tree ensem-
ble. We thus assume that the attacker exploits the knowledge
of the structure of the trees in the targeted ensemble and,
most importantly, of the features and thresholds which are
actually used in the prediction process. Note that a decision
tree ensemble induces a finite partitioning of the input vector
space X , defined by the features and thresholds used in the
internal nodes of the trees in the ensemble, where instances
falling in the same partition share the same prediction. This
partitioning makes it possible to significantly reduce the set
of attacks that are relevant to the computation of LA by
considering at most one representative attacked instance for a
given partition. We achieve this by a recursive algorithm that,
for the sake of space, we just sketch below. For any given
instance x, we recursively apply all valid rules up to budget
exhaustion. In doing so, the interval [xf + δl, xf + δu] of each
applied rewriting rule, is split into sub-intervals induced by the
ensemble’s thresholds relative to feature f , and we generate
a single attack for each of the sub-intervals, including the
extremes xf+δl, xf+δu. Note that we include the extremes of
the preconditions of the rewriting rules in the partitioning, as to
make sure that all recursively applicable rules are considered.
The above enumeration strategy makes sure that all relevant
attacks, i.e, causing at least one internal node of the ensemble
to invert its outcome, are generated.
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Fig. 1. Overview of the TREANT construction and its key challenges.

IV. TREANT: LEARNING ROBUST DECISION TREES

In this section, we present a novel decision tree learning
algorithm that, by minimizing the loss under attack LA at
training time, enforces resilience to evasion attacks at test time.
We call TREANT the proposed algorithm.

A. Overview

Compared to Algorithm 1, TREANT replaces the BEST-
SPLIT function by revising (i) the computation of predictions
on the new leaves, (ii) the selection of the best split and (iii)
the dataset partition along the recursion.

Before discussing the technical details, we build on the toy
example in Figure 1 to illustrate the non-trivial issues arising
when optimizing LA. Figure 1.(a) shows a dataset D for which
we assume the attacker A = ({r}, 1), where r is a rewriting
rule of cost 1 which allows the corruption of the feature p by
adding any value in the interval [−1,+1].

Assuming SSE is used as the underlying loss function L,
the decision stump initially generated by Algorithm 1 is shown
in Figure 1.(b) along with the result of the splitting. Note that
while the loss L = 2 is small,3 the loss under attack LA = 5
is much larger.4 This is because the attacker may alter x2

3L(t,D) = (−2 + 1)2 + (−1 + 1)2 + (−1− 0)2 + 4 · (2− 2)2 = 2.
4LA(t,D) = (−2 + 1)2 + (−1 + 1)2 + (2− 0)2 + 4 · (2− 2)2 = 5.

into a perturbed instance x̃2 so as to reverse the outcome of
the test xp ≤ 1, i.e., the original instance x2 falls into the
left leaf of the stump, but the perturbed instance x̃2 falls into
the right leaf. The first issue of Algorithm 1 is thus that the
estimated loss L on the training set, computed when building
the decision stump, is smaller than the loss under attack LA
we would like to minimize. We solve this issue by designing
a novel robust splitting strategy to identify the best split of
D, which directly minimizes LA when computing the leaves
predictions and leads to the generation of a tree that is more
robust to attacks. In particular, the decision stump learnt by
using our robust splitting strategy is shown in Figure 1.(c),
where the leaves predictions have been found by assuming
that x2 actually falls into the right leaf (according to the best
attack strategy). For this new decision stump, the best move for
the attacker is still to corrupt x2, but the resulting LA = 3.7
is much smaller than that of the previous stump.5 The figure
also shows the outcome of the robust splitting.

However, a second significant issue arises when the decision
stump is recursively grown into a full decision tree. Suppose to
further split the right leaf of Figure 1.(c), therefore considering
only the instances falling therein, including the instance x2 put
there by the robust splitting. We would find that the best split

5LA(t,D) = (−2+1.5)2+(−1+1.5)2+(0−1.6)2+4·(2−1.6)2 = 3.7.



is given by xq ≤ 3, where the feature q cannot be modified
by the attacker. The resulting tree is shown in Figure 1.(d).
Note however that, by creating the new sub-tree, new attacking
opportunities show up, because the attacker now finds more
convenient to just leave x2 unaltered and let it fall directly
into the left child of the root. As a consequence, by adding the
new sub-tree, we observe an increased loss under attack LA =
3.75.6 This second issue can be solved by ensuring that any
new sub-tree does not create new attacking opportunities that
generate a larger loss. We call this property attack invariance.
The proposed algorithm grows the sub-tree on the right leaf by
carefully adjusting its predictions as shown in Figure 1.(e), still
decreasing the loss under attack to LA = 3 with respect to the
tree in Figure 1.(c).7 This is enforced by including constraints
along the tree construction, as shown in the figure.

To sum up, the key technical ingredients of TREANT are:
1) Robust splitting: given a candidate feature f and thresh-

old v, the robust splitting strategy evaluates the quality
of the corresponding node split on the basis of a ternary
partitioning of the instances falling into the node. It
identifies those instances for which the outcome of the
node predicate xf ≤ v depends on the attacker’s moves,
and those that cannot be affected by the attacker, thus
always traversing the left or the right branch of the
new node. In particular, the LA minimization problem
is reformulated on the basis of left, right and unknown
instances, i.e., instances which might fall either left or
right depending on the attacker. Finally, the recursion
on the left and right child of the node is performed by
separating the instances in a binary partition based on
the effects of the most harmful attack (Section IV-B).

2) Attack invariance: a security property requiring that the
addition of a new sub-tree does not allow the attacker
to find better attack strategies that increase LA. Attack
invariance is achieved by imposing an appropriate set
of constraints upon node splitting. New constraints are
generated for each of the attacked instances present in
the split node and are propagated to the child nodes upon
recursion (Section IV-C).

The pseudo-code of the algorithm is given in Section IV-D.
To assist the reader, the notation used in the present section
is summarized in Table I.

B. Robust Splitting

We present our novel robust splitting strategy that grows the
current tree t by replacing a leaf λ with a new sub-tree so as
to minimize the loss under attack LA. For the sake of clarity,
we discuss it as if the splitting was employed on the root node
of a new tree, i.e., to learn the decision stump that provides
the best loss reduction on the full input dataset D. The next
subsection discusses the application of the proposed strategy
during the recursive steps of the tree-growing process.

6LA(t,D) = (−2+ 1.5)2 + (−1+ 1.5)2 + (0− 1.5)2 + (2− 1)2 +3 ·
(2− 2)2 = 3.75.

7LA(t,D) = (−2 + 1.5)2 + (−1 + 1.5)2 + (0− 1.5)2 + (2− 1.5)2 +
3 · (2− 2)2 = 3.

TABLE I
NOTATION SUMMARY

Symbol Meaning
D Training dataset
Dλ Local projection of D on the leaf λ
A(x) Set of all the attacks A can generate from x
A(D) Set of all the attacks A can generate from D
λ(ŷ) Leaf node with prediction ŷ

σ(f, v, tl, tr) Node testing xf ≤v, having sub-trees tl, tr
Dl(f, v, A) Left elems of ternary partitioning on (f, v)
Dr(f, v, A) Right elems of ternary partitioning on (f, v)
Du(f, v, A) Unkn. elems of ternary partitioning on (f, v)
DL(t̂, A) Left elems of robust splitting on t̂
DR(t̂, A) Right elems of robust splitting on t̂
CL(t̂, A) Set of constraints for the left child of t̂
CR(t̂, A) Set of constraints for the right child of t̂

Aiming at greedily optimizing the min-max problem in
Equation 1, we have to find the best decision stump t̂ =
σ(f, v, λ(ŷl), λ(ŷr)) such that:

t̂ = argmin
t
LA (t,D) =

= argmin
t

max
D′∈A(D)

L(t,D′) =

= argmin
t

∑
(x,y)∈D

max
z∈A(x)

`(t(z), y).

Whereas the pair (f, v) in t̂ = σ(f, v, λ(ŷl), λ(ŷr)) can be
determined via an exhaustive search, the predictions ŷl and
ŷr must be found by minimizing the loss under attack LA.
However, this is not trivial, because the loss incurred by an
instance (x, y) may depend on the attacks it is possibly subject
to. Similarly to [35], we thus define a ternary partitioning of
the training dataset as follows.

Definition 2 (Ternary Partitioning). For a feature f , a thresh-
old v and an attacker A, the ternary partitioning of the dataset
D = Dl(f, v, A) ∪ Dr(f, v, A) ∪ Du(f, v, A) is defined by:

Dl(f, v, A) = {(x, y) ∈ D | ∀z ∈ A(x) : zf ≤ v}
Dr(f, v, A) = {(x, y) ∈ D | ∀z ∈ A(x) : zf > v}
Du(f, v, A) = (D \ Dl(f, v, A)) \ Dr(f, v, A).

In words, Dl(f, v, A) includes those instances (x, y) falling
into the left branch regardless of the attack, hence the attacker
has no gain in perturbing xf . A symmetric reasoning applies
to Dr(f, v, A), containing those instances which fall into the
right branch for all the possible attacks. The instances that
the attacker may actually want to target are those falling into
Du(f, v, A), thus aiming at the largest loss. By altering those
instances, the attacker may force each (x, y) ∈ Du(f, v, A)
to fall into the left branch with a loss of `(ŷl, y), or into the
right branch, with a loss of `(ŷr, y).

Example 1 (Ternary Partitioning). The test node xp ≤ 1 and
the attacker considered in Figure 1.(c) determine the following
ternary partitioning of D:
• Dl(p, 1, A) = {(x0,−2), (x1,−1)}
• Dr(p, 1, A) = {(x3, 2), (x4, 2), (x5, 2), (x6, 2)}
• Du(p, 1, A) = {(x2, 0)}



In other words, the instance x2 is the only instance for
which the branch taken at test time is unknown, as it depends
on the attacker A.

By construction, given (f, v), the loss LA can be affected
by the presence of the attacker A only for the instances in
Du(f, v, A), while for all the remaining instances it holds
that LA = L. Since the attacker may force each instance
of Du(f, v, A) to fall into either the left or the right branch,
the authors of [35] acknowledge a combinatorial explosion
in the computation of LA. Rather than evaluating all the
possible configurations, they thus propose a heuristic approach
evaluating four “representative” attack cases: i) no attack, ii)
all the unknown instances are forced in the left child, iii) all
the unknown instances are forced in the right child, and iv) all
the unknown instances are swapped by the attacker, i.e., they
are forced in the left/right child when they would normally
fall in the right/left child. Then, the loss L is evaluated for
these four split configurations and the maximum is used to
estimate LA, so as to find the best stump t̂ to grow. Note
that L is computed as in a standard decision tree learning
algorithm. Unfortunately, this heuristic strategy does not offer
soundness guarantees, because the above four configurations
leave potentially harmful attacks out of sight and do not induce
an upper-bound of LA.

To avoid this soundness issue, while keeping the tree
construction tractable, we pursue a numerical optimization
as follows. For a given (f, v), we highlight that finding the
best attack configuration and finding the best left/right leaves
predictions ŷl, ŷr are two inter-dependent problems, yet the
strategy adopted in [35] is to first evaluate a few different
attack configurations, and then to find the leaves predictions.
We instead solve these two problems simultaneously by using
a formulation of the min-max problem that, fixed (f, v), is
expressed solely in terms of ŷl, ŷr:

(ŷl, ŷr) = argmin
yl,yr

LA(σ(f, v, λ(yl), λ(yr)),D), (2)

where LA is decomposed via the ternary partitioning as:

LA(σ(f, v, λ(yl), λ(yr)),D) =

= L(λ(yl),Dl(f, v, A)) + L(λ(yr),Dr(f, v, A)) +

+
∑

(x,y)∈Du(f,v,A)

max{`(yl, y), `(yr, y)}.

Observe that if the instance-level loss ` is convex, then LA
is also convex8 and it can be efficiently optimized numerically.
Convexity is indeed a property enjoyed by most loss functions
such as SSE (for regression) and Log-Loss (for classification).
This allows one to overcome the exploration of the exponential
number of attack configurations, still finding the optimal
solution (up to numerical approximation).

Given the best predictions ŷl, ŷr, we can finally produce
a binary split of D (as in Algorithm 1). To do this, we split

8The pointwise maximum and the sum of convex functions preserve
convexity.

those instances by applying the best adversarial moves, i.e., by
assuming that every (x, y) ∈ Du(f, v, A) is pushed into the
left or right child so as to generate the largest loss. If the two
children induce the same loss, then we assume the instance is
not attacked.

Definition 3 (Robust Splitting). Given a decision stump to be
grown t̂ = σ(f, v, λ(ŷl), λ(ŷr)) and an attacker A, the robust
split of the dataset D = DL(t̂, A) ∪ DR(t̂, A) is defined by:
• DL(t̂, A) contains all the instances of Dl(f, v, A) and
DR(t̂, A) contains all the instances of Dr(f, v, A);

• for each (x, y) ∈ Du(f, v, A), the following rules apply:
– if `(ŷl, y) > `(ŷr, y), then (x, y) goes to DL(t̂, A);
– if `(ŷl, y) < `(ŷr, y), then (x, y) goes to DR(t̂, A);
– if `(ŷl, y) = `(ŷr, y), then (x, y) goes to DL(t̂, A) if
xf ≤ v and to DR(t̂, A) otherwise.

Example 2 (Robust Splitting). Once identified ŷl and ŷr for
the decision stump t̂ = (p, 1, λ(−1.5), λ(1.6)) in Figure 1.(c),
the datasets obtained for the leaves by robust splitting are:
• DL(t̂, A) = {(x0,−2), (x1,−1)}
• DR(t̂, A) = {(x2, 0), (x3, 2), (x4, 2), (x5, 2), (x6, 2)}
Notice that, unlike a standard decision tree learning algo-

rithm, the right partition contains the instance x2 due to the
presence of the attacker, even though such instance satisfies
the root node test.

To summarize, the ternary partitioning allows LA to be
optimized for a given (f, v) and dataset D, so as to find the
best tree-growing step by an exhaustive search over f and v.
Once this is done, the robust splitting allows the dataset D to
be partitioned in order to feed the algorithm recursion on the
left and right children of the newly created stump. Ultimately,
the goal of robust splitting is to solve the min-max problem of
Equation 1 for a single tree-growing step, so as to find the best
stump to be added to the tree, and push the attacked instances
into the partition induced by the most harmful attack.

C. Attack Invariance

The optimization strategy described in Section IV-B needs
some additional refinement to provide a sound optimization
of LA on the full dataset D. When growing a new sub-tree at
a leaf λ, we denote with Dλ the local projection of the full
dataset at λ, i.e., the subset of the instances in D falling in
λ along the tree construction by applying the robust splitting
strategy. The key observation now is that the robust splitting
operates by assuming that the attacker behaves greedily, i.e.,
by locally maximizing the generated loss, but as new nodes are
added to the tree, new attack opportunities arise and different
traversal paths towards different leaves may become more
fruitful to the attacker. If this is the case, the robust splitting
becomes unrepresentative of the possible attacker’s moves and
any learning decision made on the basis of such splitting
turns out to be unsound, i.e., with no guarantee of minimizing
LA. Notice that this is a major design flaw of the algorithm
proposed in [35], and experimental evidence shows how the
attacker can easily craft adversarial examples (see Section V).



In the end, the computation of the best split for a given
leaf λ cannot be done just based on the local projection Dλ,
unless additional guarantees are provided. We thus enforce
a security property called attack invariance, which ensures
that the tree construction steps preserve the correctness of the
greedy assumptions made on the attacker’s behavior. Given a
decision tree t and an instance (x, y) ∈ D, we let ΛA(t, (x, y))
stand for the set of leaves of t which are reachable by some
attack z ∈ A(x) that generates the largest loss among A(x).

Attack invariance requires that the tree construction steps
preserves ΛA, in that the attacker has no advantage in changing
the attack strategy which was optimal up to the previous step,
thus recovering the soundness of the greedy construction. We
define attack invariance during tree construction as follows.

Definition 4 (Attack Invariance). Let t be a decision tree and
let t′ be the decision tree obtained by replacing a leaf λ of t
with the new sub-tree σ(f, v, λl, λr). We say that t′ satisfies
attack invariance for the dataset D and the attacker A iff:

∀(x, y) ∈ Dλ : ΛA(t′, (x, y)) ∩ {λl, λr} 6= ∅.

The above definition states that, after growing a new sub-
tree from λ, the set of the best options for the attacker must
include the newly created leaves, so that the path originally
leading to λ still represents the most effective attack strategy
against the decision tree.

Example 3 (Attack Invariance). Let t be the decision tree of
Figure 1.(c). Figure 1.(d) shows an example where adding a
new sub-tree to t leads to a decision tree t′ which breaks the
attack invariance property. Indeed, we have ΛA(t′, (x2, 0)) =
{λ(−1.5)}, which contains neither λ(1), nor λ(2). Notice that
the best attack strategy has indeed changed with respect to t,
as leaving x2 unaltered now produces a larger loss (2.25)
than the originally strongest attack (1.0).

We enforce attack invariance by introducing a set of con-
straints into the optimization problem of Equation 2. Suppose
that the new sub-tree σ(f, v, λ(ŷl), λ(ŷr)) replaces the leaf λ
and that an instance (x, y) ∈ Dλ is placed in the right child
by robust splitting, because one of its corruptions traverses the
threshold v and `(ŷr, y) ≥ `(ŷl, y). Then, attack invariance
is granted if, whenever the leaves λ(ŷl) and λ(ŷr) are later
replaced by sub-trees tl and tr, there exists an attack z ∈ A(x)
that falls into a leaf of tr generating a loss larger than (or
equal to) the loss of any other attack falling in tl. We enforce
such constraint during the recursive tree building process as
follows. The requirement `(ŷr, y) ≥ `(ŷl, y) is transformed in
the pair of constraints `(tr(x), y) ≥ γ and `(tl(x), y) ≤ γ,
where γ = min{`(ŷr, y), `(ŷl, y)}. These two constraints are
propagated respectively into the recursion on the right and left
children. As long as any sub-tree tr replacing λ(ŷr) satisfies
the constraint `(tr(x), y) ≥ γ and any sub-tree tl replacing
λ(ŷl) satisfies the constraint `(tl(x), y) ≤ γ, the attacker has
no advantage in changing the original attack strategy, hence
attack invariance is enforced.

To implement this mechanism, each leaf λ is extended with
a set of constraints, which is initially empty for the root of the
tree. When λ is then split upon tree growing, the constraints
therein are included in the optimization problem of Equation 2
to determine the best predictions ŷl, ŷr for the new leaves.
These constraints are then (partially) propagated to the new
leaves and new constraints are generated for them based on the
following definition, which formalizes the previous intuition.

Definition 5 (Constraints Propagation and Generation). Let λ
be a leaf to be replaced with sub-tree t̂ = σ(f, v, λ(ŷl), λ(ŷr))
and let C be its set of constraints. The sets of constraints
CL(t̂, A) and CR(t̂, A) for the two new leaves are defined by:9

• if `(t(x), y) ≶ γ ∈ C and there exists z ∈ A(x) such
that zf ≤ v, then `(tl(x), y) ≶ γ is added to CL(t̂, A);

• if `(t(x), y) ≶ γ ∈ C and there exists z ∈ A(x) such
that zf > v, then `(tr(x), y) ≶ γ is added to CR(t̂, A);

• if (x, y) ∈ Dλu(f, v, A) ∩ DλL(t̂, A), then `(tl(x), y) ≥
`(ŷr, y) is added to CL(t̂, A) and `(tr(x), y) ≤ `(ŷr, y)
is added to CR(t̂, A);

• if (x, y) ∈ Dλu(f, v, A) ∩ DλR(t̂, A), then `(tl(x), y) ≤
`(ŷl, y) is added to CL(t̂, A) and `(tr(x), y) ≥ `(ŷl, y)
is added to CR(t̂, A).

Example 4 (Enforcing Constraints). The tree in Fig. 1.(e) is
generated by enforcing a constraint on the loss of x2. After
splitting the root, the constraint `(tr(x2), 0) ≥ `(ŷl, 0) is
generated for the right leaf of the tree in Fig. 1.(c), where
`(ŷl, 0) = (−1.5−0)2 = 2.25. The solution of the constrained
optimization problem on the right child of the tree in Fig. 1.(c)
finally grows two new leaves, generating the tree in Fig. 1.(e).
The difference from the tree in Fig. 1.(d) is that the prediction
on the left leaf of the right child of the root has been enforced
to satisfy the required constraint. For this tree, the attacker
has no gain in changing attack strategy over the previous step
of the tree construction, shown in Figure 1.(c).
More formally, while for the tree t in Fig. 1.(c) we have
ΛA(t, (x2, 0)) = {λ(1.6)}, after growing t with suitable
constraints we obtain the tree t′ in Fig. 1.(e), where the leaf
λ(1.6) has been substituted with a decision stump with the
two new leaves {λ(1.5), λ(2)}. This entails ΛA(t′, (x2, 0)) =
{λ(−1.5), λ(1.5)}, where ΛA(t′, (x2, 0)) ∩ {λ(1.5), λ(2)} =
{λ(1.5)} 6= ∅, thus satisfying the attack invariance property
of Definition 4.

Constraints grant attack invariance at the cost of reducing
the space of the possible solutions for tree-growing. Neverthe-
less, in the experimental section we show that this property
does not prevent the construction of robust decision trees that
are also accurate in absence of attacks.

D. Tree Learning Algorithm

Our TREANT construction is summarized in Algorithm 3.
The core of the logic is in the call of the TSPLIT function (line
3), which takes as input a dataset D, an attacker A and a set of

9We use the symbol ≶ to stand for either ≤ or ≥ when the distinction is
unimportant.



Algorithm 3 TREANT

1: Input: training data D, attacker A, constraints C
2: ŷ ← argminy LA(λ(y),D) subject to C
3: σ(f, v, λ(ŷl), λ(ŷr)),Dl,Dr, Cl, Cr ← TSPLIT(D, A, C)
4: if LA(σ(f, v, λ(ŷl), λ(ŷr)),D) < LA(λ(ŷ),D) then
5: tl ← TREANT(Dl, A, Cl)
6: tr ← TREANT(Dr, A, Cr)
7: return σ(f, v, tl, tr)
8: else
9: return λ(ŷ)

10: end if

constraints C initially empty, and implements the construction
detailed along the present section. The construction terminates
when it is not possible to further reduce LA (line 4).

Function TSPLIT is summarized in Algorithm 4. Specif-
ically, the function returns the sub-tree minimizing the loss
under attack LA on D subject to the constraints C, based on
the ternary partitioning (lines 2-3). It then splits D by means
of the robust splitting strategy (lines 4-5) and returns new sets
of constraints (lines 6-7), which are used to recursively build
the left and right sub-trees. The optimization problem (line 2)
is numerically solved via the scipy implementation of the
SLSQP (Sequential Least SQuares Programming) method,
which allows the minimization of a function subject to inequal-
ity constraints, like the constraint set C generated/propagated
by TREANT during tree growing.

There is an important point worth discussing about the
implementation of the algorithm. As careful readers may have
noticed, the TSPLIT function splits each leaf λ by relying on
the set of attacks A(x) for all instances (x, y) ∈ Dλ. Though
one could theoretically pre-compute all the possible attacks
against the instances in D, this implementation would be very
inefficient both in time and space, given the potentially huge
number of instances and attacks. Our implementation, instead,
incrementally computes a sufficient subset of A(x) along the
tree construction.

First, each instance (x, y) is enriched with a cost annotation
k, denoted by (x, y)k, initially set to 0 on the root. Such anno-
tation keeps track of the cost of the adversarial manipulations
performed to push (x, y) into λ during the tree construction.
When splitting the leaf λ on (f, v), the algorithm generates
only the attacks against the feature f which enforce maximal
perturbations of xf , as such maximal perturbations maximize
the chance of crossing the threshold v without incurring in
any extra cost. Moreover, the attack generation assumes that k
was already spent from the attacker’s budget to further reduce
the number of possible attacks. When the instance (x, y)k is
pushed into the left or right partition of Dλ by robust splitting,
the label k is updated to k+k′, where k′ is the minimum cost
the attacker must spend to achieve the desired node outcome.
The same idea is applied when propagating constraints, which
are also associated with specific instances (x, y) for which the
computation of A(x) is required.

Observe that this implementation assumes that only the cost

of adversarial manipulations is relevant, not their magnitude,
which is still sound when none of the corrupted features is
tested multiple times on the same path of the tree. We enforce
such restriction during the tree construction, which further
regularizes the growing of the tree. Since we are eventually
interested in decision tree ensembles, this does not impact on
the performance of whole trained models.

V. EXPERIMENTAL EVALUATION

A. Methodology

We compare the performance of classifiers trained by
different learning algorithms: two standard approaches, i.e.,
Random Forest [15] (RF) and Gradient Boosting Decision
Trees [25] (GBDT) as provided by the LightGBM10 frame-
work; two state-of-the-art adversarial learning techniques, i.e.,
Adversarial Boosting [29] (AB) and Robust Trees [35] (RT);
and a Random Forest of trees trained using the proposed
TREANT algorithm (RF-TREANT).11 Notice that the original
implementation of AB exploited a heuristic algorithm to find
good adversarial examples, which does not guarantee to find
the most damaging attack. Our own implementation of AB,
which is built on top of LightGBM, exploits the white-box
attack generation method described in Section III-C to find the
best adversarial examples. In this regard, our implementation
is thus more effective than the original algorithm.

We perform our experimental evaluation on three publicly
available datasets, using three standard validity measures:
accuracy, macro F1 and ROC AUC. We compute all mea-
sures both in absence of attacks and under attack, using our
white-box attack generation method. We used a 60-20-20
train-validation-test split through stratified sampling. Hyper-
parameter tuning on the validation data was conducted to set
the number of trees (≤ 100), number of leaves ({8, 32, 256})
and learning rate ({0.01, 0.05, 0.1}) of the various ensembles
so as to maximize ROC AUC. All the results reported below
were measured on the test data. Observe that all the compared
adversarial learning techniques are parametric with respect to
the budget granted to the attacker, modeling his power: we
consider multiple instances of such budget both for training
(train budget) and for testing (test budget).

The goal of our experimental evaluation is answering three
key questions:

1) What is the performance of standard learning approaches
like RF and GBDT when they are adopted in an adver-
sarial setting?

2) What is the performance improvement achieved by the
adoption of adversarial learning techniques for different
test budgets?

3) What is the importance of the training budget on the
performance of adversarial learning techniques?

10https://github.com/microsoft/LightGBM
11The source code of TREANT is available at https://github.com/

omitted-for-anonymous-review

https://github.com/microsoft/LightGBM
https://github.com/omitted-for-anonymous-review
https://github.com/omitted-for-anonymous-review


Algorithm 4 TSPLIT

1: Input: training data D, attacker A, constraints C
. Build a set of candidate tree nodes N using the ternary partitioning to optimize LA

2: N ← { σ(f, v, λ(ŷl), λ(ŷr)) | f ∈ [1, d] ∧ ∃(x, y) ∈ D : xf = v ∧

ŷl, ŷr = argmin
yl,yr

∑
(x,y)∈Dl(f,v,A)

`(yl, y) +
∑

(x,y)∈Dr(f,v,A)

`(yr, y) +
∑

(x,y)∈Du(f,v,A)

max{`(yl, y), `(yr, y)}

subject to C
}

. Select the candidate node t̂ ∈ N which minimizes the loss LA on the training data D
3: t̂ = argmint∈N LA(t,D) = σ(f, v, λ(ŷl), λ(ŷr))

. Robust Splitting (see Definition 3)
4: Dl ← DL(t̂, A)
5: Dr ← DR(t̂, A)

. Constraint Propagation and Generation (see Definition 5)
6: Cl ← CL(t̂, A)
7: Cr ← CR(t̂, A)
8: return t̂,Dl,Dr, Cl, Cr

TABLE II
MAIN STATISTICS OF THE DATASETS USED IN OUR EXPERIMENTS.

census wine credit

n. of instances 45,222 6,497 30,000
n. of features 13 12 24

class distribution (pos.÷neg. %) 25÷75 63÷37 22÷78

B. Datasets and Threat Models

We perform our experimental evaluation on three datasets:
(i) Census Income,12 (ii) Wine Quality,13 and (iii) Default
of Credit Cards.14 In the following, we refer to such datasets
as census, wine, and credit, respectively. Their main
statistics are shown in Table II; notice that each dataset is
associated with a binary classification task.15

We therefore design three different threat models by means
of a set of rewriting rules indicating the attacker capabilities,
with each set tailored to a given dataset. The features targeted
by those rules have been selected after a preliminary data
exploration stage, where we investigated the importance and
data distribution of all the features.

In the case of census, we define six rewriting rules: (i) if
a citizen never worked, he can pretend that he actually works
without pay; (ii) if a citizen is divorced or separated, he can
pretend that he never got married; (iii) a citizen can present
his occupation as a generic “other service”; (iv) a citizen can
cheat on his education level by lowering it by 1; (v) a citizen
can add up to $2,000 to his capital gain; (vi) a citizen can
add up to 4 hrs per week to his working hours. We let (i),(ii),

12https://archive.ics.uci.edu/ml/datasets/census+income
13https://www.kaggle.com/c/uci-wine-quality-dataset/data
14https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients
15The wine dataset was originally conceived for a multiclass classification

problem; we turned that into a binary one, where the positive class identifies
good-quality wines (i.e., those whose quality is at least 6, on a 0-10 scale)
and the negative class contains the remaining instances.

and (iii) cost 1, (iv) cost 20, (v) cost 50, and finally (vi) cost
100 budget units. We consider 30, 60, 90, and 120 as possible
values for the budget.

In the case of wine, we specify four rewriting rules: (i)
the alcohol level can be increased by 0.5% if its original value
is less than 11%; (ii) the residual sugar can be decreased by
0.25 g/L if it is already greater than or 2 g/L; (iii) the volatile
acidity can be reduced by 0.1 g/L if it is already greater than
0.25 g/L; (iv) free sulfur dioxide reduced by -2 g/L if it is
already greater than 25 g/L. We let (i) cost 20, (ii) and (iii)
cost 30, and (iv) cost 50 budget units. We consider 20, 40,
60, 80, 100, and 120 as possible values for the budget.

For credit, the attacker is represented by three rewriting
rules: (i) the repayment status on August or September can
be reduced by 1 month if the payment is delayed up to 5
months; (ii) the amount of bill statement in September can
be decreased by 4,000 NT dollars if it is between 20,000 and
500,000; and (iii) the amount of given credit can be increased
by 20,000 NT dollars if it is below 200,000. For each rule, a
cost of 10 budget units is required. We consider 10, 30, 40,
and 60 as possible budget values.

C. Experimental Results

We discuss below the three questions stated in Section V-A.
1) Attacking standard decision tree ensembles: In Figure 2,

we show how the accuracy, F1, and ROC AUC of standard
ensembles of decision trees trained by RF and GBDT change
in presence of attacks. The x-axis indicates the testing budget
of the attacker, normalized in the range [0, 1], with a value of
0 denoting the unattacked scenario.

Two main findings appear from the plots. First, both GBDT
and RF are severely impacted when they are attacked, and
their performance deteriorates to the point of turning them into
almost random classifiers already when the attacker spends
just half of the maximum budget, e.g., in the case of the

https://archive.ics.uci.edu/ml/datasets/census+income
https://www.kaggle.com/c/uci-wine-quality-dataset/data
https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients


TABLE III
COMPARISON OF ADVERSARIAL LEARNING TECHNIQUES TRAINED AND ATTACKED UNDER THE SAME BUDGET. THE TABLE ALSO SHOWS THE

PERFORMANCE DIFFERENCE BETWEEN RF-TREANT AND THE BEST COMPETITOR.

AB RT RF-TREANT

Accuracy F1 ROC AUC Accuracy F1 ROC AUC Accuracy F1 ROC AUC

census

B
ud

ge
t 30 0.850 0.783 0.902 0.813 0.692 0.883 0.850 +0.0% 0.773 -1.3% 0.897 -0.6%

60 0.783 0.690 0.827 0.810 0.698 0.871 0.845 +4.3% 0.766 +9.7% 0.894 +2.6%
90 0.798 0.705 0.825 0.775 0.607 0.855 0.845 +5.9% 0.769 +9.1% 0.893 +4.4%
120 0.788 0.694 0.793 0.744 0.558 0.528 0.842 +6.9% 0.762 +9.8% 0.887 +11.9%

wine

B
ud

ge
t

20 0.762 0.737 0.824 0.734 0.703 0.795 0.764 +0.3% 0.739 +0.3% 0.821 -0.4%
40 0.723 0.689 0.788 0.623 0.548 0.662 0.728 +0.7% 0.689 +0.0% 0.802 +1.8%
60 0.718 0.687 0.788 0.552 0.418 0.522 0.720 +0.3% 0.680 -1.0% 0.798 +1.3%
80 0.715 0.680 0.773 0.566 0.443 0.561 0.728 +1.8% 0.688 +1.2% 0.800 +3.5%
100 0.702 0.668 0.761 0.559 0.429 0.553 0.727 +3.6% 0.687 +2.8% 0.796 +4.6%
120 0.677 0.636 0.732 0.568 0.431 0.544 0.728 +7.5% 0.688 +8.2% 0.801 +9.4%

credit

B
ud

ge
t 10 0.811 0.644 0.749 0.799 0.610 0.748 0.816 +0.6% 0.656 +1.9% 0.765 +2.1%

30 0.786 0.544 0.661 0.763 0.457 0.655 0.810 +3.1% 0.617 +13.4% 0.745 +12.7%
40 0.784 0.554 0.660 0.759 0.438 0.632 0.808 +3.1% 0.618 +11.6% 0.744 +12.7%
60 0.777 0.533 0.622 0.759 0.436 0.613 0.809 +4.1% 0.616 +15.6% 0.744 +19.6%

Fig. 2. The impact of the attacker on RF and GBDT.

wine dataset. On that dataset, the drop of ROC AUC ranges
from -25.8% to -40.6% for GBDT and from -15.5% to -28.4%
for RF, when the attacker is supplied just half of the budget.
Second, RF typically behaves better than GBDT on all the
validity measures, with a few cases where the improvement is
very significant. A possible explanation of this phenomenon
is that RF usually exhibits better generalization performance,
while GBDT is known to be more susceptible to jiggling
data, therefore more likely to overfit [36]. Since robustness
to adversarial examples in a way resembles the ability of a
model to generalize, RF is less affected by the attacker than
GBDT. Still, the performance drop under attack is so massive
even for RF that none of the traditional methods can be reliably
adopted in an adversarial setting.

The higher resiliency of RF to adversarial examples moti-
vated our choice to deploy TREANT on top of such ensemble
method in our implementation. It is worth remarking though
that TREANT is still general enough to be plugged into other
frameworks for ensemble tree learning.

2) Robustness of adversarial learning techniques: We now
measure the benefit of using adversarial learning techniques
to contrast the impact of evasion attacks at test time. More
specifically, we validate the robustness of our method in

comparison with the two state-of-the-art adversarial learning
methods Adversarial Boosting (AB) and Robust Trees (RT).
Note that the authors of [35] did not experimentally compare
RT against AB in their original work.

We first investigate how robust a model is when it is
targeted by an attacker with a test budget exactly matching the
training budget. This simulates the desirable scenario where
the threat model was defined accurately, i.e., each model
is trained knowing the actual attacker capabilities. Table III
shows the results obtained by the different adversarial learning
techniques for the different training/test budgets. It is clear
how our method outperforms its competitors, basically for all
measures and datasets. Most importantly, the superiority of our
approach becomes even more pronounced as the strength of
the attacker grows. For example, the percentage improvement
in ROC AUC over AB on the credit dataset amounts to
2.1% for budget 10, while this improvement grows to 19.6%
for budget 60. It is also worth noticing that the performance
of RT is consistently worse than that of AB.

The second analysis we carry out considers the case of
adversarial learning techniques trained with the maximum
available budget. We use security evaluation curves to measure
how the performance of the compared methods changes when
the test budget given to the attacker increases up to the
maximum available. The results are shown in Figure 3, where
we normalized the test budget in the range [0, 1].

Two main comments can be made from the plots. First, our
method constantly outperforms its competitors on all datasets
and measures, especially when the attacker gets stronger. The
price to pay for this increased protection is just a slight
performance degradation in the unattacked setting, which is
largely compensated under attack. Indeed, the performance of
our method is nearly constant and insensitive to variations in
the attacker’s budget, which is extremely useful when such
information is hard to quantify exactly. Second, we observe
that AB is usually more robust than RT. We believe that RT



Fig. 3. Comparison of adversarial learning techniques for different test budgets and maximum train budget.

Fig. 4. Comparison of adversarial learning techniques for different train budgets and maximum test budget.

suffers from its heuristic splitting strategy, which is not smart
enough to counteract the full spectrum of possible attacks, and
the lack of attack invariance. There are indeed a few cases
where the performance of RT upon attack is comparable to

the performance of traditional GBDT.
3) Impact of training budget: A last intriguing aspect to

consider is how much adversarial learning techniques are
affected by the assumptions made on the attacker’s capabilities



upon learning, i.e., the training budget. Figure 4 is essentially
the dual of Figure 3, where we consider the strongest possible
attacker (with the largest test budget) and we analyze how
much models learned with different (smaller or equal) training
budgets are able to respond to evasion attempts.

We draw the following observations. First, our method leads
to the most robust models for all measures and datasets,
irrespective of the budget used for training. Moreover, our
method is the one which most evidently presents a healthy,
expected trend: the greater the training budget used to learn
the model, the better its performance under attack. This trend
eventually reaches its peak when the training budget matches
the test budget. Also AB shows a similar trend, yet it suffers
from a slow start before reaching its best performance, which
is however worse than our method. RT is the method which
shows the most unpredictable behavior, as its performance
fluctuates up and down, and sometimes suddenly drops. This
is likely due to the fact that the heuristic it implements is too
shortsighted with respect to the set of all the attacks and the
lack of attack invariance. Finally, we remark a last appealing,
distinctive aspect of our method: even when the training uses a
significantly smaller budget than the one used by the attacker
at test time, it already achieves nearly optimal performances.
The same is not true for its competitors, which complicates
their deployment in real-world settings.

VI. CONCLUSION

This paper proposes TREANT, a new adversarial learning
algorithm that is able to grow decision trees that are resilient
against evasion attacks. TREANT is the first algorithm which
greedily, yet soundly, minimizes an evasion-aware loss func-
tion, which captures the attacker’s goal of maximizing pre-
diction errors. Our experiments, conducted on three publicly
available datasets, confirm that TREANT produces accurate
tree ensembles, which are extremely robust against evasion
attacks. Compared to the state of the art, TREANT exhibits a
ROC AUC improvement against the strongest attacker ranging
from ≈ 10% to ≈ 20%.

As future work, we plan to revise our decision tree construc-
tion to make it aware of its deployment inside an ensemble;
in other words, we aim at exploiting the information that
the currently grown ensemble is particularly strong or weak
against some classes of attacks to guide the construction of the
next member of the ensemble. We also plan to evaluate our
learning technique against regression datasets to get an addi-
tional quantitative evaluation of its security benefits. Finally,
we want to investigate the combined use of standard decision
trees and decision trees trained using TREANT in the same
ensemble, to achieve the optimal trade-off between accuracy
in the unattacked setting and resilience to attacks.
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