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Abstract
Data-dependent greedy algorithms in kernel spaces are known to provide fast converg-
ing interpolants, while being extremely easy to implement and efficient to run. Despite
this experimental evidence, no detailed theory has yet been presented. This situation is
unsatisfactory, especiallywhen compared to the case of the data-independent P-greedy
algorithm, for which optimal convergence rates are available, despite its performances
being usually inferior to the ones of target data-dependent algorithms. In this work,
we fill this gap by first defining a new scale of greedy algorithms for interpolation that
comprises all the existing ones in a unique analysis, where the degree of dependency of
the selection criterion on the functional data is quantified by a real parameter. We then
prove new convergence rates where this degree is taken into account, andwe show that,
possibly up to a logarithmic factor, target data-dependent selection strategies provide
faster convergence. In particular, for the first time we obtain convergence rates for
target data adaptive interpolation that are faster than the ones given by uniform points,
without the need of any special assumption on the target function. These results are
made possible by refining an earlier analysis of greedy algorithms in general Hilbert
spaces. The rates are confirmed by a number of numerical examples.

Keywords Kernel methods · Greedy algorithms · Convergence rates · Target
data-dependent algorithms

B Tizian Wenzel
tizian.wenzel@mathematik.uni-stuttgart.de

Gabriele Santin
gsantin@fbk.eu

Bernard Haasdonk
haasdonk@mathematik.uni-stuttgart.de

1 Institute for Applied Analysis and Numerical Simulation, University of Stuttgart, Stuttgart,
Germany

2 Digital Society Center, Bruno Kessler Foundation, Trento, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00365-022-09592-3&domain=pdf
http://orcid.org/0000-0001-6959-1070


Constructive Approximation

Mathematics Subject Classification Primary 65D15 · 65D05 · Secondary 41A58 ·
46E22

1 Introduction

Kernel methods are a well-understood and widely used technique for approximation,
regression and classification in machine learning and numerical analysis.

We start by collecting some notation and preliminary results, while more details are
provided in Sect. 2. For a non-empty set � a kernel is defined as a symmetric function
k : � × � → R. The kernel matrix AXn for a set of points Xn = {x1, . . . , xn} ⊂ �

is given as (AXn )i j = (k(xi , x j ))i j ∈ R
n×n , i, j = 1, . . . , n. If the kernel matrix is

strictly positive definite for any set Xn ⊂ � of n distinct points, the kernel is called
strictly positive definite. Associated to every strictly positive definite kernel there
is a unique Reproducing Kernel Hilbert Space Hk(�) (RKHS) with inner product
〈·, ·〉Hk (�), which is also called native space of k, and which is a space of real valued
functions on � where the kernel k acts as a reproducing kernel, that is

1. k(·, x) ∈ Hk(�) ∀x ∈ �,
2. f (x) = 〈 f , k(·, x)〉Hk (�) ∀x ∈ �,∀ f ∈ Hk(�) (reproducing property).

Strictly positive definite continuous kernels can be used for the interpolation of con-
tinuous functions. The theory is developed under the assumption that f ∈ Hk(�), and
in this case for any set of pairwise distinct interpolation points Xn ⊂ � there exists a
unique minimum-norm interpolant sn ∈ Hk(�) that satisfies

sn(xi ) = f (xi ) ∀i = 1, . . . , n. (1)

It can be shown that this interpolant is given by the orthogonal projection �V (Xn)( f )
of f onto the linear subspace V (Xn) := span{k(·, xi ), xi ∈ Xn}, i.e.,

sn(·) = �V (Xn)( f ) =
n∑

j=1

α j k(·, x j ).

The coefficients α j , j = 1, . . . , n, can be calculated by solving the linear system
of equations arising from the interpolation conditions in Eq. (1), which is always
invertible due to the assumed strict positive definiteness of the kernel.
A standard way of estimating the error between the function f and the interpolant in
the ‖ · ‖L∞(�)-norm makes use of the power function, which is given as

PXn (x) := ‖k(·, x) − �V (Xn)(k(·, x))‖Hk (�)

= sup
0 
= f̃ ∈Hk (�)

|( f̃ − �V (Xn)( f̃ ))(x)|
‖ f̃ ‖Hk (�)

. (2)
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Obviously it holds PXn (xi ) = 0 for all i = 1, . . . , n, and the standard power function
estimate bounds the interpolation error as

|( f − sn)(x)| ≤ PXn (x) · ‖ f − sn‖Hk (�)

= PXn (x) · ‖rn‖Hk (�) ∀x ∈ �, (3)

where we denoted the residual as rn := rn( f ) := f − sn .
Observe that any worst-case error bound on |( f − �V (Xn)( f ))(x)| over the entire

Hk(�) transfers to the same decay of the power function via the second equality in
Eq. (2). For the large class of translational invariant kernels, that we will introduce
below and that includes the notable class of radial basis function (RBF) kernels, it is
possible to refine this error estimate by bounding the decay of the power function in
terms of the fill distance

hXn := hXn ,� := sup
x∈�

min
x j∈Xn

‖x − x j‖2.

Dependingoncertain properties of the kernel, onemayobtain in thiswayboth algebraic
and exponential rates in terms of hXn . Especially in the case of kernels whose RKHS is
norm equivalent to a Sobolev space, these algebraic rates are provably quasi-optimal
and may even be extended to certain functions that are outside of Hk(�) (see [17]).

These results are nevertheless bounded by the dependence on the filling of the
space and by the independence on the target function f . Namely, the fill distance is at
most decaying as hXn ,� � c�n−1/d for quasi-uniform points, which are space-filling
and target-independent. On the other hand, a global target-dependent optimization of
the interpolation points is a combinatorial and practically infeasible task, and thus
approximated strategies have been proposed, and in particular greedy algorithms.

Greedy algorithms in general are studied in various branches of mathematics, and
we point to [29] for a general treatment of their use in approximation. In kernel
interpolation, a greedy algorithm starts with the empty set X0 := ∅ and adds points
incrementally as Xn+1 := Xn ∪{xn+1} according to some selection criterion η(n), that
is

xn+1 := argmaxx∈�\Xn
η(n)(x).

Commonly used selection criteria in the greedy kernel literature are the P-greedy [3],
f · P-greedy1 [6], f -greedy [26], and f /P-greedy [14] criteria, and they choose the
next point according to the following strategies. From now on, we use the short-hand
notation Pn(·) := PXn (·) whenever the power function is determined by some greedy
algorithm.

i. P-greedy: η
(n)
P (x) = Pn(x),

ii. f · P-greedy: η
(n)
f ·P (x) = |rn(x)| · Pn(x),

iii. f -greedy: η
(n)
f (x) = |rn(x)|,

1 We remark that we use the notation f · P-greedy algorithm here because it fits better to our notation,
while in the original publication it was called psr-greedy (power scaled residual greedy).
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iv. f /P-greedy: η
(n)
f /P (x) = |rn(x)|/Pn(x).

These algorithms have been used in a series of applications (see, e.g., [6, 9–11, 18,
21, 26–28]), and overwhelmingnumerical evidence points to the fact that criteriawhich
incorporate a residual-dependent term provide faster convergence, even if sometimes
at the price of stability (see [32] for a discussion of this fact for f /P-greedy, and [6]
for f · P-greedy).

The faster convergence is fully understandable since function adaptivity should
clearly be beneficial to convergence speed. Nevertheless, the theoretical results are
of opposite nature. Namely, for the P-greedy algorithm it is possible to prove quasi-
optimality statements (see [20]), namely that whatever is the best known decay rate
of the power function for arbitrarily optimized points, this transfers to the same decay
of the power function associated to the points selected by P-greedy. Especially in the
case of Sobolev spaces, these results can be proven to be optimal [32]. On the other
hand, the convergence theory for the target data-dependent algorithms ismuchweaker:
The known results (see Sect. 2 for a detailed account) provide convergence of order
at most n−1/2, which is generally not only largely missing the practical observations,
but also slower than the rates proven for P-greedy.

We remark that existing techniques to prove convergence of greedy algorithms in
general Hilbert spaces are not directly transferable to this setting. Indeed, the first
results on similar algorithms have been obtained in Matching Pursuit, and they work
for finite dimensional spaces [2, 13]. When transferred to the kernel setting (see [26])
these require a norm equivalence between the Hk(�)- and the ∞-norm, which hold
only for finite n. Subsequent general results on greedy algorithms (see [5]) require spe-
cial assumptions on the target function, and the resulting rates are only of order n−1/2.
Another common strategy in the greedy literaturemakes use of the Restricted Isometry
Property (see, e.g., [1]), which in the kernel setting translates to the requirement that
the smallest eigenvalue λn of the kernel matrix is bounded away from zero uniformly
in n. This is not the case here, since it is known that λn ≤ min1≤ j≤n PXn\{x j }(x j )2 (see
[23]), and we will see later that a fast convergence to zero of the right hand side of this
inequality is the key of our analysis. Especially, all these results prove convergence
in the Hilbert space norm, which is generally too strong (to obtain convergence rates)
since the interpolation operator is an orthogonal projection inHk(�).Wework instead
with the ∞-norm, which allows to derive fast convergence, even if it introduces an
additional difficulty since the norm of the error is not monotonically decreasing. Fur-
thermore we point to the empirical interpolation method (EIM) [12], which is also a
greedy technique, that however aims at interpolating a set of functions (instead of a
single function) using a subset of these functions as basis elements (instead of kernel
evaluations k(·, x)).

The paper is organized as follows. After recalling additional facts on kernel greedy
interpolation in Sect. 2, we derive a new analysis of general greedy algorithms in
general Hilbert spaces based on [4] (Sect. 3).

In Sect. 4 we frame the four selection rules into a joint scale of greedy algorithms
by introducing β-greedy algorithms (Definition 4) which include P-greedy (β = 0),
f · P-greedy (β = 1/2), f -greedy (β = 1), and f /P-greedy (β = ∞), and we study
them within a novel error analysis.
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These results are combined in Sect. 5 to obtain precise convergence rates of themini-
mum error emin( f , n) := min1≤i≤n ‖ f − si‖∞ . Thismeasure allows us to circumvent
the non-monotonicity of the error, and we remark in particular that emin( f , n) < ε for
some ε > 0means that an error smaller than ε is achieved using at most n points. As an
exemplary result, we mention here the case where the rate of worst-case convergence
in Hk(�) for a fixed set of n interpolation points is n−α for a given α > 0. In this
case, for β ∈ [0, 1] we get new convergence rates of the form

emin( f , n) ≤ c log(n)αn−β/2n−α, n ≥ n0 ∈ N,

with c > 0. These results prove in particular that the worst case decay of the error
that can be obtained in Hk(�) with a fixed sequence of points transfers to the β-
greedy algorithms with an additional multiplicative factor of log(n)αn−β/2. Namely,
adaptively selected points provide faster convergence than any fixed set of points.

Finally, Sect. 6 illustrates the results with analytical and numerical examples while
the final Sect. 7 presents the conclusion and gives an outlook.

2 Background Results on Kernel Interpolation

We recall additional required background information on kernel based approximation
and in particular greedy kernel interpolation. For a more detailed overview we refer
the reader to [7, 8, 30]. We remark that in this section no special attention is paid to
the occurring constants, which can change from line to line.

2.1 Interpolation by Translational Invariant Kernels

In many applications of interest, the domain is a subset of the Euclidean space, i.e.,
� ⊂ R

d . In this case, a special kind of kernels is given by translational invariant
kernels, i.e., there exists a function 	 : Rd → R with a continuous Fourier transform
	̂ such that

k(x, y) = 	(x − y) for all x, y ∈ R
d .

We remark that the well-known radial basis function kernels are a particular instance
of translational invariant kernels.

Depending on the decay of the Fourier transform of the function 	, two classes of
translational invariant kernels can be distinguished:

1. We call the kernel k a kernel of finite smoothness τ > d/2, if there exist constants
c	,C	 > 0 such that

c	(1 + ‖ω‖22)−τ ≤ 	̂(ω) ≤ C	(1 + ‖ω‖22)−τ .

The assumption τ > d/2 is required in order to have a Sobolev embedding in
C0(�).
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2. If the Fourier transform 	̂ decays faster than at any polynomial rate, the kernel is
called infinitely smooth.

As mentioned in Sect. 1, for these two types of kernels it is possible to derive error
estimates by bounding the decay of the power function in terms of the fill distance.
We have the following:

1. For kernels of finite smoothness τ > d/2, given appropriate conditions on the
domain � ⊂ R

d (e.g., Lipschitz boundary and interior cone condition), the native
space Hk(�) is norm equivalent to the Sobolev space W τ

2 (�). By making use of
this connection, error estimates for kernel interpolation can be obtained by using
Sobolev bounds [16, 31] that give

‖PXn‖L∞(�) ≤ ĉ1h
τ−d/2
Xn

. (4)

2. For kernels of infinite smoothness such as the Gaussian, the multiquadric or the
inverse multiquadric, we have

‖PXn‖L∞(�) ≤ ĉ2 exp(−ĉ3h
−1
Xn

), (5)

if the domain � is a cube. We remark that these error estimates are not limited
to these three exemplary kernels. We point to [30, Theorem 11.22] which states a
sufficient condition in order to obtain these exponential kind of error estimates.

By looking at well-distributed points such that hXn ,� ≤ c�n−1/d , these bounds
from Eqs. (4) and (5) can be cast only in terms of the number of interpolation points
n, i.e.

‖PXn‖L∞(�) ≤ c̃1n
1/2−τ/d ,

‖PXn‖L∞(�) ≤ c̃2 exp(−c̃3n
1/d).

(6)

2.2 Greedy Kernel Interpolation

We collect the motivation, a few properties, and the existing analysis of the four
selection criteria introduced in Sect. 1:

i. P-greedy: The P-greedy algorithm is the best analyzed one of the four algo-
rithms named above. It aims at minimizing the error for all functions in the native
space simultaneously, which is done by greedily minimizing the upper error bound
from Eq. (3), which is the power function. Thus, the selection criterion of the P-
greedy algorithm is target data independent. For the P-greedy algorithm, it holds
Pn(xn+1) = ‖Pn‖L∞(�). Several results on the P-greedy algorithm have been
derived in [20, 32]:

(a) Corollary 2.2. in [20] showed convergence statements for the maximal power
function value ‖Pn‖L∞(�) for radial basis function kernels, when � ⊂ R

d has
a Lipschitz boundary and satisfies an interior cone condition. It states

‖Pn‖L∞(�) ≤ c1 · n1/2−τ/d (finite smoothness τ > d/2)
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‖Pn‖L∞(�) ≤ c2 exp(−c3n
1/d) (infinite smoothness).

Via the standard power function bound from Eq. (3) these bounds directly give
bounds on the approximation ‖ f − sn‖L∞(�). A few more details of the proof
strategy of [20] will be recalled in Sect. 3.

(a) The paper [32] showed further results for the case of kernels of finite smooth-
ness τ > d/2: Theorem 12 in [32] showed that the decay rate on ‖Pn‖L∞(�) is
sharp. The sequence of Theorems 15, 19 and 20 of [32] further established that
the resulting sequence of points are asymptotically uniformly distributed under
some mild conditions. These results implied (optimal) stability statements in
[32, Corollary 22].

ii. f -greedy: The f -greedy algorithm aims at directly minimizing the residual by
setting the currently largest residual to zero by introducing the next interpolation
point at this point, i.e. it holds |( f − sn)(xn+1)| = ‖ f − sn‖L∞(�). Existing
results prove convergence of order n−�/d for kernels k ∈ C2�(� × �) in d = 1
(see Section 3.4 in [14]), while for general d limited results are known, e.g., [14,
Korollar 3.3.8] states that

min
j=1,...,n

‖ f − s j‖L∞(�) ≤ Cn−1/d

if k ∈ C2(�×�). Asmentioned before, these convergence results do not reflect the
approximation speed of f -greedy that can be observed in numerical investigations.
Additionally, in [22] convergence of order n−1/2 of the Hk(�)-norm of the error
is proven, but only under additional assumptions on f .

iii. f /P-greedy: The f /P-greedy selection aims at minimizing the native space error
of the residual as much as possible as it can be seen from Eq. (7). We remark as
a technical detail that the supremum of |( f − sn)(x)|/Pn(x) over x ∈ � \ Xn

need not be attained as it was exemplified in Example 6 of [32]. However, this
can be alleviated by choosing the next point xn+1 such that |rn(xn+1)|

Pn(xn+1)
≥ (1 − ε) ·

supx∈�\Xn

|rn(x)|
Pn(x)

for any 0 < ε � 1. As a convergence result, [33, Theorem 3]
states

‖ f − sn‖Hk (�) ≤ Cn−1/2,

which, however, only holds for a quite restricted set of functions f , which has
slightly been extended in [22].

iv. f · P-greedy: The idea of the just recently introduced f · P-greedy algorithm
is to have a combination of the power function dependence and the target data
dependence in order to balance between the stability of the P-greedy algorithm
and the target data dependence of the f -greedy algorithm. No convergence results
were given in the original publication [6].

In addition to the selection criteria, we remark that for a practical numerical imple-
mentation the greedy algorithms stop if a predefinedbound (either on, e.g., the accuracy
or the numerical stability) is reached, or if the interpolant is exact.
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Finally, to analyze and implement these algorithms it is useful to consider the
Newton basis {v j }nj=1 of Vn (see [15, 18]), which is obtained by applying the Gram-
Schmidt orthonormalization process to {k(·, x j ), j = 1, . . . , n} whereby {x j , j =
1, . . . , n} are the pairwise distinct points that are incrementally selected by the greedy
procedure. We recall that we have

sn(x) =
n∑

j=1

〈 f , v j 〉Hk (�)v j (x),

and it can be shown that it holds 〈 f , v j 〉Hk (�) = |( f − s j−1)(x j )|/PX j−1(x j ). If

sn
n→∞−→ f inHk(�), we have

‖ f ‖2Hk (�) =
∞∑

j=1

(
|( f − s j )(x j+1)|

PX j (x j+1)

)2

. (7)

3 Analysis of Greedy Algorithms in an Abstract Setting

This section extends the abstract analysis of greedy algorithms in Hilbert spaces intro-
duced in [4]. For this, letH be a Hilbert space with norm ‖ · ‖ = ‖ ·‖H. LetF ⊂ H be
a compact subset and assume for notational convenience only that it holds ‖ f ‖H ≤ 1
for all f ∈ F .

We consider algorithms that select elements f0, f1, . . . , without yet specifying any
particular selection criterion. We define Vn := span{ f0, . . . , fn−1} and the following
quantities, whereby Yn is any n-dimensional subspace of H:

dn :=dn(F)H := inf
Yn⊂H

sup
f ∈F

dist( f ,Yn)H

σn :=σn(F)H := sup
f ∈F

dist( f , Vn)H

νn :=dist( fn, Vn)H.

(8)

The quantities dn and σn have already been used in [4], where dn is the Kolmogorov
n-width of F , and we recall that the compactness of F is equivalent to require that
limn dn = 0 (see [19]). On the other hand, the newly introduced quantity νn does not
seem in itself to be an interesting quantity for the abstract setting, and it was only
denoted as an,n within [4] before. However, it will be the key quantity for our new
analysis in the kernel setting in Sects. 4 and 5.

As we focus on Hilbert spaces, expressions like ({, Vn) can be computed via the
orthogonal projector in H onto Vn , that we denote as �Vn . We have the following
elementary properties:

1. Estimates: dn ≤ σn and νn ≤ σn for all n ∈ N.
2. Monotonicity: (σn)n∈N and (dn)n∈N are monotonically decreasing.
3. Initial value: d0 ≤ σ0 ≤ 1.
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The paper [4] considers weak greedy algorithms that choose, for some fixed 0 <

γ ≤ 1, the elements fn such that

νn ≡ dist( fn, Vn)H ≡ σn({ fn})H ≥ γ · sup
f ∈F

σn({ f })H = γ · σn(F), (9)

and shows that, roughly speaking, an asymptotic polynomial or exponential decay of
dn yields a polynomial or exponential decay of σn , i.e., the weak greedy algorithms
essentially realize the Kolmogorov widths up to multiplicative constants. We remark
that this analysis includes the strong greedy algorithm, i.e., γ = 1.

In the following, we show in Sect. 3.1 that even without using the selection of
Eq. (9)—i.e., the elements f0, f1, . . . may even be randomly chosen within F—
comparable statements hold for νn .

3.1 Greedy Approximation with Arbitrary Selection Rules

We start by stating a simple modification of [4, Theorem 3.2.] and a subsequent
corollary. The theorem is actually valid for any sequence { fi }i ⊂ F , but since we
are interested in greedy algorithms we phrase the result by assuming that the fi are
selected in terms of an arbitrary selection rule.

Theorem 1 Consider a compact set F in a Hilbert space H, and a greedy algorithm
that selects elements from F according to any arbitrary selection rule.

We have the following inequalities between νn, σn and dn for any N ≥ 0, K ≥
1, 1 ≤ m < K:

K∏

i=1

ν2N+i ≤
(
K

m

)m (
K

K − m

)K−m

σ 2m
N+1d

2K−2m
m .

Proof The result is obtained by simply omitting the last step in the proof of Theo-
rem 3.2 in [4]. Namely, any element in the sequence of selected functions can be
represented by its coefficients representation on a certain orthonormal basis, obtained
by a Gram–Schmidt orthonormalization process on the previously selected functions.
These coefficients are collected into an infinite dimensional matrix (see Section 3 in
[4]). It is possible to apply Lemma 2.1 in [4], in order to obtain the two bounds (3.2)
and (3.3) in [4].We follow the original proof up to this point, i.e., right before Eq. (3.4),
which is the bound on the quantity a2N+i,N+i . Using the second-to-last equation on
p. 459 in [4] and our definition of νn , in our notation we have

a2N+i,N+i = ‖ fN+i − �VN+i fN+i‖2H = dist( fN+i , VN+i )
2
H = ν2N+i ,

and this gives the result. In the original paper, an additional step in Eq. (3.4) is used
to obtain a bound on σn instead of νn . ��

Similarly to the approach used in [4], in the following corollary we make suitable
choices of N , K ,m to specialize the result to the case of algebraically or exponentially
decaying Kolmogorov widths.
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Corollary 2 Under the assumptions of Theorem 1 the following holds.

(i) If dn(F) ≤ C0n−α, n ≥ 1, then it holds

(
2n∏

i=n+1

νi

)1/n

≤ 2α+1/2C̃0e
α log(n)αn−α, n ≥ 3, (10)

with C̃0 := max{1,C0}.
(ii) If dn(F) ≤ C0e−c0nα

, n = 1, 2, . . . , then it holds

(
2n∏

i=n+1

νi

)1/n

≤
√
2C̃0 · e−c1nα

, n ≥ 2, (11)

with C̃0 := max{1,C0} and c1 = 2−(2+α)c0 < c0.

Proof First of all we observe that for 1 ≤ m < n, we have 0 < x := m/n < 1. Using
x−x (1 − x)x−1 ≤ 2 for x ∈ (0, 1) we obtain

[( n

m

)m (
n

n − m

)n−m
]1/n

= x−x (1 − x)x−1 ≤ 2.

We use Theorem 1 for N = K = n and any 1 ≤ m < n, i.e. we have

n∏

i=1

ν2n+i ≤
( n

m

)m (
n

n − m

)n−m

σ 2m
n+1d

2n−2m
m

⇒
(

n∏

i=1

νn+i

)1/n

≤
[( n

m

)m (
n

n − m

)n−m
]1/2n

σ
m/n
n+1 d

(n−m)/n
m

≤ √
2σm/n

n+1 d
(n−m)/n
m ≤ √

2 · d(n−m)/n
m , (12)

where we took the 2n-th root for the second line and used the monotonicity and
boundedness of (σn)n∈N in the last step, i.e. σm/n

n+1 ≤ σ
m/n
1 ≤ 1.

In order to prove the statements (i) and (ii), we conclude now in two different ways:

(i) For n fixed we choose a fixed 0 < ω � 1 and define m∗ := �ωn� ∈ N, i.e.
ωn ≤ m∗ < ωn + 1. Using dn ≤ 1 , dn ≤ C̃0n−α with C̃0 := max{1,C0}, and
since dn is non-increasing, we can estimate:

(
n∏

i=1

νn+i

)1/n

≤ √
2 · d(n−m∗)/n

m∗ ≤ √
2 · d(n−ωn−1)/n

�ωn�

≤ √
2C̃ (1−ω)−1/n

0 �ωn�−α(1−ω)+α/n
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≤ √
2C̃ (1−ω)−1/n

0 (ωn)−α(1−ω)+α/n

≤ √
2C̃ (1−ω)

0 ω−α(1−ω)n−α(1−ω)(n1/n)α

≤ √
2C̃ (1−ω)

0 ω−α(1−ω)n−α(1−ω)2α.

It follows that for each ω ∈ (0, 1) it holds that

(
2n∏

i=n+1

νi

)1/n

≤ 2α+1/2C̃0n
−α C(ω, n), (13)

with C(ω, n) = C̃−ω
0 ω−α(1−ω)nαω. For each n, the inequality holds in particular

for an optimally chosen ω̄ := ω̄(n) in (0, 1). To find a good candidate ω̄ we min-
imize the upper bound C̃(ω, n) := ω−αnαω, which satisfies C(ω, n) ≤ C̃(ω, n)

since ω, α ≥ 0 and C̃0 ≥ 1. It holds

∂ωC̃(ω, n) = nαωαω−1−α(−1 + ω log(n)),

which vanishes in ω̄ = 1/ log(n), and it is negative on the left of this value and
positive on the right. It follows that if ω̄ ∈ (0, 1), i.e., n ≥ 3, then we can choose
the constant C(ω̄, n) in Eq. (13), which gives the statement since

C(ω̄, n) ≤ C̃(ω̄, n) = log(n)αnα/ log(n) = eα log(n)α.

(i) We pick m = �n/2� and make use of the assumed decay dn(F) ≤ C̃0e−c0nα
to

estimate

(
n∏

i=1

νn+i

)1/n

≤ √
2 · d(n−m)/n

m = √
2 · d(n−�n/2�)/n

�n/2�

≤ √
2 · C1/2

0 e−c0/2(n/2)α ·(1−1/n)

= √
2 · C1/2

0 e−2−1−αc0nα ·(1−1/n)

n≥2≤ √
2 · C1/2

0 e−2−2−αc0nα

= √
2C0 e

−c1nα

,

where c1 := 2−(2+α)c0, and this concludes the proof. ��
Remark 3 Observe that the constant C̃02α+1/2eα = C̃0

√
2 (2e)α in (10) is significantly

smaller than the one obtained in [4] for the algebraic rate, which isC025α+1. However,
we have here instead the logarithmic factor in n, even if we presume that it may be
possible to remove it with a finer analysis. This conjecture is supported by the fact that
we found neither an analytical nor numerical example which required the additional
logarithmic factor in n.
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Fig. 1 Visualization of the scale of the β-greedy algorithms on the real line. Several important cases for
β ∈ {0, 1/2, 1} and β → ∞ are marked

4 Analysis of Greedy Algorithms in the Kernel Setting

This section introduces and analyses β-greedy algorithms that are a scale of greedy
algorithms which generalize the P-, f · P-, f - and f /P-greedy algorithms.

We work under the assumption

‖P0‖L∞(�) = sup
x∈�

‖k(·, x)‖Hk (�) = sup
x∈�

√
k(x, x) ≤ 1. (14)

4.1 A Scale of Greedy Algorithms:ˇ-Greedy

We start with the definition of β-greedy algorithms.

Definition 4 A greedy kernel algorithm is called β-greedy algorithmwith β ∈ [0,∞],
if the next interpolation point is chosen as follows.

1. For β ∈ [0,∞) according to

xn+1 = argmaxx∈�\Xn
|( f − sn)(x)|β · Pn(x)1−β. (15)

2. For β = ∞ according to the f /P-greedy algorithm.

As depicted in Fig. 1, for β = 0 this is the P-greedy algorithm, for β = 1/2 it is the
f · P-algorithm, and for β = 1 it is the f -greedy algorithm. In the limit β → ∞ it
makes sense to define the algorithm to be the f /P-greedy algorithm.2

Observe that the β-greedy algorithms are well defined also for 1 < β < ∞. Indeed,
in this case 1 − β < 0 and thus the power function part occurs as a divisor, and this
may potentially be a problem since Pn(xi ) = 0 for all 1 ≤ i ≤ n. Nevertheless, the
standard power function estimate gives

|( f − sn)(x)|β · Pn(x)1−β = Pn(x)β · ‖ f − sn‖β

Hk (�)

Pn(x)β−1 ≤ ‖ f − sn‖β

Hk (�)
Pn(x),

i.e. it holds limx→x j |( f − sn)(x)|β · Pn(x)1−β = 0 for all x j ∈ Xn .

Remark 5 [Generalizations of the β-selection rule] We remark that it is sufficient to
consider only one parameter β > 0 for the weighting of |( f − sn)(x)| and Pn(x) as
it was done in Eq. (15), in the sense that using two different parameters would be

2 In this framework, the f /P-greedy algorithm is a limit case. This can be seen as an explanation why the
f /P-greedy selection rule is sometimes not well defined, as discussed in Example 6 in [32].
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useless. Indeed, due to the strict monotonicity of the function x �→ x1/α , for some
α > 0 and for γ ∈ R it holds

argmaxx∈�\Xn
|( f − sn)(x)|α · Pn(x)γ = argmaxx∈�\Xn

|( f − sn)(x)| · Pn(x)γ /α,

which shows that only the ratio γ /α is decisive. The specific parametrization via β

and 1 − β in Eq. (15) was chosen in order to obtain f /P-greedy as the limit case
β → ∞.

4.2 Analysis ofˇ-Greedy Algorithms

We can now prove the convergence of these algorithms. So far, analysis of greedy
kernel algorithms mainly focused on estimates on ‖ f − si‖L∞(�). Here and in the
following, different quantities will be analyzed with the goal of bounding instead
mini=n+1,...,2n ‖ f − si‖L∞(�). We remark that no requirements on the kernel k or the
set � are needed for the results of this section, and especially for Theorem 8, as the
proofs are based solely on RKHS theory.

We start by proving a key technical statement for greedy kernel interpolation that
provides a bound on the product of the residual terms ri := f − si . This result holds
independently of the strategy that is used to select the points, greedy or not.

Lemma 6 For any sequence {xi }i∈N ⊂ � and any f ∈ Hk(�) it holds for all
n = 1, 2, . . . that

[
2n∏

i=n+1

|ri (xi+1)|
]1/n

≤ n−1/2 · ‖rn+1‖Hk (�) ·
[

2n∏

i=n+1

Pi (xi+1)

]1/n

. (16)

Proof Let

R2
n :=

[
2n∏

i=n+1

(
ri (xi+1)

Pi (xi+1)

)2
]1/n

.

The geometric arithmetic mean inequality gives

R2
n ≤ 1

n

2n∑

i=n+1

(
ri (xi+1)

Pi (xi+1)

)2

= 1

n

(
2n∑

i=0

(
ri (xi+1)

Pi (xi+1)

)2

−
n∑

i=0

(
ri (xi+1)

Pi (xi+1)

)2
)

.

We now use Eq. (7) applied to s2n+1 and sn+1, and the properties of orthogonal
projections to obtain

R2
n ≤ 1

n

(
‖s2n+1‖2Hk (�) − ‖sn+1‖2Hk (�)

)
≤ 1

n

(
‖ f ‖2Hk (�) − ‖sn+1‖2Hk (�)

)

= 1

n
‖ f − sn+1‖2Hk (�) = 1

n
‖rn+1‖2Hk (�).

123



Constructive Approximation

It follows that Rn ≤ n−1/2 · ‖rn+1‖Hk (�), and thus

[
2n∏

i=n+1

|ri (xi+1)|
]1/n

≤ n−1/2 · ‖rn+1‖Hk (�) ·
[

2n∏

i=n+1

Pi (xi+1)

]1/n

.

��
In order to derive convergence statements in the L∞(�) norm based on Lemma 6,

it is now required to find a relationship between |ri (xi+1)| and ‖ri‖L∞(�). To this end,
we have the following lemma for β-greedy algorithms. Observe that the sequence of
points depends on the value of β, i.e. xn ≡ x (β)

n , but for notational convenience we
drop the superscript.

Lemma 7 Any β-greedy algorithm with β ∈ [0,∞] applied to a function f ∈ Hk(�)

satisfies for i = 0, 1, . . . :

(a) In the case of β ∈ [0, 1]:

‖ri‖L∞(�) ≤ |ri (xi+1)|β · Pi (xi+1)
1−β · ‖ f − si‖1−β

Hk (�)
. (17)

(b) In the case of β ∈ (1,∞] with 1/∞ := 0:

‖ri‖L∞(�) ≤ |ri (xi+1)|
Pi (xi+1)1−1/β · ‖Pi‖1−1/β

L∞(�). (18)

Proof We prove the two cases separately:

(a) Forβ = 0, i.e. the P-greedy algorithm, this is the standard power function estimate
in conjunction with the P-greedy selection criterion Pn(xn+1) = ‖Pn‖L∞(�). For
β = 1 this holds with equality as it is simply the selection criterion of f -greedy
since we have here rn(xn+1) = ‖rn‖L∞(�). We thus consider β ∈ (0, 1) and let
x̃i+1 ∈ � be such that |ri (x̃i+1)| = ‖ri‖L∞(�). Then, the selection criterion from
Eq. (15) gives

|ri (x)|β · Pi (x)1−β ≤ |ri (xi+1)|β · Pi (xi+1)
1−β ∀x ∈ �,

and in particular

Pi (x̃i+1) ≤ |ri (xi+1)|
β

1−β

|ri (x̃i+1)|
β

1−β

· Pi (xi+1).

Using this bound with the standard power function estimate gives

‖ri‖L∞(�) = |ri (x̃i+1)| ≤ Pi (x̃i+1) · ‖ f − si‖Hk (�)

≤ |ri (xi+1)|
β

1−β

|ri (x̃i+1)|
β

1−β

· Pi (xi+1) · ‖ f − si‖Hk (�)
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= |ri (xi+1)|
β

1−β

‖ri‖
β

1−β

L∞(�)

· Pi (xi+1) · ‖ f − si‖Hk (�).

This can be rearranged for ‖ri‖L∞(�) to yield the final result.
(a) For β ∈ (1,∞), the selection criterion from Eq. (15) can be rearranged to

|ri (x)|β ≤ |ri (xi+1)|β
Pi (xi+1)β−1 · Pi (x)β−1 ∀x ∈ � \ Xi ,

and taking the supremum supx∈�\Xi
gives

‖ri‖L∞(�) ≤ |ri (xi+1)|
Pi (xi+1)

β−1
β

· ‖Pi‖
β−1
β

L∞(�).

For β = ∞, the selection criterion of the f /P-greedy algorithm can be directly
rearranged to yield the statement (when using the notation 1/∞ = 0). ��
Using the results of Lemma 7 as lower bounds on |ri (xi+1)|, it is now possible

to control the left hand side of Inequality (16). This gives the main theorem of this
section:

Theorem 8 Anyβ-greedy algorithmwithβ ∈ [0,∞] applied to a function f ∈ Hk(�)

satisfies the following error bound for n = 1, 2, . . . :

(a) In the case of β ∈ [0, 1]:
[

2n∏

i=n+1

‖ri‖L∞(�)

]1/n

≤ n−β/2 · ‖rn+1‖Hk (�) ·
[

2n∏

i=n+1

Pi (xi+1)

]1/n

. (19)

(b) In the case of β ∈ (1,∞] with 1/∞ := 0:

[
2n∏

i=n+1

‖ri‖L∞(�)

]1/n

≤ n−1/2 · ‖rn+1‖Hk (�) ·
[

2n∏

i=n+1

Pi (xi+1)
1/β

]1/n

. (20)

Proof We prove the two cases separately:

(a) For β = 0, i.e. P-greedy, Eq. (17) gives ‖ri‖L∞(�) ≤ Pi (xi+1) · ‖ri‖Hk (�).
Taking the product

∏2n
i=n+1 and the n-th root in conjunction with the estimate

‖ri‖Hk (�) ≤ ‖rn+1‖Hk (�) for i = n + 1, . . . , 2n gives the result.
For β ∈ (0, 1], we start by reorganizing the estimate (17) of Lemma 7 to get

|ri (xi+1)| ≥
(
‖ri‖1/βL∞(�)

)
/

(
Pi (xi+1)

1−β
β · ‖ri‖

1−β
β

Hk (�)

)
,
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and we use this to bound the left hand side of Eq. (16) as

n−1/2·‖rn+1‖Hk (�) ·
[

2n∏

i=n+1

Pi (xi+1)

]1/n

≥
[

2n∏

i=n+1

|ri (xi+1)|
]1/n

≥
[

2n∏

i=n+1

(
‖ri‖1/βL∞(�)

)
/

(
Pi (xi+1)

1−β
β · ‖ri‖

1−β
β

Hk (�)

)]1/n

=
[

2n∏

i=n+1

‖ri‖1/βL∞(�)

]1/n [ 2n∏

i=n+1

Pi (xi+1)
1−β
β · ‖ri‖

1−β
β

Hk (�)

]−1/n

.

Rearranging the factors, and using again the fact that ‖ri‖Hk (�) ≤ ‖rn+1‖Hk (�)

for i = n + 1, . . . , 2n, gives

[
2n∏

i=n+1

‖ri‖1/βL∞(�)

]1/n

≤ n−1/2 · ‖rn+1‖Hk (�) ·
[

2n∏

i=n+1

Pi (xi+1)
1/β

]1/n

·
[

2n∏

i=n+1

‖ri‖
1−β
β

Hk (�)

]1/n

≤ n−1/2 · ‖rn+1‖Hk (�) ·
[

2n∏

i=n+1

Pi (xi+1)
1/β

]1/n

· ‖rn+1‖
1−β
β

Hk (�)

≤ n−1/2 · ‖rn+1‖1/βHk (�)
·
[

2n∏

i=n+1

Pi (xi+1)
1/β

]1/n

.

Now, the inequality can be raised to the exponent β to give the final statement.
(b) For β ∈ (1,∞] we proceed similarly by first rewriting Eq. (18) of Lemma 7 as

|ri (xi+1)| ≥
(
‖ri‖L∞(�) · Pi (xi+1)

1−1/β
)

/
(
‖Pi‖1−1/β

L∞(�)

)
,

and we lower bound the left hand side of Eq. (16) as

n−1/2·‖rn+1‖Hk (�) ·
[

2n∏

i=n+1

Pi (xi+1)

]1/n

≥
[

2n∏

i=n+1

|ri (xi+1)|
]1/n

≥
[

2n∏

i=n+1

(
‖ri‖L∞(�) · Pi (xi+1)

1−1/β
)

/
(
‖Pi‖1−1/β

L∞(�)

)]1/n

.
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Rearranging for
[∏2n

i=n+1 ‖ri‖L∞(�)

]1/n
yields

[
2n∏

i=n+1

‖ri‖L∞(�)

]1/n

≤ n−1/2 · ‖rn+1‖Hk (�) ·
[

2n∏

i=n+1

‖Pi‖1−1/β
L∞(�)

]1/n

·
[

2n∏

i=n+1

Pi (xi+1)
1/β

]1/n

,

which gives the final result due to ‖Pi‖L∞(�) ≤ 1 for all i = 0, 1, . . .. ��

4.3 An Improvement of the Standard Estimate

As an additional consequence of Lemma 7, Corollary 9 gives a new inequality that
can be seen as an improved standard power function estimate, i.e. an improvement
compared to the standard power function estimate from Eq. (3), that holds for any
β-greedy algorithm.

Corollary 9 [Improved standard power function estimate] Any β-greedy algorithm
with β ∈ [0,∞] applied to a function f ∈ Hk(�) satisfies for i = 0, 1, . . . the
following improved standard power function estimate (with 1/∞ := 0):

‖ri‖L∞(�) ≤ ‖ri‖Hk (�) ·
{
Pi (xi+1) β ∈ [0, 1]
Pi (xi+1)

1/β β ∈ (1,∞] . (21)

Proof For both β ∈ [0, 1] and β ∈ (1,∞] we use the upper bounds on ‖ri‖L∞(�) as
stated in Lemma 7 and further estimate the quantity |ri (xi+1)| via the standard power
function estimate from Eq. (3) to get

‖ri‖L∞(�) ≤ |ri (xi+1)|β · Pi (xi+1)
1−β · ‖ri‖1−β

Hk (�)
≤ Pi (xi+1) · ‖ri‖Hk (�)

for β ∈ [0, 1], and

‖ri‖L∞(�) ≤ |ri (xi+1)|
Pi (xi+1)1−1/β · ‖Pi‖1−1/β

L∞(�) ≤ Pi (xi+1)
1/β · ‖ri‖Hk (�)

for β ∈ (1,∞] by using ‖Pi‖L∞(�) ≤ ‖P0‖L∞(�) ≤ 1 for all i = 0, 1, . . . (see Eq.
(14)). ��

The estimate from Eq. (21) is an improved estimate in comparison with Eq. (3),
in that it provides a bound on ‖ri‖L∞(�) instead of |ri (xi+1)|, and this is a strictly
larger quantity except that in the case of the f -greedy algorithm (i.e. β = 0), where
they coincide. Moreover, for β ∈ [0, 1] the right hand side of the estimates of Eq. (3)
and (21) coincide, while for β > 1 this improvement comes at the price of a smaller
exponent on the power function term, since 1/β < 1.
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Table 1 Connection between the abstract setting and the kernel setting

Abstract setting H f ∈ F span{ f0, . . . , fn−1}
Kernel setting Hk (�) k(·, x), x ∈ � span{k(·, xi ), xi ∈ Xn}

Remark 10 We will see in the following how to obtain convergence rates of the term
minn+1≤i≤2n ‖ri‖L∞(�). From a practitioner point of view this kind of result might
be unsatisfactory, as it is unclear which interpolant si gives the best approximation. In
this case it is possible to resort to the improved standard power function estimate of
Corollary 9: This inequality suggests to pick si∗ with i∗ := argminn+1≤i≤2n Pi (xi+1).

5 Convergence Rates for Greedy Kernel Interpolation

We can finally combine the abstract Hilbert space analysis from Sect. 3 and the greedy
kernel interpolation analysis fromSect. 4 and apply them to concrete classes of kernels.

First of all, we recall a convenient connection that was established in [20] between
the abstract analysis of [4] and kernel interpolation. We repeat it as we need to include
also the extension of Sect. 3, i.e., the new quantity νn . The goal is to frame the β-
greedy algorithms as particular instances of the general greedy algorithm of Sect.
3. In this view we choose H = Hk(�) and F = {k(·, x), x ∈ �}. The fact that
this set is compact is implied by the decay to zero of its Kolmogorov width, that is
equivalent to the existence of a sequence of points such that the associated power
function converges to zero (see Eq. (23)). This choice means that f = k(·, x) ∈ F
can be uniquely associated with an x ∈ � and vice versa. This yields a realization of
the abstract greedy algorithm that produces an approximation set

Vn = span{ f0, . . . , fn−1} = span{k(·, xi ) | i = 1, . . . , n} = V (Xn),

and thus this is a greedy kernel algorithm, with an appropriate selection rule. Table 1
summarizes these assignments.

With these choices, as can be seen from the definition in Eq. (8), σn is simply the
maximal power function value and νn is the power function value at the selected point.

σn ≡ sup
f ∈F

dist( f , Vn)H = sup
f ∈F

‖ f − �Vn ( f )‖H

= sup
x∈�

‖k(·, x) − �V (Xn)(k(·, x))‖Hk (�) = ‖Pn‖L∞(�),

νn ≡ dist( fn, Vn)H = ‖ fn − �Vn ( f )‖H
= ‖k(·, xn+1) − �Vn (k(·, xn+1)‖Hk (�) = Pn(xn+1). (22)

Moreover, dn can be similarly bounded as
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dn ≡ inf
Yn⊂H

sup
f ∈F

dist( f ,Yn)H = inf
Yn⊂H

sup
f ∈F

‖ f − �Yn ( f )‖H

≤ inf
Yn⊂F

sup
f ∈F

‖ f − �Yn ( f )‖Hk (�) = inf
Xn⊂�

‖PXn‖L∞(�), (23)

and thus any convergence statement on ‖PXn‖L∞(�) for a given set of points Xn ⊂ �

gives via Eq. (23) a bound on dn .
Additionally, observe that the assumption ‖ f ‖〈 ≤ 1 for f ∈ F implies in the kernel

setting that

‖P0‖L∞(�) = sup
x∈�

√
k(x, x) = sup

x∈�

‖k(·, x)‖Hk (�) ≤ 1. (24)

5.1 Convergence Rates forˇ-Greedy Algorithms

From Theorem 8, it is now easily possible to derive convergence statements and decay
rates for the kernel greedy algorithms, by bounding the right-hand side by Inequality
(2) and using the interpretations of νi and dn from Eq. (22) and Eq. (23).

Corollary 11 Assume that a β-greedy algorithm with β ∈ [0,∞] is applied to a
function f ∈ Hk(�). Let α,C0, c0 > 0 be given constants, and set 1/∞ := 0. Recall
ri ≡ f − si :

1. If there exists a sequence (Xn)n∈N ⊂ � of sets of points such that

∥∥∥ f̃ − �Xn f̃
∥∥∥
L∞(�)

≤ C0n
−α‖ f̃ ‖Hk (�) ∀ f̃ ∈ Hk(�),

then for all β ≥ 0 and for all n ≥ 3 it holds

min
n+1≤i≤2n

‖ri‖L∞(�) ≤ C · n−min{1,β}
2 (log(n) · n−1)

α
max{1,β} ‖rn+1‖Hk (�), (25)

with C := (
2α+1/2 max{1,C0}eα

) 1
max{1,β} . In particular

min
n+1≤i≤2n

‖ri‖L∞(�) ≤ C · log(n)α · ‖rn+1‖Hk (�) ·
⎧
⎨

⎩

n−α−1/2 f − greedy
n−α−1/4 f · P − greedy
n−α P − greedy

.

2. If there exists a sequence (Xn)n∈N ⊂ � of sets of points3 such that

∥∥∥ f̃ − �Xn f̃
∥∥∥
L∞(�)

≤ C0e
−c0nα‖ f̃ ‖Hk (�) ∀ f̃ ∈ Hk(�),

then for all β ≥ 0 and for all n ≥ 2 it holds

min
n+1≤i≤2n

‖ri‖L∞(�) ≤ C · n−min{1,β}
2 e−c1nα‖rn+1‖Hk (�), (26)

3 We remark that this sequence of sets of points does not need to be nested.
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with C := (√
2max{1,C0}

) 1
max{1,β} and c1 = 2−(2+α)c0/max{1, β}. In particular

min
i=n+1,...,2n

‖ri‖L∞(�) ≤ C · e−c1nα · ‖rn+1‖Hk (�) ·
⎧
⎨

⎩

n−1/2 f − greedy
n−1/4 f · P − greedy
n0 P − greedy

.

3. For f /P-greedy, for any kernel and for all n ≥ 1 it holds

min
n+1≤i≤2n

‖ri‖L∞(�) ≤ n−1/2 · ‖rn+1‖Hk (�).

Proof The proof is a simple combination of Corollary 2 and Theorem 8, with the
addition of the following simple steps:
First, the worst case bounds inHk(�) (either algebraic or exponential) imply the same
bound on the power function via Eq. (2). Second, in all cases we use the results of
Theorem 8 in combination with the bound

min
i=n+1,...,2n

‖ri‖L∞(�) ≤
[

2n∏

i=n+1

‖ri‖L∞(�)

]1/n

.

Then, Eq. (19) and (20) of Theorem 8 can be jointly written as

[
2n∏

i=n+1

‖ri‖L∞(�)

]1/n

≤ n−min{1,β}
2 · ‖rn+1‖Hk (�) ·

[
2n∏

i=n+1

Pi (xi+1)

] 1
nmax{1,β}

.

Plugging the bounds of Corollary 2 in the last inequality gives the result of the first two
points. The third point directly follows from Eq. (20) for β = ∞ due to Pi (xi+1) ≤ 1
for all i = 1, 2, . . . . ��

5.2 Translational Invariant Kernels

Strictly positive definite and translational invariant kernels are popular kernels for
applications. To specialize our result to this interesting case, in this subsection we use
the following assumption.

Assumption 1 Let k(x, y) = 	(x − y) be a strictly positive definite translational
invariant kernel with associated reproducing kernel Hilbert space Hk(�), whereby
the domain � ⊂ R

d is assumed to be bounded with Lipschitz boundary and interior
cone condition.

In this context, we have the following special case of Corollary 11. To highlight the
results in the most relevant cases, we state them only for β ∈ {0, 1/2, 1,∞} even if
similar statements hold for general β > 0.

Corollary 12 Under Assumptions 1, any β-greedy algorithm with β ∈ {0, 1/2, 1,∞}
applied to some function f ∈ Hk(�) satisfies the following error bounds for n =
0, 1, . . ., where the constants are defined as in Corollary 11.
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1. In the case of kernels of finite smoothness τ > d/2

min
i=n+1,...,2n

‖ri‖L∞(�) ≤ C · log(n)τ/d−1/2 · ‖rn+1‖Hk (�) ·
⎧
⎨

⎩

n−τ/d f − greedy
n1/4−τ/d f · P − greedy
n1/2−τ/d P − greedy

.

2. In the case of kernels of infinite smoothness:

min
i=n+1,...,2n

‖ri‖L∞(�) ≤ C · e−c1n1/d · ‖rn+1‖Hk (�) ·
⎧
⎨

⎩

n−1/2 f − greedy
n−1/4 f · P − greedy
n0 P − greedy

.

Observe that for any β ∈ (0, 1] we have the additional convergence of order n−β/2

or n−1/2 for β > 1. The additional decay is faster for increasing β ∈ (0, 1], i.e.
increasing the weight of the target data-dependent term in the selection criterion gives
better decay rates. Especially, the proven decay rate for f -greedy is better than the
one for f · P-greedy which is better than the one for P-greedy.

This additional convergence proves in particular that the Kolmogorov barrier can
be broken, i.e., approximation rates that are better than the ones provided by the
Kolmogorov width can be obtained for any function in Hk(�). Indeed, as discussed
above any bound on dn turns into a bound on ‖Pn‖L∞(�), which can then be used in
Corollary 11 or Corollary 12.

This is particularly relevant for the kernels whose RKHS is norm equivalent to a
Sobolev space. But also other general kernels of low smoothness are of interest, since
it might happen that the power function is decaying at arbitrarily slow speed, while the
adaptive points selected by a β-greedy algorithm provide an additional convergence
rate.

Moreover, the additional decay for β > 0 is dimension independent and thus it does
not incur in the curse of dimensionality. This is of interest in particular for translational
invariant kernels of Corollary 12, as both the algebraic and the exponential decay of
the power function (or Kolmogorov width) degrade with the dimension d and thus the
additional term gains more importance.

Despite this notable relevance, the estimates of Corollary 11 and Corollary 12 are
likely not optimal in the algebraic case. Indeed, for kernels with algebraically decaying
Kolmogorov width, in the case of the P-greedy algorithm (β = 0) bounds without
the additional log(n)α factor are known [20]. We thus expect that the inconvenient
additional log(n)α factor is not required for any of theβ-greedy algorithms.We remark
that this factor is related to the additional ε within Corollary 2, but we did not find
a way to get rid of it, with exception of β = 0, i.e. the P-greedy case. Moreover,
we obtained our bounds by means of the worst-case bounds on (

∏2n
i=n+1 Pi (xi+1))

1/n

fromCorollary 2.Numerically, a faster decay than theworst case bound fromCorollary
2 can often be observed (see the examples in Sect. 6.1). Especially, for each β value we
obtain a different sequence of points and thus a different decay of the corresponding
power function values.

Remark 13 [Additional convergence orders] Additional convergence orders can be
obtained from the decay of ‖rn‖Hk (�). Even if this quantity is in general decaying at
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arbitrarily slow speed for a general f ∈ Hk(�), we mention the case of supercon-
vergence [24, 25], which allows to bound ‖ri‖Hk (�) ≤ C f · ‖Pi‖L2(�) for special
functions f ∈ Hk(�). The original superconvergence requirement f = Tg (whereby
T is the kernel integral operator and g ∈ L2(�), i.e. (Tg)(x) = ∫

�
k(x, y)g(y)dy)

can be extended to functions f ∈ Hk(�) such that |〈 f , g〉Hk (�)| ≤ C f · ‖g‖Lq (�) for
all g ∈ Hk(�) (see [22, Theorem 19]).

Remark 14 [Stability] The stability of the greedy interpolation, as computed here by
the so-called direct method, is mainly linked to the smallest eigenvalue of the kernel
interpolation matrix. A standard result [23] gives the upper estimate λmin(Xn) ≤
Pn−1(xn)2. In view of the estimates of Eqs. (25) and (26), this means that a faster
convergence based on a faster decay of the power function values Pi (xi+1) directly
negatively influences the stability. This holds especially for β > 1, because in this
case the upper bound for the convergence in terms of the power function scales with
the exponent 1/β < 1.

Remark 15 [Other greedy selection rules] The analysis above shows that γ -greedy
algorithmswhichwere introduced in [32] are actually closer to the P-greedy algorithm
than to target data-dependent algorithms for the case of kernels of finite smoothness
τ > d/2. In this case for γ -greedy algorithms the decay of Pn(xn+1) can be both
lower and upper bounded by a constant times n1/2−τ/d . As the point selection criteria
of γ -stabilized greedy algorithms first of all look at the power function value via
Pn(xn+1) ≥ γ · ‖Pn‖L∞(�), there is no relationship as in Eq. (15) (β > 0). Thus, we
cannot derive additional convergence rates.

Remark 16 [Other norms] For kernels of finite smoothness τ > d/2 on a set � with
Lipschitz boundary satisfying an interior cone condition, the optimal rates of L p-
convergence are of order ‖rn‖L p(�) ≤ cpn−τ/d+(1/2−1/p)+ . This rate ismatched by the
P-greedy algorithm (see [32, Corollary 22]), since it is proven to select asymptotically
uniformly distributed points.

In the case of the f -greedy algorithm, we can use the additional factor n−1/2 from
Corollary 12 to get rid of the conversion from the L p to the L∞ norm, i.e. we have

‖rn‖L p(�) ≤ meas(�)1/p ‖rn‖L∞(�) ≤ c∞ log(n)τ/d−1/2n−τ/d .

Sowe have almost L p-optimal results (up to the poly-logarithmic factor) for p ∈ [1, 2]
and even improved convergence for p ∈ (2,∞]. Similar statements hold for general
β-greedy algorithms.

6 Examples

6.1 Visualization of Results of Abstract Setting

This subsection visualizes the results from the abstract analysis in Sect. 3, especially
Sect. 3.1. Againwemake use of the links recalled in the beginning of Sect. 5, especially
in Eqs. (22) and (23).
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We consider the domain � = [0, 1]3 ⊂ R
3 and the Gaussian kernel with kernel width

parameter 2, i.e. k(x, y) = exp(−4‖x − y‖22). Four different sequences of points are
considered, with colors referring to Fig. 2:

i. Blue: P-greedy algorithm on the whole domain �.
ii. Red: P-greedy algorithm on the subdomain �2 := {x ∈ � | (x)3 = 1/2}. Like

this, the dimension is effectively reduced from d = 3 to d = 2.
iii. Yellow, violet: The points are independently randomly picked within � according

to a uniform distribution.

The results are displayed in Fig. 2:

• The upper two figures displays the quantities σn = ‖Pn‖L∞(�) (left) and νn =
Pn(xn+1) (right).

• The lower two figures display

n �→
⎛

⎝
2n∏

j=n+1

σ j

⎞

⎠
1/n

=
⎛

⎝
2n∏

j=n+1

‖Pj‖L∞(�)

⎞

⎠
1/n

(left),

n �→
⎛

⎝
2n∏

j=n+1

ν j

⎞

⎠
1/n

=
⎛

⎝
2n∏

j=n+1

Pj (x j+1)

⎞

⎠
1/n

(right).

For the numerical experiments, the domain � was discretized using 2 · 104 random
points and �2 was discretized by projecting the random points related to � onto �2.
The algorithms run until 300 points are selected or the next selected Power function
value satisfies Pn(xn+1) < 10−5.

From the top left picture, one can infer that the displayed quantity ‖Pn‖L∞(�) decays
fastest for the P-greedy algorithm. This was expected, as the algorithms directly aims
at minimizing this quantity. However, the displayed quantity ‖Pn‖L∞(�) does not drop
at all for the P-greedy algorithm on �2, as it picks only points from �2 and thus does
not fill �.

Contrarily, the top right picture shows that the displayed quantity Pn(xn+1) decays
faster for the P-greedy algorithm on �2, while for the P-greedy algorithm on � we
have exactly the same curve due to Pn(xn+1) = ‖Pn‖L∞(�). The two further point
choices exhibit a wiggling, noisy behavior on the displayed Pn(xn+1) quantity, which
is related to the random point choice.

The two lowerfigures refer to thegeometricmean (�2n
j=n+1 .. )1/n of thequantities of

the upper figures. In the lower left figure,we can see that only the curve related to the P-
greedy algorithmon� decays fast, the other curves do not decay at all or only slowly—
because the points are not chosen in a way to minimize the maximal Power function
value ‖Pn‖L∞(�). Contrarily, the P-greedy algorithm on� exhibits the slowest decay
of the quantity (�2n

j=n+1ν j )
1/n , which is the same curve as in the lower left figure

due to ν j = Pj (x j+1) = ‖Pj‖L∞(�) = σ j . However, all the three other choices
of points provide a faster decay of the displayed quantity (

∏2n
j=n+1 Pj (x j+1))

1/n =
(
∏2n

j=n+1 ν j )
1/n . The theoretical reason for (at least) the same decay as the P-greedy

algorithm on � was proven in Corollary 2.
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10−2
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Fig. 2 Decay of several power function related quantities (y-axis) depending on their index n (x-axis)
for four different choices of points: The upper two plots display the quantities σn = ‖Pn‖L∞(�) (left)

respective νn = Pn(xn+1) (right). The lower two plots display the quantities (
∏2n

j=n+1 σ j )
1/n =

(
∏2n

j=n+1 ‖Pj‖L∞(�))
1/n (left) respective (

∏2n
j=n+1 ν j )

1/n = (
∏2n

j=n+1 Pj (x j+1))
1/n (right)

6.2 ˇ-Greedy Algorithms Using theWendland Kernel

We consider the application of β-greedy algorithms for the particular example of the
Wendland k = 0 kernel on the domain � = [0, 1], which is defined as

k(x, y) = max(1 − |x − y|, 0),

and thus a piecewise linear kernel. Its native space Hk(�) is norm equivalent to
the Sobolev space W 1

2 (�). It is immediate to see that kernel interpolation using the
Wendland k = 0 kernel on centers Xn ⊂ � boils down to piecewise linear spline
interpolation on the subinterval [min Xn,max Xn] ⊂ [0, 1]. On�\[min Xn,max Xn]
the interpolant is still an affine function.
We consider the function f : � → R, x �→ xα for some 1/2 < α < 1. For
α > 1/2 it holds f ∈ W 1

2 (�), thus f ∈ Hk(�). It can be shown, that in the case
of asymptotically uniform interpolation points—i.e. qn � hn � n−1, whereby qn =
minxi 
=x j∈Xn ‖xi − x j‖2 is the so called separation distance—it is possible to lower-
bound the error as (for details see “Appendix A”)

‖ f − sn‖L∞(�) ≥ Cα · n−α (27)
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for Cα > 0. Furthermore, independent of the way the interpolation points XN were
chosen (i.e. even for optimally chosen points), it holds

‖ f − sn‖L∞(�) ≥ C · n−2 (28)

for some C > 0. Thus, we can infer:

• Any (greedy) algorithm that yields asymptotically uniformly distributed points
cannot have a convergence rate better than n−α for this particular example. This
includes especially the P-greedy algorithm, but also any γ -stabilized greedy algo-
rithms [32], as they are known to provide asymptotically uniform points as well,
see [32, Theorem 20]. Thus, this example shows that γ -stabilized greedy algo-
rithms cannot be expected in general to give a better approximation rate than the
P-greedy algorithm (however they were motivated by their use for the preasymp-
totic range).
Especially for α → 1/2, the convergence rate can be arbitrary close to 1/2.

• For the f -greedy and f · P-greedy algorithms we have a convergence of at least
log(n)1/2 · n−1 respective log(n)1/2 · n−3/4 according to Corollary 12, which is
strictly better compared to the P-greedy algorithm.

Figure 3 visualizes the convergence of severalβ-greedy algorithms for the described
setting. One can observe that the error for the P-greedy algorithm (β = 0) decays
approximately according to n−1/2, which is in accordance with Eq. (27). For the f -
greedy algorithm (β = 1) the error seems to decay according to n−2, which is the
fastest possible decay rate according to Eq. (28). For all intermediate β values one can
observe intermediate convergence rates: For values of β closer to 1, the error decays
faster. The f /P-greedy algorithm (β = ∞) seems to give a convergence in between
n−1/2 and n−2.

We remark that this behavior of the error decay depending on β is not unique to
the Wendland k = 0 kernel, but can also be observed for other kernels, domains and
target functions f . This particular examplewas chosen, because it is analytically easily
possible to derive several explicit statements on convergence rates for asymptotically
uniform and adapted points.

6.3 Approximation of Franke’s Test Function

As a final example in 2D we consider the approximation of Franke’s test function
which is defined on � = [0, 1] as

f (x) = 0.75e− (9(x)1−2)2

4 − (9(x)2−2)2

4 + 0.75e− (9(x)1+1)2

49 − 9(x)2+1
10

+ 0.5e− (9(x)1−7)2

4 − (9(x)2−3)2

4 − 0.2e−(9(x)1−4)2−(9(x)2−7)2 .

Therefore, we use the linear Matérn kernel which is given as

k(x, y) = (1 + ‖x − y‖2) · e−‖x−y‖2
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f/P greedy
0.2 · n-1/2

0.7 · n-2

Fig. 3 Decay of the error ‖ f − s(β)
n ‖L∞(�) (y-axis) for β-greedy algorithms in the number n of chosen

interpolation points (x-axis) for β ∈ {0, 0.25, 0.5, 0.75, 1, 2, 4,∞} and f (x) = xα with α = 0.51. Two
additional dashed lines indicate a rate of convergence of n−1/2 and n−2

and run β-greedy algorithms using β ∈ {0, 0.5, 1,∞}. The resulting points are visu-
alized in Fig. 4. For β = 0, i.e. P-greedy, the points are quite uniformly distributed,
which is according to the theoretical results in [32]. For β = ∞, i.e. f /P-greedy, the
points are quite clustered around a few spots. For β = 0.5 ( f · P-greedy) and β = 1
( f -greedy), an intermediate behavior can be observed: The points are still slightly
clustered, but also fill the whole domain.

7 Conclusion and Outlook

Using an abstract analysis of greedy algorithms in Hilbert spaces, it was shown that
arbitrary point sequences—e.g., generated from arbitrary greedy kernel algorithms—
yield certain decay rates for specific power function quantities. Based on these results
and refined greedy kernel interpolation analysis it was possible to investigate and prove
convergence statements for a range of greedy kernel algorithms including the target
data-dependent f -, f · P- and f /P-greedy algorithms. The provided techniques and
results will likely lead to further advancements, e.g., in the field of kernel quadrature.

Several points remain open, and they will be addressed in future research. First, the
proven decay rate for the f /P-greedy algorithm is still not satisfactory and is likely
improvable. Moreover, the results are independent of the special choice of function
f ∈ Hk(�). How to make use of properties of that function? It would be desirable
to conclude a faster decay of the (

∏2n
i=n+1 Pi (xi+1))

1/n-quantity based on properties
of the considered function f ∈ Hk(�). Finally, it is still unclear if it is possible to
derive general statements on the decay of ‖ f − sn‖Hk (�), and what is the relationship
between this fact and superconvergence.
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Fig. 4 Visualization of the greedily chosen points for the interpolation of Franke’s test function. From left
to right, top to bottom we used β ∈ {0, 0.5, 1,∞}. For β = 0 the points are quite uniformly distributed,
for β = ∞ strong clustering can be observed. The intermediate values β ∈ {0.5, 1} provide intermediate
cases
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A Details on Section 6.1

Consider the k = 0 Wendland kernel and the domain � = [0, 1]. Then, the native
spaceHk(�) is norm equivalent to the Sobolev space W 1

2 (�). We remark that kernel
interpolation using the Wendland k = 0 kernel on centers Xn ⊂ � boils down to
piecewise linear spline interpolation on the subinterval [min Xn,max Xn] ⊂ [0, 1].
On � \ [min Xn,max Xn] the interpolant is still an affine function.
We consider the function f : � → R, x �→ xα for some 1/2 < α < 1. For α > 1/2,
it holds f ∈ W 1

2 (�), thus f ∈ Hk(�). We consider the interpolation using not-yet
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specified points Xn ⊂ �. Define z1 := z(n)
1 := min Xn, z2 := z(n)

2 := min Xn \ {z1}.
We have for n ≥ 2:

sn(x)
∣∣
x∈[z1,z2] = zα2 − zα1

z2 − z1
· (x − z1) + zα1

We can estimate ‖ f − sn‖L∞(�) via:

‖ f − sn‖L1([z1,z2]) ≤ ‖ f − sn‖L∞([z1,z2]) · |z2 − z1|
≤ ‖ f − sn‖L∞(�) · |z2 − z1|

⇔ ‖ f − sn‖L∞(�) ≥ ‖ f − sn‖L1([z1,z2])/|z2 − z1|

The integral ‖ f − sn‖L1([z1,z2]) can be computed as

‖ f − sn‖L1([z1,z2]) =
∫ z2

z1
xα −

(
zα2 − zα1
z2 − z1

· (x − z1) + zα1

)
dx

= 1

1 + α
(z1+α

2 − z1+α
1 ) −

∫ z2−z1

0

zα2 − zα1
z2 − z1

· x + zα1 dx

= 1

1 + α
(z1+α

2 − z1+α
1 ) − 1

2
· z

α
2 − zα1
z2 − z1

· (z2 − z1)
2 − zα1 · (z2 − z1).

Thus, we have

‖ f − sn‖L∞(�) ≥ ‖ f − sn‖L1([z1,z2])
z2 − z1

= 1

1 + α

z1+α
2 − z1+α

1

z2 − z1
− 1

2
· (zα2 − zα1 ) − zα1

= 1

1 + α

z1+α
2 − z1+α

1

z2 − z1
− 1

2
· (zα2 + zα1 )

= zα2 ·
(

1

1 + α

z2 − z1zα1 z
−α
2

z2 − z1
− 1 + zα1 z

−α
2

2

)

= zα2 ·
(

1

1 + α

z2 − z1(1 + zα1 z
−α
2 − 1)

z2 − z1
− 1 + zα1 z

−α
2

2

)

= zα2 ·
(

1

1 + α
+ 1

1 + α

z1(1 − zα1 z
−α
2 )

z2 − z1
− 1 + zα1 z

−α
2

2

)

= zα2 ·
(

1

1 + α
+ 1

1 + α

1 − zα1 z
−α
2

z2z
−1
1 − 1

− 1 + zα1 z
−α
2

2

)
.
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We proceed by setting k := z2/z1:

‖ f − sn‖L∞(�) ≥ zα2 ·
(

1

1 + α
+ 1

1 + α

1 − k−α

k − 1
− 1 + k−α

2

)

︸ ︷︷ ︸
=:hα(k)

.

We consider asymptotically uniform points, i.e. ∃C > 0 ∀n ∈ N hn/qn ≤ C . Based
on the definition of the separation and fill distance we can estimate

k ≡ z2
z1

≥ z1 + qn
z1

≥ 1 + qn
z1

≥ 1 + qn
hn

Using the asymptotic uniformity, we have finally

k ≥ 1 + qn
hn

≥ 1 + C−1 > 1.

Finally, an analysis of the 1D function hα : [1 + C−1,∞) → R shows that it holds

hα(k) ≥ hα(1 + C−1) > 0

for k ∈ [1 + C−1,∞). This finally implies

‖ f − sn‖L∞(�) ≥ zα2 · min
k∈[1+C−1,∞)

hα(k)

≥ c · n−α

for some c > 0 due to z2 ≥ qn ≥ c̃n−1.
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